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Abstract

Halin’s Theorem characterizes those locally-4nite, in4nite graphs that embed in the plane
without accumulation points by giving a set of six topologically excluded subgraphs. We prove
the analogous theorem for cubic graphs that embed in an annulus without accumulation points,
4nding the complete set of 29 excluded subgraphs.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A fundamental result in graph theory is Kuratowski’s Theorem [11], which says that a
4nite graph embeds in the plane if and only if it does not contain a subdivision of either
K5 or K3;3. We are concerned here with embeddings of in4nite graphs. Throughout this
paper graphs will be connected and locally 4nite, hence having a countable vertex set.
For the requisite background on embedding these in4nite graphs we refer the reader
to [5,12,13]; similar work is done in [6].

Halin [10] proved that a connected, locally 4nite, in4nite graph embeds in the plane
without an accumulation point if and only if it does not contain a subdivision of
one of six graphs. An equivalent form of Halin’s Theorem is that exclusion of these
six subgraphs characterize all graphs that embed on the 2-sphere with at most one
accumulation point.
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We search for analogues of Halin’s Theorem for other 2-dimensional manifolds S. If
an in4nite graph on S has no accumulation points, then S is necessarily non-compact.
A natural manifold to consider is the annulus: the 2-sphere missing two points. A
characterization of graphs that embed on this manifold without accumulation points is
equivalent to characterizing graphs that embed on the 2-sphere with two accumulation
points, or to those that embed on the plane with at most one accumulation point.

We cannot 4nd complete set of obstructions for in4nite graphs embedding on the
annulus without accumulation points. In our main result, we 4nd all such graphs
with maximum degree three. They are shown in Fig. 1, where we attach disjoint
one-way-in4nite rays to the vertices of degree two.

Theorem 1.1 (The main result). A countable locally 5nite cubic graph embeds on the
annulus without accumulation points if and only if it contains no subdivision of the
29 graphs of Fig. 1.

Boza et al. [6] have a similar result for non-cubic graphs. However, they specify in
advance which rays go to which accumulation points, which makes the problem quite
diHerent.

The annulus is not the only natural 2-manifold to consider after the plane. Another
candidate is the MIobius Strip, formed by deleting a point from the real projective
plane. In [2] the authors give a complete characterization of graphs that embed in the
MIobius Strip without accumulation points; see also [3,7]. In Section 4 we discuss this
result and its relation with other structural characterizations.

This paper contains four sections. After this introduction, Section 2 investigates
graphs whose vertices are 2-colored, and relates embeddings of in4nite graphs with
a 4xed number of accumulation points to embeddings of these colored graphs with
certain speci4ed face covers. Here we reformulate the main result Theorem 1.1 in
terms of these 2-colored graphs. In Section 3 we give the proofs of main propositions.
These propositions are organized by the cyclic edge-connectivity of the graphs: in a
nutshell we study (in order) graphs with edge-connectivity exactly 0,1,2, and 3. In
Section 4 we combine the results of Section 3 to prove Theorem 1.1 and give some
concluding remarks.

2. Colored outer-planar graphs

In this section we discuss the relation between in4nite graphs and 4nite colored
graphs. We begin with the general case, where the graphs are not necessarily cubic.

We say that a 2-manifold M has a 5nite number of ends if there is a non-empty
compact subset K of M such that M − K has a 4nite number of components. We are
concerned with embedding connected locally 4nite graphs on 2-manifolds with a 4nite
number of ends. Our 4rst task is to relate graph embeddings on these 2-manifolds to
embeddings of certain subgraphs. We call a graph H residually 5nite if and only if
it comprises a 4nite subgraph K , called the residue, and a 4nite number of one-way
in4nite rays R, where the rays of R are pairwise disjoint and intersect H only in their
endpoints.
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Fig. 1. The 29 obstructions (add disjoint rays to degree-2 vertices).
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The following is due to Bonnington and Richter [5]; see also [6].

Theorem 2.1. Let G be a connected, locally 5nite graph. Let S be a surface with
a 5nite number of ends. Then G does not embed on S without accumulation points
if and only if G contains a residually 5nite subgraph H that does not embed on S
without accumulation points.

