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The Cullin-RING ubiquitin-ligase CRL4 controls cell cycle and DNA damage checkpoint response and ensures
genomic integrity. Inactivation of the Cul4 component of the CRL4 E3 ligase complex in Caenorhabditis elegans
by RNA interference results in massive mitotic DNA re-replication in the blast cells, largely due to failed
degradation of the DNA licensing protein, CDT-1, and premature spermatogenesis. Here we show that
inactivation of Cul4a by gene-targeting in mice only affected male but not female fertility. This male infertility
phenotype resulted from a combination of decreased spermatozoa number, reduced sperm motility and
defective acrosome formation. Agenesis of the mutant germ cells was accompanied by increased cell death in
pachytene/diplotene cells withmarkedly elevated levels of phospho-p53 and CDT-1. Despite apparent normal
assembly of synaptonemal complexes and DNA double strand break repair, dissociation of MLH1, a
component of the late recombination nodule, was delayed in Cul4a−/− diplotene spermatocytes, which
potentially led to subsequent disruptions in meiosis II and spermiogenesis. Together, our study revealed an
indispensable role for Cul4a during male germ cell meiosis.
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Introduction

Male infertility, a major issue in reproduction, affects approxi-
mately one in 25 men in the US (Schiff et al., 2007). Although its
etiology is heterogeneous, it is usually associated with oligozoosper-
mia (low sperm count), poor sperm motility and abnormal sperm
morphology. Mammalian spermatogenesis is a complex and highly
orchestrated process which transforms pluripotent spermatogonia
into mature male gametes, the spermatozoa. In the seminiferous
tubules of the testis, pluripotent A spermatogonia undergo several
rounds of mitosis before differentiating into B spermatogonia. B
spermatogonia then give rise to pre-leptotene primary spermatocytes
which mark entry into meiosis I. Primary spermatocytes spend up to
several weeks in meiosis I prophase and progress through leptotene,
zygotene, pachytene and diplotene stages to prepare for cell division
at metaphase I, as they physically move in toward the tubule lumen.
After diakinesis, secondary spermatocytes rapidly go through meiosis
II and become round spermatids. These cells undergo spermiogenesis
to differentiate into spermatozoa. Defects that occur in any of these
steps can lead to compromised male fertility.

Themajority of such defects happen in prophase I, when homologous
recombination occurs. During prophase I, chromosomes condense
(leptotene) and pair up (zygotene) and the synaptonemal complex
assembles along homologous chromosomes where recombination takes
place (pachytene). The synaptonemal complex subsequently disassem-
bles (diplotene) and DNA further condenses (diakinesis) before the first
meiotic division (metaphase I). Theprogressionof prophase I is regulated
by many factors including those involved in DNA repair, homologous
recombination as well as structural proteins. In the mouse, for example,
deficiency in SPO11, a topoisomerase-like transesterase that initiates
recombination by introducing double strand breaks (DSBs), causes
failure of germ cells to proceed to the pachytene stage and leads to
subsequent apoptosis of those cells (Baudat et al., 2000), while mutation
inMsh4, a DNAmismatch repair gene, results in arrest of spermatocytes
at the zygotene stage (Kneitz et al., 2000).
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Ubiquitin-dependent proteolysis is essential for virtually all steps
of mammalian spermatogenesis (Sutovsky, 2003). Many key regula-
tory proteins are targeted by this machinery early in mitosis and
meiosis of germ cells. In addition, rapid degradation of cytoplasmic as
well as nuclear proteins during spermiogenesis also relies on this
machinery. Ubiquitination involves orchestrated actions of ubiquitin-
activating, conjugating and ligating enzymes (Pickart, 2001). The
Cullin gene family is the largest ubiquitin ligase family in mammals.
Cullin 4A (CUL4A), one of the seven vertebrate Cullin proteins, binds
to the RING finger protein Rbx1/ROC1/Hrt1 at its C-terminus for E2
conjugating enzyme recruitment, and to the damaged DNA binding
protein 1 (DDB1) adaptor protein at the N-terminus for substrate
recruitment. Together, this protein complex is referred to as CRL4.
Proteins DDB1, and CUL4A-associated factors (DCAFs) function as
substrate receptors in this process which brings substrates to the CRL4
complex for ubiquitination. In simpler organisms such as Drosophila
melanogaster and Caenorhabditis elegans, there is only one Cul4 gene.
Cul4 silencing by RNAi in C. elegans results in DNA re-replication in
blast cells, and male germ cells undergo premature spermatogenesis
(Zhong et al., 2003). In mammals, the CUL4 family has another
member, CUL4B, which shares 89% sequence homology and some
functional redundancy with CUL4A (Higa et al., 2003; Hu et al., 2004;
Liu et al., 2009). We recently reported that germline-deletion of Cul4a
in mice did not affect development, growth and viability of the
animals, likely due to functional compensation from Cul4b. Nonethe-
less, epidermal-specific removal of Cul4a significantly enhanced
nucleotide excision repair and G1/S DNA damage checkpoint
pathways, rendering mutant animals hyper-resistant to UVB-induced
skin carcinogenesis (Liu et al., 2009). In the current study, we
explored Cul4a functions in murine spermatogenesis and showed that
germline-deletion of Cul4a led to male infertility. Primary Cul4a−/−
spermatocytes accumulated at the pachytene/diplotene stage, some
underwent massive cell death and the rest produced malformed
spermatozoa. These results demonstrated a critical role for Cul4a in
mediating meiotic progression in spermatogenesis.

