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equations by means of nonprincipal solutions.
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1. Introduction

The concept of the principal solutionwas introduced in 1936 by Leighton andMorse [1] in studying positiveness of certain
quadratic functional associated with

(r(t)x′)′ + ν(t)x = 0, t ≥ t0. (1.1)

Since then the principal and nonprincipal solutions have been used successfully in connection with oscillation and
asymptotic theory of (1.1) and related equations, see for instance [1–8] and the references cited therein. For some extensions
to Hamiltonian systems, half-linear differential equations, dynamic equations and impulsive differential equations, we refer
in particular to [4,9–12].

We recall that a nontrivial solution u of (1.1) is said to be principal if for every solution v of (1.1) such that u ≠ cv, c ∈ R,

lim
t→∞

u(t)
v(t)

= 0.

It is well known that a principal solution u of (1.1) exists uniquely up to a multiplication by a nonzero constant if and only
if (1.1) is nonoscillatory. A solution v that is linearly independent of u is called a nonprincipal solution. Roughly speaking,
the words ‘‘principal’’ and ‘‘nonprincipal’’ may be replaced by ‘‘small’’ and ‘‘large’’ or ‘‘recessive’’ and ‘‘dominant’’. For other
characterizations of principal and nonprincipal solutions of (1.1), see [5, Theorem 6.4], [13, Theorem 5.59].

In 1999, Wong [8], by employing a nonprincipal solution of (1.1), obtained the following oscillation criterion for

(r(t)x′)′ + ν(t)x = f (t). (1.2)

For extensions of the theorem to impulsive differential equations and dynamic equations on time scales, see [11,12].
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Theorem 1.1 (Wong’s Theorem). Suppose that (1.1) is nonoscillatory. Let z be a positive solution of (1.1) satisfying∫
∞

a

1
r(s)z2(s)

ds < ∞ (1.3)

for some a sufficiently large, i.e., a nonprincipal solution. If

lim
t→∞

H(t) = − lim
t→∞

H(t) = ∞, (1.4)

where

H(t) :=

∫ t

a

1
r(s)z2(s)

∫ s

a
z(τ )f (τ )dτ


ds, (1.5)

then Eq. (1.2) is oscillatory.

The aim of our work is to extend the above theorem to nonlinear equations of the form

(r(t)x′)′ + p(t)|x|β−1x − q(t)|x|γ−1x = f (t), t ≥ t0, (1.6)

where

(i) 0 < γ < 1 < β;
(ii) r ∈ C([t0, ∞), (0, ∞)), p, q ∈ C([t0, ∞), [0, ∞)), f ∈ C([t0, ∞), R).

It is clear that the two special cases of (1.6) are the Emden–Fowler super-linear equation

(r(t)x′)′ + p(t)|x|β−1x = f (t), β > 1 (1.7)

and the Emden–Fowler sub-linear equation

(r(t)x′)′ − q(t)|x|γ−1x = f (t), 0 < γ < 1. (1.8)

Typically, nonlinear results require the coefficient in an Emden–Fowler equation

x′′
+ a(t)|x|α−1x = f (t)

to be non-negative, see [14]. Fortunately, we are able to take −q to be negative in (1.8). On the other hand, letting β → 1+

and γ → 1− in (1.6) results in (1.1) with ν(t) = p(t) − q(t), i.e.,

(r(t)x′)′ + [p(t) − q(t)]x = f (t), (1.9)

and thus our result extends Theorem 1.1 by a limiting process β, γ → 1 in (1.6).
We remark that the oscillation of the solutions of (1.7) and (1.8) has been studied by many authors, see for instance

[8,14–24], but to the best of our knowledge there is no result in the literature similar to Theorem 1.1 for such nonlinear
equations, especially for (1.6).

Consider a slightly more general equation than (1.6)

(r(t)x′)′ + p(t)F(x) − q(t)G(x) = f (t), t ≥ t0, (1.10)

where r, p, q, f are as in (ii), F ,G ∈ C(R, R).
By a solution of (1.10) defined on an interval [T , ∞), T ≥ t0, we mean a function x, x′, (rx′)′ ∈ C[T , ∞), satisfying (1.10).

We note that the assumption of r, p, f being continuous is not sufficient to ensure the existence of extendable solutions
of (1.7) on [T , ∞), see [23]. However, as usual in the oscillation theory we only consider solutions of (1.10) which are
extendable to [T , ∞) and nontrivial in the neighborhood of infinity. Such a solution is called oscillatory if it has arbitrarily
large zeros, otherwise it is called nonoscillatory. Eq. (1.10) is called oscillatory (nonoscillatory) if all solutions are oscillatory
(nonoscillatory).

We shall assume that

(C1) xF(x) > 0 and xG(x) > 0 for x ≠ 0;
(C2) (a) lim|x|→∞ x−1F(x) > 1, lim|x|→0 x−1F(x) < 1,

(b) lim|x|→∞ x−1G(x) < 1, lim|x|→0 x−1G(x) > 1.