The existence of the residually 4nite subgraph H allows us to focus on only 4nite
graphs. We record the existence of an in4nite one-way ray with endpoint v∈V (H)
by deleting that ray and coloring the vertex black. More formally, a colored graph is
a graph G together with a distinguished subset of vertices. For convenience, we call
these black vertices; vertices not distinguished will be called white vertices. Hence we
have a vertex coloring in the usual sense with two colors; black and white. However,
this vertex coloring need not be “proper” (that is, adjacent vertices may receive distinct
colors). The graph G∞ is formed from a colored graph G by adding pairwise-disjoint
one-way-in4nite paths to each black vertex of G. It is easy to reverse the construction,
taking a residually 4nite H = G∞ and recovering the associated 4nite 2-colored G.

Let S be a compact surface, and let M be the non-compact surface formed by
deleting a 4nite set of k points from S. Bonnington and Richter [5] also showed the
following. (Note that accumulation points in the graph embeddings considered here
must occur in the interior of faces; accumulation points are not allowed to be points
on the graph.)

Theorem 2.2. Let A be a 5nite set of distinct points in a compact surface S. A
residually 5nite graph G∞ embeds on S−A without accumulation points, if and only
if the associated G embeds on S such that each black vertex lies on the boundary of
a face containing a point of A.

We say that a colored graph G has a k-black-cover on a compact surface S if there
is an embedding of G in S with a set of k faces such that every black vertex is incident
with at least one of these faces. (See, for example, [4].) Using this and the previous
two theorems, we can reformulate our main problem of 4nding the minimal in4nite
graphs that do not embed on the annulus without accumulation points as follows. (We
will order colored graphs by the usual subgraph order together with the additional
reduction of recoloring a black vertex white.)

Problem 2.3. Find all colored graphs that minimally do not embed on the sphere with
a 2-black-cover.

We are primarily interested in graphs with all vertices of degree 2 or 3. By re-
peatedly smoothing degree-2 vertices (replacing a path on two edges whose midpoint
is a degree-2 vertex by a single edge) we reduce down to the case that G is cubic
(ignoring the trivial case that the graph has no degree-3 vertices). Our in4nite rays will
attach only to degree-2 vertices. Instead of distinguishing a black vertex of G∞, we
will distinguish the red topological edge of G containing that vertex (we switch colors
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from black to red to emphasize we are now working with edges instead of vertices).
Hence we are working in the category of cubic graphs with a distinguished subset
of red edges. Edges not distinguished are colored white. We therefore have an edge
coloring of the graph in the usual sense with two colors, red and white, except that
this coloring need not be “proper” (that is, adjacent edges need not receive distinct
colors).

If we remove an edge of G from the distinguished set (that is, make a red edge
white), then the resulting colored graph H is de4ned to be smaller than G. If we
delete a red edge e of G, then we can color either one of the two resulting topological
edges containing an end of e red, and consider the resulting H as smaller than G. The
subgraph order, together with smoothing and our two extra operations, form a partial
order on all 2-edge-colored cubic graphs. It is this order that we will consider for the
remainder of this paper when using the words “smaller”, “contains”, or “minimal”. The
following lemma shows that this order agrees with the topological order on residually
4nite graphs.

Lemma 2.4. An edge-colored cubic graph H is smaller than G if and only if the
associated in5nite graph H∞ is a topological subgraph of G∞.

We say that a edge-colored graph G has a k-red-cover on a compact surface S if
there is an embedding of G in S with a set of k faces such that every red edge is
incident with at least one of these faces. In4nite graphs G∞ that embed in the plane
without accumulation points correspond to reduced graphs G that embed in the sphere
with a 1-red-cover. We will call these latter red-outer-planar graphs. In4nite graphs
that embed in the annulus without accumulation points correspond to reduced graphs
that embed in the plane with a 2-red-cover.

Two special graphs will be important to us. Let K−e
3;3 denote K3;3 − K2, where the

two degree-2 vertices are smoothed and the resulting edges colored red. Similarly, form
K−v

3;3 ; it is a graph with two degree-3 vertices and three red edges joining them. The
following is immediate by Halin’s Theorem [10].