Materials and methods

Mice

Generation of Cul4ac/c animals was described previously (Liu et al.,
2009). EIIaCre and Prm-Cre transgenic mice were purchased from the
Jackson Laboratory (Bar Harbor, Maine). All mice were housed in a
barrier facility at Washington University in St. Louis and all animal
experiments were performed in accordance to the institution's
regulations with an approved protocol.

Histology, TUNEL and immunofluorescence (IF) of testicular tissue

Fresh testes were fixed in 4% paraformaldehyde (PFA) or Bouin's
fixative, embedded and sectioned at 6 μm. Bouin-fixed sections were
used for hematoxylin and eosin (H&E) staining and immunofluores-
cence (IF), and PFA-fixed sections were used for terminal deoxynu-
cleotidyl transferase-mediated deoxyuridine triphosphate nick end
labeling (TUNEL) staining, as described previously (Yin et al., 2006).
For TUNEL-IF double-labeling, normal IF was performed first. After
secondary antibody incubation, enzyme mix for TUNEL (Roche
Applied Sciences) was applied and incubated for an hour. Slides
were then washed and subsequently counter-stained with the
Hoechst 33258 dye. Antibodies and dilutions used are: 1:100 for
CUL4A (Bethyl Laboratories, Montgomery, TX), CUL4B (Proteintech
Group, Chicago, IL), PLZF (CalBiochem, Gibbstown, NJ) and DDB1
(Bethyl Laboratories); 1:200 for PCNA (Cell Signalling Technology,
Danvers, MA); 1:50 for GATA-1 (Santa Cruz Biotechnology, Santa
Cruz, CA); 1:1000 for Alexa594 goat anti-rabbit, Alexa488 goat anti-
mouse and Alexa594 goat anti-rat secondary antibodies (Invitrogen,
Carlsbad, CA).

Sperm spread preparation, staining and histology

Cauda epididymides from males 2–6 months of age and their
littermate controls were removed and put in warm DMEM. Tissues
were punctuated with a 25-gage needle and incubated at 37 °C to allow
sperms to swim out. To make sperm spread, aliquots of the medium
were pipetted onto glass slides and smeared. Slides were dried and
processed for routine H&E staining. To stain sperms with MitoTracker
and PNA lectin, aliquots of sperm solution were transferred to
microcentrifuge tubes and sperms were collected by centrifugation at
500×g. Live sperms were incubated with MitoTracker solution
(Invitrogen) at 37 °C for 15 min. Sperms were then collected by
centrifugation, fixed in 4% PFA, permeabilized in 0.2% Triton-X 100
and a smearwasmade. Slideswere then incubatedwith FITC-PNA lectin
(1:50, a gift from Dr. Peter Sutovsky), washed and mounted with
VectorShield with DAPI (Vector Laboratories, Burlingame, CA).

Transmission electron microscopy (TEM)

Cauda epididymides were fixed in 4% PFA and 2.5% glutaraldehyde,
contrasted with osmium tetroxide and embedded in resin. Ultrathin
sections were cut and examined under a Hitachi H7600 TEM system.

Spermatocyte spread and immunolabeling

Spreading and immunolabeling protocols of testicular samples
were performed as published elsewhere (Roig et al., 2010). Briefly,
testes were dissected, rinsed in PBS and decapsulated. The remaining
tissues were finely minced with a razor blade and transferred into
4 ml of separation medium (high glucose MEM with 1× proteinase
inhibitor cocktail). Spermatocytes were released from the tubules by
pipetting several times and debris allowed to settle for 5 min on ice.
Spermatocyte suspension was then transferred to microcentrifuge
tubes and spun down. Supernatants were removed and pellets were
resuspended in 40 μl 0.1 M sucrose solution preheated to 37 °C.
Twenty microliters of the mixture was added onto a glass slide
preloaded with 65 μl 1% PFA (pH 9.2, also contains 0.1% triton X-100
and 1× proteinase inhibitor cocktail) and spread evenly across. Slides
were incubated in a humidified chamber for two hours without
disturbance, followed by rinsing in Photoflow solution (Kodak,
1:250). Air-dried slides were either stored at −80 °C or processed
immediately. For immunostaining, slides were blocked in 0.2% BSA,
0.025% Tween-20 in 1× PBS for 10 min at room temperature, followed
by incubation with primary antibodies overnight at 4 °C. On the
following day, slides were washed and incubated with secondary
antibodies for one hour, before being mounted with one drop of
VectorShield with DAPI. Antibodies used are: SYCP1 (1: 200), SYCP3
(1:400) (both are kind gifts from C. Heyting, Wageningen University),
γH2AX (1:800, Cell Signalling), RAD51 (1:100, Oncogene) and MLH1
(1:100, Pharmingen).