Using (C1) and (C2), it is easy to find positive constants α0, β0, γ0, δ0 such that

max
x≥0

Φ(x) = β0, min
x≤0

Φ(x) = −α0;

max
x≤0

Ψ (x) = δ0, min
x≥0

Ψ (x) = −γ0,
(1.11)

where Φ(x) = x − F(x) and Ψ (x) = x − G(x).
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In what follows we define

N1(t) :=

∫ t

a

1
r(s)z2(s)

∫ s

a
[β0p(τ ) + γ0q(τ )]z(τ )dτ


ds, (1.12)

and

N2(t) :=

∫ t

a

1
r(s)z2(s)

∫ s

a
[α0p(τ ) + δ0q(τ )]z(τ )dτ


ds. (1.13)

2. Main results

Associated with Eq. (1.10) we assume that the linear equation

(r(t)x′)′ + [p(t) − q(t)]x = 0 (2.1)

is nonoscillatory. Denote by z(t) a positive nonprincipal solution of (2.1) which is defined on an interval [a, ∞). Noting that∫
∞

a

ds
r(s)z2(s)

< ∞, (2.2)

we define

H(t) :=

∫ t

a

1
r(s)z2(s)

∫ s

a
z(τ )f (τ )dτ


ds. (2.3)

The main result of this paper is the following theorem.

Theorem 2.1. Suppose that (2.1) is nonoscillatory and let z(t) be a positive solution of it satisfying (2.2), i.e. a nonprincipal
solution. If

lim
t→∞

{H(t) − N2(t)} = − lim
t→∞

{H(t) + N1(t)} = ∞, (2.4)

where H is given by (2.3), and N1 and N2 are as defined by (1.12) and (1.13), respectively, then Eq. (1.10) is oscillatory.

Proof. Suppose that there is a nonoscillatory solution x(t) of (1.10).Wemay assume that x(t) ≠ 0 on [a, ∞) for some a ≥ t0
sufficiently large. The change of variables x = z(t)w, where z(t) is a positive nonprincipal solution of (2.1), transforms (1.10)
into

(r(t)z2w′)′ = {f (t) + p(t)Φ(x) − q(t)Ψ (x)}z, t ≥ a. (2.5)

Integration of (2.5) leads to

w(t) = c1 + c2

∫ t

a

ds
r(s)z2(s)

+ H(t) +

∫ t

a

1
r(s)z2(s)

∫ s

a
{p(τ )Φ(x(τ )) − q(τ )Ψ (x(τ ))}z(τ )dτds (2.6)

where c1 = w(a) and c2 = r(a)z2(a)w′(a) are constants.
If x(t) > 0 on [a, ∞), then using (1.11) we obtain

w(t) ≤ c1 + c2

∫ t

a

ds
r(s)z2(s)

+ H(t) + N1(t). (2.7)

Similarly, if x(t) < 0 on [a, ∞), then again using (1.11) we obtain

w(t) ≥ c1 + c2

∫ t

a

ds
r(s)z2(s)

+ H(t) − N2(t). (2.8)

Note that (2.2), (2.4), (2.7) and (2.8) imply that

lim
t→∞

w(t) = − lim
t→∞

w(t) = +∞. (2.9)

Because z(t) is positive, (2.9) implies that x(t) cannot have a definite sign on [a, ∞), a contradiction. �

When F(x) = |x|β−1x and G(x) = |x|γ−1x, 0 < γ < 1 < β , then

α0 = β0 = (β − 1)ββ/(1−β) > 0, δ0 = γ0 = (1 − γ )γ γ /(1−γ ) > 0,

and we obtain the following oscillation criterion for Eq. (1.6).



1228 A. Özbekler et al. / Applied Mathematics Letters 24 (2011) 1225–1230

Theorem 2.2. Suppose that (2.1) is nonoscillatory and let z(t) be a positive solution of it satisfying (2.2), i.e. a nonprincipal
solution. If

lim
t→∞

{H(t) − N0(t)} = − lim
t→∞

{H(t) + N0(t)} = ∞, (2.10)

where

N0(t) =

∫ t

a

1
r(s)z2(s)

∫ s

a
[α0p(τ ) + δ0q(τ )]z(τ )dτ


ds, (2.11)

then Eq. (1.6) is oscillatory.

Corollary 2.3. Suppose that (2.1) with q(t) ≡ 0 is nonoscillatory and let z(t) be a positive solution of it satisfying (2.2), i.e. a
nonprincipal solution. If

lim
t→∞

{H(t) − N01(t)} = − lim
t→∞

{H(t) + N01(t)} = ∞, (2.12)

where

N01(t) :=

∫ t

a

α0

r(s)z2(s)

∫ s

a
p(τ )z(τ )dτ


ds, (2.13)

then Eq. (1.7) is oscillatory.

