
Appl. Math. Lerr. Vol. I, No. 2, pp. 153-156, 1988
Printed in Great Britain

0893-9659/88 $3.00 + 0.00
Pergamon Press plc

Locating Special Events when Solving ODES

I. GLADWELL~*~ , L. F. SHAMPINE~~~
R. W. BRANKIN

Mathematics Department, Southern Methodist University
Numerical Algorithms Group Ltd. Mayfield House

1 INTRODUCTION

Computing the solution, yeR”, of the initial value problem in ordinary differential equa-
tions (ODES),

Y’ = f(z, Y), a<x<b,

may be only part of a larger task. Possibly the most
a first point to > a or a set of points {tS}, a < to
equations

Y(U) = Ya (14
common such task is to find either
I tl I . . . , such that one of the

Sib, Y(X), Y'(4) = 0, j= 1,2,...,m (1.2)

is satisfied at x = t,. The gj are called ‘event functions”, and event j is said to occur
at t, when t, is a root of the jth event function. This note is concerned with problems
that have the form either

gj(z, Y, Y’) E Ykj (z) - oj (1.3)

or

gj(z, Y, Y’) E Ykj (z), (1.4)

where Ykj (z) is a component of the solution vector y(z). Common problems such as

(i) finding where a component of the solution assumes a given value, and
(ii) finding where a component of the solution has an extremum

have the form (1.3) or (1.4) with a single event function. We allow several event functions
of both forms at the same time, and so can solve more complicated problems such as

(iii) tabulating values of a dependent variable Yj;
(iv) determining the location of switching points or points of discontinuity defined in terms

of linear functions of a dependent variable Yj; and
(v) determining zeros of a general event function q(z, y) = 0 by adjoining a differential

equation for q to the system (1.1).

We outline an approach to finding all the event locations for these special event functions.
In addition to emphasizing the difficulty of the problem in general, we indicate how we
construct an event locating code and how we graft such a code onto a standard integrator
with an interpolation feature. Full details of the analysis, the codes we have developed,
and numerical examples are given in [1,2].

‘Partially supported by NATO Research Grant 898183

2Partially supported by a Royal Society/SERC Industrial Fellowship and by the Numerical Algorithms
Group Ltd.
3Partially supported by the Applied Mathematical Sciences program of the Office of Energy Research
under DOE grant DE-FG05-86ER25024

Typeset by AhS-QX

153

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82775972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

154 I. GLADWELL, L.F SHAMPINE AND R. W. BRANKIN

2 SOME DIFFICULTIES WITH THE PROBLEM

Popular codes for the initial value problem (1.1) step from a to b, producing approxima-
tions y;, y: to y(zi), y’(zi) at a set of points a = zo < zr < It is usual with such
codes to test each event function of (1.2) for different signs at zi and zi+r. A change of
sign in any one indicates that an event has occurred in [xi, x;+r]. Adams and backward
differentiation formula codes produce a polynomial p(x) that approximates y(x) on all
of [xi, z;+r]. It is natural then to compute the first root of

&,P(4PW) = 0 (2.1)

as an approximation to the location of event 3’. The popular Runge-Kutta formulas
produce solutions only at the mesh points xi. This approach to the event location
problem has been an important reason for the recent work aimed at providing these
formulas with polynomial approximate solutions.
The way of locating events just described is so natural that many have been led to think
that the task itself is easy. This is far from true. The mesh points xi are chosen to
provide efficiently approximations to y(x) and y’(x) of a specified accuracy. Because the
event functions (1.2) do not influence the selection of the mesh, the spacing may not be
at all appropriate for locating the positions of the events, t,, that is, the roots of (1.2). If
an even number of roots, counting multiplicity, should occur between xi and zi+r, they
will not be noticed. Should the presence of an event be noticed, there is in general no
way to be certain the root-solver will find the first root.
It may not be possible to locate an event accurately when solving (1.2) for a root r.
There is error in the root due to the fact that the function is not evaluated perfectly.
How sensitive the root is to errors in the function evaluation is a statement about its
conditioning, It is not unusual in the present context to encounter ill-conditioning. What
is special now is that we actually solve (2.1) f or a root w as an approximation to r. It
is not generally possible to compute r accurately because we solve the wrong problem
(namely (2.1) instead of (1.2)), rather than because the problem solved is ill-conditioned
(though it may be!). If we do not integrate the differential equation accurately, we cannot
locate the root accurately.

3 A ROOT-FINDING ALGORITHM

The key observation is that for event functions of the form (1.3) and (1.4), when y(x) is
approximated by a polynomial p(x), then gj(x, p(x), p’(x)) is itself a polynomial. Using
Sturm sequences we can, in principle, answer the question, “Is there a root of the poly-

nomial si(z, P(X), P’(X)) in the interval (xi, xi+l] ?“. We can be sure of computing the
first such root by combining, for example, bisection and Sturm sequences to test for its
presence.
We need to be clear what we mean by the “first position” at which equation (1.2) is
satisfied. It is quite possible, and indeed fairly common in practice, that (1.2) is satisfied
at the initial point a = xo. Of course, the user is able to check this, and so there is no
need to report it. On each call to the routine for integrating (l.l), the code steps from
the current point xi to an internally chosen point xi+i. We search this interval for the
next occurrence of an event defined by (1.2). N ow if we define the current integration
interval as the half open interval (zi,xi+i], th en overall we lose no points from the
range of integration, except the initial point xo = a. This definition has two significant
advantages. First, our technique for determining the roots is based on a Sturm sequence
algorithm and the count of the number of zeros given by this algorithm is always defined
on such an interval. Second, if we locate a root at a point te(xiy xi+l] and we wish to
go on to locate the position of the next event in the direction of integration, then the
interval to be searched initially is naturally (t, xi+l].