Testicular single-cell preparation for flow cytometry analysis and cell
sorting

Isolation and staining of testicular cells were described previously
(Getun et al., 2010; Lassalle et al., 2004; Vincent et al., 1998). Two to
four million stained cells from one animal were diluted in 1 ml Gey's
Balanced Salt Solution with Hoechst 33342 (Sigma-Aldrich, 5 μg/ml)
before analysis. FACS analysis and cell sorting were performed on a
DAKO MoFlo cell sorter described previously (Lassalle et al., 2004).
Testes from three males of each genotype were analyzed individually
and Student's t-tests were performed for each sub-population. Two-
tailed p-value less than 0.05 is considered statistically significant.
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Laser capture microdissection (LCM)

Epididymal tissues from Prm-Cre;Cul4ac/c male were fixed in 4%
PFA, embedded in paraffin and sectioned at 6 μm. Slides were
deparaffinized in three changes of xylenes, rehydrated in ethanol
series and counter-stained with Mayer's Hematoxylin. Slides were
then dehydrated in ethanol series, followed by three washes in
xylenes and air dried briefly. The PixCell II LCM apparatus was used to
microdissect spermatozoa from 8 to 10 sections (7.5 μm spot
diameter) onto CapSure HS LCM caps (Arcturus, Mountain View,
CA). Membranes with captured tissue were removed from LCM caps
and digested in PBND buffer (50 mM KCl, 10 mM Tris–HCl pH 8.3,
2.5 mMMgCl2, 0.1 mg/ml gelatin, 0.45% NP40, 0.45% Tween20) in the
presence of 0.1 mg/ml Proteinase K overnight at 55 °C. The remaining
tissues on the slide were scraped, digested and used as positive
controls for PCR. Routine PCR was performed using primers oz618
(5′ATCGCCTTCCTACCCTTCTC3′) and oz628 (5′ATCCTTCTGCCTGTCTG-
GAGT3′) for the Cul4awild-type and floxed alleles; or oz618 and oz681
(5′-GTGAATGCTGAATCTAGCACC-3′) for the deleted allele.

Statistical analysis

Statistical analyses were performed with Microsoft Excel applying
the Student's two-tailed t-test. Results are presented as average±
standard deviation. Differences in average values were considered
significant with P-values less than 0.05.

Results

Dynamic CUL4A and CUL4B expression in developing and adult mouse
testis

The CRL4 ubiquitin ligase activity is essential for cell viability, as
deletion of the DDB1 adaptor of CRL4 in mice resulted in embryonic
lethality (Cang et al., 2006), and simultaneous inactivation of both
CUL4A and CUL4B is detrimental to cell growth and survival (Liu et al.,
2009). Strikingly, Cul4a−/− mice displayed no overt developmental
and growth defects, and had a normal life span, suggesting functional
compensation from Cul4b. Because previous studies showed that
knocking down the only Cul4 in C. elegans led to premature entry into
spermatogenesis (Zhong et al., 2003), we set out to test whether CUL4
proteins are also involved in mammalian spermatogenesis. First, we
examined the expression of CUL4A and CUL4B at multiple time-points
during the first round of spermatogenesis by double IF with antibodies
against either CUL4 protein and PLZF, a marker for spermatogonial
stem cells (Costoya et al., 2004). At P0, both CUL4 proteins are
expressed in gonocytes, the primitive germ cells marked by nuclear
PLZF staining (Fig. 1A and F, arrowheads). As gonocytes underwent
proliferation and differentiation, CUL4A and CUL4B started to exhibit
distinct expression patterns. CUL4A expression was detected in
primitive A spermatogonia on P6 (Fig. 1B). By P12, CUL4A was
detected in the newly emerged primary spermatocytes (Fig. 1C,
asterisks), and its expression weakened in spermatogonia, especially
in type A spermatogonia (Fig. 1C, arrowhead). By P14, CUL4A
expression was confined to primary spermatocytes and was no longer
detected in PLZF-expressing type A spermatogonia (Fig. 1D, asterisks
and arrowheads, respectively). By P24, when the first round of
spermatogenesis is almost complete, CUL4A was predominantly
detected in primary spermatocytes in the pachytene/diplotene stage
(Fig. 1E, asterisks), with residual CUL4A protein, if any, detected at
earlier or later stages (Supplemental Fig. S1A and B). Note that CUL4A
expression was low in tubules containingmostly spermatids (Fig. 1E,
arrow), but high in tubules containing primary spermatocytes
(Fig. 1E, asterisks). CUL4B expression, on the other hand, persisted
in primitive A spermatogonia (Fig. 1G, arrowhead) and more
differentiated spermatogonia (Fig. 1H, arrowheads). Its expression
was gradually downregulated in emerging zygotene spermatocytes
due tomeiotic sex chromosome inactivation (MSCI) as Cul4b is on the
X-chromosome (Fig. 1H, open arrowhead, inside dashed line).
Concordantly, CUL4B expression was absent in pachytene/diplotene
spermatocytes (Fig. 1I) and reappeared in newly formed round
spermatids at P24 (Fig. 1J, asterisks, Fig. S1C and D). In addition, CUL4B
was also detected in Sertoli cells throughout postnatal development
(arrows in Fig. 1G and I).

In adult testes, both CUL4 proteins and mRNAs continued to
exhibit a phase-specific expression pattern as revealed by IF and in
situ hybridization, respectively (Fig. 1K, P and data not shown). CUL4A
expression started to elevate in primary spermatocytes after they
entered mid-pachytene phase (Fig. 1L), peaked in late pachytene
phase (stages VII–VIII), and gradually declined afterwards (Fig. 1K).
The protein was not detected in spermatids beyond step 5 based on
seminiferous tubule staging as described previously (Fig. 1M, arrows)
(Russell, 1990), nor was it present in Sertoli cells or spermatogonia
marked by GATA-1 and PLZF, respectively (Fig. 1N and O). In contrast,
CUL4B expression was mainly detected in Sertoli cells (Fig. 1Q,
arrows), spermatogonia and round spermatids (Fig. 1Q, R, arrowheads
and asterisks, respectively), where CUL4A was either absent or low in
abundance. Overall, CUL4A and CUL4B exhibited a mostly comple-
mentary expression pattern in adult testis (Fig. 1S). DDB1, the DNA
damage binding protein which forms ubiquitin ligase complex with
both CUL4 proteins, was detected in virtually all testicular cell types
with peak expression detected in mid-pachytene spermatocytes
(Fig. S1E).