Corollary 2.4. Let z(t) be a positive solution of (2.1) with p(t) ≡ 0 satisfying (2.2), i.e. a nonprincipal solution. If

lim
t→∞

{H(t) − N02(t)} = − lim
t→∞

{H(t) + N02(t)} = ∞, (2.14)

where

N02(t) :=

∫ t

a

δ0

r(s)z2(s)

∫ s

a
q(τ )z(τ )dτ


ds, (2.15)

then Eq. (1.8) is oscillatory.

Remark 1. Theorem 2.2 is interesting because it reduces to Theorem 1.1 for the linear equation (1.9) with ν(t) = p(t)−q(t)
by letting β, γ → 1 in (1.6).

Remark 2. Corollary 2.4 is of particular interest where the coefficient −q(t) is non-positive and Eq. (1.8) can still be
oscillatory by the forcing condition (2.14).

Remark 3. It will be interesting to improve Corollary 2.3 for Eq. (1.7) by relaxing the assumption that p(t) is non-negative.
In case whenΦ(x) is bounded, say |Φ(x)| ≤ M for someM > 0 and for all x ∈ R, thenwe can show similarly to Corollary 2.3
the following:

Proposition 1. Under the assumption of Corollary 2.3 and that the coefficient p(t) is not assumed to be non-negative, if

lim
t→∞

{H(t) − N03(t)} = − lim
t→∞

{H(t) + N03(t)} = ∞,

where

N03(t) :=

∫ t

a

M
r(s)z2(s)

∫ s

a
|p(τ )|z(τ )dτ


ds,

then Eq. (1.7) is oscillatory.

3. Examples

Example 3.1. Consider the forced super-linear equation

(t−2x′)′ + 2t−4
|x|β−1x = (3 − t2) sin t + 5t cos t, β > 1. (3.1)

The corresponding linear equation

(t−2z ′)′ + 2t−4z = 0
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is the nonoscillatory with a nonprincipal solution z(t) = t2. Then, the functions H and N01 become

H(t) =

∫ t

a

1
s2

∫ s

a
{(3 − τ 2) sin τ + 5τ cos τ }τ 2dτ


ds, a > 0

and

N01(t) = 2(β − 1)ββ/(1−β)

∫ t

a

1
s2

∫ s

a

1
τ 2

dτ

ds, a > 0.

After some simple calculations, we obtain

H(t) = t2 sin t + t cos t − sin t + c1t−1
+ c2,

where c1 = a3(sin a + a cos a) and c2 = (1 − 2a2) sin a − a(a2 + 1) cos a, and

N01(t) = (β − 1)ββ/(1−β)(t−2
+ c3t−1

+ c4)

where c3 = −2/a and c4 = 1/a2. Clearly, the condition (2.12) is satisfied and hence Eq. (3.1) is oscillatory for any choice of
β > 1 by Corollary 2.3.

Example 3.2. Consider the forced sub-linear equation

x′′
− |x|γ−1x = eµt sin(ζ t), 0 < γ < 1 (3.2)

where µ > 1 and ζ ≠ 0 are real constants. The corresponding linear equation

z ′′
− z = 0

is nonoscillatory with a nonprincipal solution z(t) = et . Then, the functions H(t) and N02(t) read as

H(t) =

∫ t

a
e−2s

∫ s

a
e(µ+1)τ sin(ζ τ )dτ


ds, a > 0

and

N02(t) = (1 − γ )γ γ /(1−γ )

∫ t

a
e−2s

∫ s

a
eτdτ


ds, a > 0.

A straightforward calculation gives∫ s

a
e(µ+1)τ sin(ζ τ )dτ = k1e(µ+1)s

{(µ + 1) sin(ζ s) − ζ cos(ζ s)} + k2 (3.3)

where k1 = {ζ 2
+ (µ + 1)2}−1 and k2 = −k1e(µ+1)a

{(µ + 1) sin(ζa) − ζ cos(ζa)}.
Using (3.3), we see that

H(t) = k3e(µ−1)t
{(µ2

− ζ 2
− 1) sin(ζ t) − 2µζ cos(ζ t)} + k4e−2t

+ k5

where k3 = k1{ζ 2
+ (µ − 1)2}−1, k4 = −k2/2 and

k5 = (k2/2)e−2a
− k3e(µ−1)a

{(µ2
− ζ 2

− 1) sin(ζa) − 2µζ cos(ζa)},

and that

H(t) ± N02(t) = k3e(µ−1)t
{(µ2

− ζ 2
− 1) sin(ζ t) − 2µζ cos(ζ t)} ± σe−t

+ (k4 ∓ σe−a/2)e−2t
+ k5 ∓ σe−a/2,

where σ = −δ0 = (γ −1)γ γ /(1−γ ). Therefore, the condition (2.14) holds and hence, we conclude that Eq. (3.2) is oscillatory
for any choice of γ ∈ (0, 1), µ > 1 and ζ ≠ 0, by Corollary 2.4.
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