Locating Special Events when Solving ODES 155

Because we want our algorithm for locating the first position of any event to be both

efficient and robust, we have tried to devise an algorithm that converges rapidly when we

are satisfied that we have reduced the task to locating a root for a single event function,

and is cautious in other less frequently occurring circumstances. If we did not insist

on this efficiency, we might employ a simpler algorithm, For example, we could apply

a standard code for computing the roots of polynomials to locate all occurrences of all

events and then rank the results. This approach would be palpably inefficient even if
we were first to check which events occur in (xi, Q+~]. Important to efficiency is that in

many applications there will be just one event function, that is, m = 1 in (1.2). Also, we

expect that in many integration intervals, there will be no events at all; that when an

event does occur, it will usually be the only one in the interval; and that if more than

one event occurs in one integration interval, the events will be isolated.

4 COMBINING ROOT-FINDER AND INTEGRATORS

Rather than rewrite popular integrators to add a root-finding capability, we have taken

the novel approach of producing a root-finder that can be grafted onto many integrators.

We assume only that the integrator can be used in a mode such that it returns to the

calling program after each step from xi to x;+l with a polynomial of known degree r

representing the solution on all of [xi, z;+l]. As we explain in [2] anomalous behavior

is possible with the interpolants of certain popular codes because they do not connect

smoothly at mesh points. This does not interfere with the root-finder in its treatment

of the interval (xi, z;+l], and p rovided the user appreciates the potential for difficulties

arising from the lack of smoothness, there is no reason not to use our root-finder with

such a code.

The modules we have written for the root-finding task assume that the polynomial inter-

polant has a specific form. Popular integrators represent their interpolating polynomials

in many forms, so a conversion routine is needed. In (21 we consider how to do this when

no information about the form is supplied, just the ability to evaluate the interpolant.

It is hardly surprising that a better job can be done when more information is supplied.

In [l] we present a collection of subroutines implementing the algorithm described in this

note. Normally no evaluations of the ODE are required in our algorithm over and above

those required for the integration alone. After an interval containing an event is located,

our algorithm is nearly as efficient as the root finder on which it is based when the latter

is used in the standard way to calculate a root of a single equation.

In addition to the computed event locations our codes return “condition numbers” and

an estimate of the multiplicity of the root. Examples of the use of the code for both

routine and pathological problems are found in [1,2]. One such example is the problem
of tabulating z at equispaced steps in the solution y of the (artificially constructed)

equation

y’ = -y2 + x6 - 2x5 + z4 + 3x2 - 22, y(-1) = -2.

The solution is y = -x2(1 - x). We tabulate the values of z at which y = -l,O, 1,2

using the NAG code D02NBF [NAG] as the integrator with relative local error tolerance

10m5. One way to proceed is to define just one event function at a time, and after the

position of each event has been located, to redefine the event function. Alternatively, we

can use four event functions corresponding to all four tabulation points simultaneously.

In Table 1 we present the values found with the latter approach and an error estimate

based on the assumption that the integration error, yj(r) - pi(~), is about equal to

the local error tolerance. Though not well established, the error estimate is clearly a

reasonable approximation to the true error at x = 1, but an overestimate for the error
of the approximations to the double zero at x = 0. The results for the approach using

just one event function are exactly the underlined values in Table 1.

156 I. GLADWELL, L. F SHAMPINE AND R. W. BRANKIN

Y Tabulation Point Multiplicity Error Estimate
_1 -0.07549 1 0.808E - 4
0 -0.00022 1 0.135
0 0.00023 1 0.135
0 0.99999 1 0.5553-4
1 1.46557 1 0.158E - 4
z 1.69562 I 0.106E - 4

Table 1:Tabulation points for equispaced values of y.

REFERENCES

1. R.W. Brankin, 1. Gladwell, and L.F. Shampine, Codes for Reliable Solution of Special Event Location
Problenufor ODES, Num. Anal. Rept. 139 (1987), Dept. of Math., University of Manchester.

2. I. Gladwell, L.F. Shampine, and R.W. Brankin,, Rel~eble Solution of Spcid Event Locution Problem, for
ODEa, Num. Anal. Rept. 188 (1987), Dept. of Math., University of Manchester.

3. “NAG Fortran Library Manual,” Mark 12, Numerical Algorithms Group Ltd., Oxford, U.K., 1987.

Mathematics Department, Southern Methodist University, Dallas, Texas 75275
Numerical Algorithms Group Ltd. Mayfield House, 256 Banbury Road, Oxford OX2 7DE, United

Kingdom