Cul4a null males are infertile

As Cul4b-null mouse has yet to be generated, we focused our study
on Cul4anull animals to further explore its role during spermatogenesis.
Absence of full-lengthCUL4Aprotein in the null testeswas confirmedby
Western blotting (Fig. S2A). In addition, PCR-genotyping further
confirmed complete removal of the targeted exons (Fig. S2D). To assess
Cul4a mutant fertility, six Cul4a+/− and nine Cul4a−/− adult males
(10 weeks or older) were individually bred to wild type adult females.
Vaginal plugs were recorded and the number of pups born was scored.
The number of vaginal plugs detected in females was comparable
between the two male genotypes. However, none of the females (36
total) mated with Cul4a−/− males were impregnated and produced
any pups (Table 1). Female fertility was also tested and no difference
was found between Cul4a−/− and their heterozygote littermates
(Table 1).Wedidnot detect any difference betweenCul4a+/− andwild
type mice in terms of fertility, testis morphology and sperm viability.
Thus Cul4a+/− mice were used as controls in this study.

Morphological and histological analyses of Cul4a null testes

Anatomical examination revealed that the mutant testes, even
though properly descended, were markedly reduced in size compared
to those of the Cul4a+/−mice (Fig. S3A). Nevertheless, the rest of the
internal male reproductive organs including the epididymides, vas
deferens and seminal vesicles exhibited no gross difference between
the two genotypes. H&E staining of mutant testis sections showed
decreased diameters of seminiferous tubules, agenesis of germ cells,
and increased interstitial tissues (Fig. 2B). Seminiferous tubules at
various stages were evident in sections from control testes. On the
other hand, Cul4a−/− tubules contained much fewer spermatids.
Some tubules were degenerating while others showed accumulation
of primary spermatocytes (Fig. S3D–E). The identity of primary
spermatocytes was further confirmed by IF staining against CUL4A
and PCNA, both shown to be specifically expressed in these cells
(Kang et al., 1997). Since the CUL4A antibody we used for
immunostaining recognizes the N-terminus of CUL4A, it would also
label the mutant C-terminal truncated protein (CUL4AΔ), which was
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Table 1
Fertility test of Cul4a−/− males and females. Adult males of Cul4a+/− or Cul4a−/−
genetic background weremated to wild type female 2 months of age or older. Copulation
was evidenced by presence of vaginal plug, and the date recorded. Of the 6 heterozygous
males, over a time span of two months, all had copulated with 2–3 females, altogether
giving rise to 15 litters with an average size of 10.5 pups. Even though vaginal plugs were
observed in all 36 females bred to Cul4a−/− males, none of them were impregnated.
Cul4a−/− females exhibited no signs of infertility, producing similar sized litters as their
heterozygous littermates.

Males (n) Females
(n)

No. of vaginal plug observed
in two months

No. of
litters

No. of
pups

Average
litter size

Cul4a+/−
(6)

Cul4a+/+
(17)

17 15 157 10.5

Cul4a−/−
(9)

Cul4a+/+
(36)

65 0 0 0

Cul4a+/−
(2)

Cul4a+/−
(6)

9 8 73 9.1

Cul4a+/−
(3)

Cul4a−/−
(8)

13 10 87 8.7
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previously proven to be non-functional (Liu et al., 2009). We thus
used it as amarker for primary spermatocytes past themid-pachytene
phase in the mutant testis. The results clearly showed accumulation
of CUL4AΔ-positive as well as PCNA-positive cells in mutant
seminiferous tubules, demonstrating accumulation of mutant germ
cells at the primary spermatocyte stage (Fig. S4). In addition, based on
a previously established side-population detection method (Lassalle
et al., 2004), we performed FACS analyses on 2–6 month old mutant
and control testes and showed an increase in pachytene/diplotene cell
population in mutant testis (19.1±4.6% vs. 8.0±1.7% in heterozygote
controls, n=3, p=0.011), but not in cells at earlier stages (Fig. 2C, D,
numbers represent average percentile±standard deviation at each
stage). These results demonstrated accumulation of primary sper-
matocytes at pachytene/diplotene stages in Cul4a mutants.

Toassess spermatiddevelopment,weperformedperiodic acid-Schiff
(PAS) staining to highlight acrosome granules. As shown in Fig. 2E and
G, spermatids at all stageswere present in Cul4a+/− testes,whichwere
identifiable by their characteristic PAS staining pattern (Fig. 2G, arrows)
(Russell, 1990). In contrast, much fewer PAS-positive spermatids were
detected in Cul4a−/− seminiferous tubules (Fig. 2F) and it was
impossible to stage the mutant spermatids due to their deranged PAS
staining patterns indicative of abnormal acrosomes (Fig. 2H, arrows). It
is noteworthy that the testis phenotype was observed as early as
postnatal day 27, toward the end of the first round spermatogenesis,
where round spermatids were evident in control animals but lack in
number in the mutant. These results demonstrated that loss of CUL4A
leads to defects in primary spermatocyte development and perturbed
spermiogenesis, and suggest that CUL4A is required for meiotic
progression of male germ cells.

Prolonged association of MLH1 with synaptonemal complexes in
Cul4a−/− spermatocytes

The accumulation of pachytene/diplotene cells observed inCul4a−/−
prompted us to look into one of the key events in meiotic prophase I, the
synaptonemal complex (SC) assembly. We examined SYCP1 and SYCP3
expressionby immunostaining. SYCP1 is amember of the central element
of the SC, whereas SYCP3 is a member of the lateral element. In normal
pachytene spermatocytes, 19 autosomal SCs double-labeled with both
SYCP1 and SYCP3 antibodies were detected whereas the sex body was
mainly stained by SYCP3 only (Fig. 3A). As meiosis proceeded and cells
entered diplonema, SYCP1 expression diminished and SCs were mostly
dissociated (Fig. 3B). Even though normal SC assembly and disassembly
were observed in many Cul4a-null primary spermatocytes (Fig. 3C, D), a
fraction (~10–20%) of mutant cells exhibited abnormal SC structures at
pachytene (Fig. 3G) and diplotene stages (Fig. 3H,I). In these cells, overall
SYCP3 staining was stronger and we observed spotted SYCP3 staining
whichwasnot observed in controls. To assesshomologous recombination
events in primary spermatocytes, spreads were stained with RAD51 and
γH2AX, together with SYCP3. RAD51 is a component of the early
recombinationnodule andmanydiscrete RAD51 fociweredetected along
the SCs in leptotene and zygotene nuclei (Ashley et al., 1995), which
declined in pachytene and diplotene cells (Fig. S5A–E). γH2AX, a histone
modification that rapidly occurs in the vicinity of DNA double-strand
breaks (DSBs), was present homogeneously in leptotene to zygotene
nuclei, but was only detected in the sex body in late pachytene and
diplotene cells (Fig. S5F–J) (Mahadevaiah et al., 2001). Neither RAD51nor
γH2AX showed any change in distribution in Cul4a−/− spermatocytes
(Fig. S5A′–E′, F′–J′), indicating normal initiation and progression of early
recombination events in the mutant.

Foci of the DNA repair protein MLH1 form along the SCs in
pachytene cells, with at least one focus per SC. These foci mark
recombination events (Baker et al., 1996; Moens et al., 2002), and are
present in pachytene but not in diplotene cells (Fig. 3J, K).
Examination of Cul4a−/− spermatocytes revealed no apparent
difference in MLH1 foci number compared to controls, however,
24.2% (N=82) of mutant pachytene cells contained at least one SC
that did not have any MLH1 foci, which was not common in controls
(3.4%, N=78, Fig. 3L, arrowheads). Moreover, most MLH1 foci were
still present in mutant diplotene cells. Immunostaining clearly
showed a prolonged MLH1 association with the SCs in Cul4a mutant
diplotene cells, presumably at the chiasmata, which are the
cytological manifestation of crossovers (COs) (Fig. 3M, arrowheads).
On average, mutant diplotene cells still had 18.7±4.7 (N=65) MLH1
foci associated with the SCs, whereas nearly all MLH1 foci had
disappeared in diplonema in controls (0.3±0.6, N=79). These
results suggest that even though Cul4a−/− spermatocytes can
successfully initiate homologous recombination, they have defects
in CO formation and resolution of the late recombination nodule.

To evaluate diakinesis inmutant spermatocytes, metaphase spreads
were prepared from cells isolated from Cul4a+/− and −/− testes
followed byDAPI staining to visualize DNA.Most control spermatocytes
at metaphase I had 20 pairs of homologous chromosomes (Fig. 3N). In
contrast, Cul4a−/− cells frequently contained univalents (27.3±5.3%,
N=54 from three animals) which were not sex chromosome-specific
compared to heterozygote controls (9.2±0.7%, N=56 from three
animals) (Fig. 3O). Mutant secondary spermatocytes at metaphase II
were mostly abnormal, many of which contained heterochromatin
structures densely stained by DAPI (Fig. 3Q, arrows). This phenotype,
however, could be secondary to the prolonged prophase I in themutant
rather than a direct effect of CUL4A on metaphase II.
Excessive apoptosis in Cul4a-deficient primary spermatocytes

To uncover mechanism of germ cell agenesis in Cul4a−/− mice, we
evaluated germ cell proliferation and apoptosis in these mutants.
Proliferating cells were pulse-labeled by BrdU and visualized by
immunohistochemistry. Compared to heterozygous controls, Cul4a−/−
testis showed normal DNA incorporation in various cell types, including
pre-leptotene primary spermatocytes and spermatogonia at S-phase
(Fig. 4A, B). TUNEL assay, on the other hand, showed massive apoptotic
cells in many mutant tubules, but not in Cul4a+/− controls (Fig. 4C, D,
arrows). To reveal the identity of apoptotic cells, Bouin-fixedH&E-stained
mutant testis sections were examined carefully and the stage of
seminiferous tubules was determined by spermatogonial morphology
according to Ahmed and de Rooij(2009). Tubules at earlier stages
contained morphologically normal pachytene cells, characterized by
chromatin patches in the nucleus and their larger size (Fig. 4E, arrows).
Apoptotic pachytene cells (aP) were more eosinophilic and their nuclei
tend to bemore compacted (Fig. 4F, arrows).Wedetectedmost apoptotic
cells in tubules at later stages (VIII–XI), among mid-pachytene to
diplotene spermatocytes. Double IF of SYCP3 and TUNEL also revealed
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that these apoptotic cells had thread-like nuclear SYCP3 staining,
confirming their pachytene/diplotene cell identity (Fig. 4F, inset).

Previous studies reported that the tumor suppressor p53 can
stimulate a variety of signals which in turn act upon both the intrinsic
and extrinsic apoptotic pathways to facilitate cell death (Vousden and
Lane, 2007). Since extensive apoptosis was observed in Cul4a−/−
spermatocytes, we speculated that p53 expression might be altered in
these cells. Western blotting with whole testis lysates from control and
mutant males revealed that although the total p53 level remained
unchanged, phospho-p53 at Serine 15 was increased in the mutant
(Fig. 4G). Elevation of phospho-p53 at Ser15 could reflect activation of
upstream ATM/ATR pathway. However, no apparent changes were
detected in phospho-CHK1 or CHK2 levels, known targets for ATM/ATR
(Fig. S6). In addition, Western blotting and IF of γH2AX also confirmed
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no change in its expression level and distribution, indicating no gross
alteration in the number of DSBs (Fig. S6).Western blotting of phospho-
p53 on isolated pachytene/diplotene spermatocytes further demon-
strated that its accumulation was contributed mainly by this cell
population (Fig. 4H). This elevated p53 activity is likely the underlying
cause for the increased apoptosis in mutant spermatocytes.

In C. elegans, absence of Cul4 resulted in perturbed spermatogenesis
which is associated with accumulation of the DNA-replication licensing
protein, CDT1 (Zhong et al., 2003), a direct target of DDB/Cul4-mediated
ubiquitination. In mammals, CDT1 has been reported to be highly
expressed in a subset of primary spermatocytes, even though DNA
synthesis at this stage has long ceased. This raised the possibility that
besides DNA replication licensing, CDT1 may be involved in other
processes such as homologous recombination, DNA repair or meiotic
progression. To determinewhether CDT1 is affected in Cul4a−/− testis,
we examined its expression, as well as that of PCNA, the cofactor for
CDT1 degradation by the DDB/CUL4 complex (Arias andWalter, 2006).
In control testis, PCNA was mostly confined to primary spermatocytes
(Fig. 4J), and sporadic CDT1 staining was detected (Fig. 4I, arrows). In
mutant testis, however, an increased number of CDT1-expressing cells
were evident inmany seminiferous tubules, most of which also showed
markedly elevated level of PCNA (Fig. 4K, L, arrows). Western blotting
against CDT1also confirmed its accumulation in themutant, particularly
in pachytene/diplotene cells (Fig. 4G, H). These data indicate that CDT1
is also a target of CUL4A in mammalian spermatocytes and accumula-
tion of CDT1 could contribute to the mutant meiotic defects.
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To address whether CUL4B is ectopically induced to compensate for
the loss of CUL4A, we examined CUL4B expression in Cul4a−/− testis.
Western blotting of CUL4B on testis lysates revealed no significant
difference in protein levels between Cul4a+/− and Cul4a−/− mice
(Fig. S2B). IF showed that Cul4a−/− testis contained much fewer
CUL4B-expressing spermatids, but more importantly, CUL4B was not
ectopically induced in primary spermatocytes, indicating normal MSCI
in Cul4amutants (Fig. S6E, F). These results indicate that loss of CUL4A is
not compensated by CUL4B in Cul4a−/− primary spermatocytes, and
that lack of any CUL4 protein in these cells ultimately leads to defects in
meiotic progression.
Cul4a−/− male mice exhibited oligoasthenospermia and spermatozoa
malformation

While many Cul4a−/− germ cells accumulated at pachynema/
diplonema and subsequently underwent apoptosis, some did proceed to
later stages. To evaluate the number and motility of mature mutant
sperms, we first performed Computer-Assisted Sperm Analysis (CASA)
on sperm samples harvested from the caudal epididymis of Cul4a−/−
and control males. As expected, a prominent decrease in sperm count
was found in the mutant (12.9 million/ml), compared to those in wild-
type and Cul4a+/− (51.0 and 53.8 M/ml, respectively, Fig. 5A, n=3,
P=0.004). The majority of sperms from both wild-type and Cul4a+/−
mice were rapid-moving (88.6% and 82.0%). In contrast, more than half
of the mutant sperms were static (Fig. 5B). To examine mutant sperm
morphology, sperm smears were prepared and stained with H&E.
Sperms from heterozygous males showed normal morphology, with
distinct head (acrosome andnucleus) and tail (mid-, principle- and end-
pieces) structures (Fig. 5C). On the other hand, most Cul4a−/− sperm
heads contain a condensed nucleus but lacked a defined acrosome. Their
tails were usually composed of a thin or fragmented mid-piece, an
occasionally kinked principle piece and a less affected end piece. To
further characterize the structure of the head andmid-piece, live sperms
were incubated with MitoTracker, an orange fluorescent dye that stains
active and functional mitochondria, followed by staining with FITC-
labeled lectin PNA, which selectively binds to acrosomes. As shown in
Fig. 5D, normal sperms contained a sickle-shaped head (magenta), an
acrosomal cap overlying the anterior contour of the head (green), and a
mid-piece thatwas coveredby amitochondrial sheath (red). Themutant
sperms, however, exhibited a wide spectrum of abnormalities including
disorganized or completely absent acrosomal structure, disintegrated or
lack of mitochondrial sheath, and aberrant head shape (Fig. 5D, b–d′).
Ultrastructural study by transmission electron microscopy (TEM)
revealed that in addition to the lack of an acrosomal structure, mutant
sperms often displayed characteristics of Dysplasia of the Fibrous Sheath
(DFS), including absence of axonemes and/or outer dense fibers as well
as distorted longitudinal columns (Fig. 5E). These results demonstrated
that Cul4a−/− sperms lacked active mitochondrial sheaths and normal
acrosomes, which should severely compromise their motility and their
ability to penetrate the zona pellucida of the egg, rendering the mutant
males infertile.

We next askedwhethermutant sperms can fertilize oocytes in close
proximity by performing in vitro fertilization (IVF) as described
previously (Kim and Moley, 2008), thereby bypassing the quantity
and mobility issues. Greater than 80% of oocytes were fertilized and
developed to 2-cell stage by either wild-type or Cul4a+/− sperms,
whereas only 10.4% of eggs (24 out of 231) did so after incubation with
mutant sperms (Fig. 5F, H). Moreover, only two eggs fertilized by
mutant sperms progressed to blastocysts compared tomore than 60% in
controls (Fig. 5G, H). Taken together, these results indicated that the
infertility phenotype in Cul4a−/−males reflected a series of defects in
spermatozoa including reducednumber andmotility, and compromised
acrosome reaction. Furthermore, the fact that the few oocytes fertilized
by Cul4a−/− sperms could not thrive indicated potential chromosomal
deficiencies carried by most mutant sperms in addition to their
morphological defects.

Even though the spermatogenesis defects observed in Cul4a−/−
mice may largely be due to meiotic prophase progression failure, it is
possible that CUL4A also plays a role during spermiogenesis. Although
CUL4A expression was markedly reduced after the diplotene stage
(Fig. 1K), residual CUL4A protein may be required during later stages
of spermatogenesis. To begin addressing this, Cul4a conditional
knockouts were generated using the Prm-Cre which presumably
drives Cre expression in round spermatids. Prm-Cre; Cul4ac/c males
did not exhibit any fertility defects. Histological analysis of themutant
testis revealed normal progression of spermatogenesis (Fig. S7).
Although complete deletion of the Cul4a gene was confirmed by PCR
of genomic DNA extracted from LCM-captured spermatozoa, we were
unable to confirm loss of wild type CUL4A protein during spermio-
genesis due to technical difficulty. Hence the role of CUL4A in mouse
spermiogenesis requires further investigation.

Discussion

Spermatogenesis is a complicated process involving mitotic cell
division,meiosis and spermiogenesis. In order for germ cells to progress
through these steps, protein degradation has to be tightly regulated. In
this paper, we systematically studied the function of the Cul4a gene,
which encodes a Cullin-RING ubiquitin ligase, in spermatogenesis and
demonstrated that Cul4a-mediated protein degradation is essential for
the maturation of primary spermatocytes.

Germ-line deletion of Cul4a in the mouse affects neither embryonic
development nor growth and life span of the animal, likely due to
redundant Cul4b expression in most tissues (Liu et al., 2009). Here we
demonstrate that Cul4a-deficient males are infertile. The testes of adult
mutants are smaller, and contain more pachytene primary spermato-
cytes but much fewer germ cells beyond the diplotene stage in the
seminiferous tubules. As a result, the mutants produce much less
mature spermatozoa, most of which exhibit morphological defects
mainly in theheadandmid-piece regions, rendering them immotile and
unable to fertilize eggs even in vitro. This stage-specific accumulation is
consistent with high CUL4A expression in pachytene cells, suggesting a
cell autonomous requirement for CUL4A in prophase I.

Our molecular analysis using a panel of markers labeling synapto-
nemal complexes (SYCP1/SYCP3) and early homologous recombination
events (RAD51/γH2AX) show largely normal SC assembly, initiation and
repair of DSBs in the mutants. Contrary to recent findings using a
different Cul4a allele which showed persisted γH2AX foci in Cul4a−/−
spermatocytes (Kopanja et al., 2011), no apparent defects inDNAdouble
strand break repair were observed by either RAD51 or γH2AX staining
(Fig. S5) in our system, indicating that early steps of homologous
recombination are not affected by CUL4A deletion. Nevertheless, the
mutant cells exhibit a prolonged MLH1 association with SCs, which
strongly suggests a defect in CO resolution. Mlh1 is the vertebrate
homolog of the Escherichia coliDNAmismatch repair genemutL, andwas
identified as frequently mutated in hereditary nonpolyposis colon
cancer (Bronner et al., 1994). Mutation of Mlh1 in the mouse causes
both male and female sterility. Mutant male germ cells arrest at
metaphase I and are mostly eliminated through apoptosis, indicating
important roles for Mlh1 in prophase progression (Baker et al., 1996).
The fact that MLH1 foci are present in many late-pachytene and
diplotene mutant cells, a novel phenotype that has not been previously
observed in other meiosis animal models, indicates a failure of
recombination nodule resolution. The mechanism responsible for
degradation of MLH1 is currently unknown, but it is unlikely a direct
DDB-CUL4A target because we did not observe MLH1 accumulation in
Cul4a−/− pachytene/diplotene lysates (data not shown). Instead,
MLH1 perdurance may reflect defect(s) in events prior to or during CO
resolution. Examination of several proteins critical to this process,
including BLM helicase and BTBD12/Slx4 endonuclease (Oh et al., 2007;
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Svendsen et al., 2009) could help further clarify the role of CUL4A in this
process. It is also possible that in Cul4a−/− spermatocytes there is
uncoupling of CO formation/resolution and SC dissociation. In other
words, SCs prematurely desynapse, making mutant pachytene sper-
matocytes look like diplotene cells. We rule out this possibility by
immunostaining of phospho-histoneH3 (Ser10), amodification starting
in late diplonema (Cobb et al., 1999), together with SYCP3. The result
shows normal progression of SC disassembly in mutant diplotene
spermatocytes (Fig. S8).

It is noteworthy that even though Cul4a−/− spermatocytes show
normal total number of MLH1 foci at pachynema, a fraction of these
mutant cells do contain SCs that lack MLH1 focus/foci, which reflects an
earlier defect in CO formation. Even though the cause of this defect and
thepotential involvementof CUL4AduringCO formationarenot known,
this failure to establish COs on every SC may have caused the univalent
chromosomes observed inmutantmetaphase I spermatocytes (Fig. 3L).
In addition to the morphological abnormalities seen in Cul4a−/−
spermatozoa, these chromosomal defects may also contribute to
infertility.

CDT1, a DNA replication licensing protein, is a known DDB1/CUL4
complex target. In mitotic cells, CDT1 level peaks in G1 phase and
declines precipitously during S phase through timely degradation
(Hofmann and Beach, 1994). Inactivation of Cul4 as well as Ddb1 in
C. elegans leads to CDT1 accumulation in somatic cells and results in re-
replication of the genome (Hu et al., 2004; Kim and Kipreos, 2007), and
its accumulationmay also be related to the premature spermatogenesis
phenotype in Cul4 knockdown C. elegans mutants (Kim and Kipreos,
2007). In the mouse, the expression and function of CDT1 in
spermatogenesis has not been systematically investigated. We found
that CDT1 protein is expressed in a small fraction of primary
spermatocytes (Fig. 4I), and its expression is extremely low in CUL4A-
expressing pachytene/diplotene spermatocytes. In Cul4a mutants, we
observed ectopic CDT1 in pachytene/diplotene primary spermatocytes
supporting that CDT1 is a direct target of CUL4A in mouse germ cells.
Consistentwith studies in C. elegans (Kim et al., 2007), our FACS analysis
on the mutant testes show no evidence of DNA re-replication. In
addition, MCM7, one of the key components that form the pre-
replication complex with CDT1 to initiate DNA replication, was present
in whole testis lysates (Fig. S6G) but absent in lysates from purified
pachytene/diplotene cells of either control or mutant mice (data not
shown). These findings suggest an unconventional role for CDT1 in
mammalian spermatocytes other than regulating DNA replication.

The perdurance ofMLH1 focimay reflect defects inmeiotic cell cycle
progression. The tumor suppressor gene p53, also known as the
guardian of the cell cycle, was shown to be expressed in primary
spermatocytes and associated with meiotic cell-cycle progression and
recombination repair (Beumer et al., 1998). It was hypothesized that
p53may regulate apoptosis of germcells in response togenotoxic stress,
since elimination of p53 homolog, Cep1, in C. elegans renders germ cells
resistant to radiation-induced apoptosis (Derry et al., 2001). Indeed, we
observed a marked increase in activated p53 protein, in Cul4a−/−
testis. However, we did not observe any changes in the upstream
ATM/CHK2 pathway in the mutant suggesting either that another
upstream signal triggers p53 phosphorylation or that p-p53 is stabilized
in the absence of Cul4a. Activation of p53 likely leads to excessive
apoptosis of the mutant spermatocytes. Similarly, accumulated p53
protein was observed in DDB1 mutant ventricular zone which is
responsible for the apoptosis of proliferating neural progenitor cells
(Cang et al., 2006). Furthermore, previous studies in cultured mitotic
human cells have shown that inactivation of CUL4A stabilizes
intracellular p53 and causes cell growth arrest (Banks et al., 2006). It
is possible that DDB1/CUL4A complex maintains p53 homeostasis in
primary spermatocytes, and loss of CUL4A in germ cells likely triggers a
pachytene checkpoint which leads to spermatocyte apoptosis.

Even though a large portion of mutant spermatocytes exhibited
defects in progression through pachynema and subsequently elimi-
nated via apoptosis, a few of them do proceed through meiosis and
further developed into mature sperms. However, these mutant
sperms exhibit a range of defects in virtually all parts of the sperm.
It is most likely that these defects are secondary to prophase I
progression defects, but we could not rule out the possibility that
CUL4A function is also required for spermiogenesis in the current
study.

The severe infertility phenotype observed in Cul4a-null male mice
implicates indispensible functions for CUL4 proteins in meiosis. So
why are female mutants spared from the catastrophic consequences
of losing CUL4A?We reasoned that CUL4B protein, which is turned off
by MSCI in male but not in female germ cells, is sufficient to ensure
proper degradation of CUL4 target proteins and maintain meiotic
progression in Cul4a−/− oocytes. In support of this hypothesis, both
CUL4A and CUL4B are present in SYCP3-positive pachytene oocytes as
revealed by IF analyses on E18.0 mouse ovary (Fig. S9). Therefore our
data demonstrate the importance of DDB1/CUL4 machinery during
spermatogenesis, and suggest a possible role in female meiosis as
well.
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