Theorem 2.5. A edge-colored cubic planar graph G is red-outer-planar if and only if
it does not contain K−e

3;3 or K−v
3;3 .

As mentioned in the introduction, we were not able to determine all the minimal
vertex 2-colored graphs without a 2-black cover. However, we do solve the following
problem, which by Lemma 2.4 is equivalent to our main result.

Problem 2.6. Find the minimal edge-colored cubic graphs that do not have a 2-
red-cover.

3. The main propositions and their proofs

In this section we solve Problem 2.6, although the actual proof is postponed un-
til Section 4. This proof proceeds by a sequence of four propositions organized by
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the edge-connectivity of G. The 4rst proposition covers non-planar and disconnected
graphs.

Proposition 3.1. Let G be a edge-colored cubic graph that is minimal without a
2-red-cover. If G is non-planar, then G is the graph G1 of Fig. 1. If G is disconnected,
then G is one of the graphs G2; G3; G4 of Fig. 1.

Proof. By a result of ErdIos (see [9]) a locally 4nite graph on a countable vertex
set embeds in the plane if and only if it does not contain a K3;3 or K5 subgraph. A
non-planar cubic graph must contain K3;3, which is G1 of Fig. 1.

If G is disconnected, then by minimality no component can be red-outer-planar.
Moreover, if there are two non-red-outer-planar components, then G cannot have a
2-red-cover. The two minimal non-red-outer-planar graphs are K−v

3;3 and K−e
3;3 . The three

ways of combining these two graphs give G2; G3, and G4.

We next turn our attention to connected graphs with a cut-edge. We use the following
notation. Let e be a cut edge. The components of G − e will be H1 and H2. If we
smooth the degree-2 vertex in Hi and color the resulting edge red, then the graph is
denoted H r

i .

Proposition 3.2. Let G be an edge-colored cubic graph that is minimal without a
2-red-cover. If G is connected but not 2-edge- connected, then G is one of the nine
graphs G5–G13 of Fig. 1.

Proof. By minimality, each H r
i has a 2-red-cover. If say H r

1 is red-outer-planar, then
we can combine an embedding of H r

1 with all red edges on a common face with an
embedding of H r

2 having a 2-red-cover to get an embedding of G with a 2-red-cover.
Hence, each H r

i is non-red-outer-planar, and contains either a K−v
3;3 or a K−e

3;3 .
We break into two cases, depending on whether the cut edge is red or not.
Case 1: The cut edge is red. There are three ways to join K−v

3;3 and K−e
3;3 by 4rst

removing the red color from an edge of each, and adding a red cut edge between
those two edges. These give the three graphs G5–G7. The resulting graphs have no
2-red-cover, and so constitute all of G.
Case 2: The cut edge is not red. If both Hi are red-outer-planar, then G has a

2-red-cover. Hence without loss of generality we can assume that H2 is non-red-outer-
planar. It must contain either a K−v

3;3 or a K−e
3;3 . Form G by removing the red color

from one edge in H1, then adding a non-red-edge from that edge in H1 to any edge
in H2. There are exactly six ways to join H2 to H r

1 in this manner. These give
graphs G8–G13. No such graph has a 2-red-cover, and these are minimal with this
property.

By the preceding proposition we can assume that our graphs G are 2-edge-connected.
Suppose that B is a 2-edge cut of G with components H1 and H2 of G − B. Let ui; vi
be the ends of B in Hi. We consider the graph Hi ∪ {uivi}. Color the new edge uivi
blue to identify it from the red and white edges of Hi. In the literature this blue edge
is sometimes called a virtual edge.
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Fig. 2. The graphs of Lemma 3.3.

There are several possibilities for a red color on the virtual edge. We consider
Hi ∪ {uivi} as a subgraph of G. The red and blue colors along the topological edge
uivi correspond to a red edge of G and a 2-edge-cut of G. We distinguish the order
in which these are encountered along uivi by ordering the two colors along this edge.
In particular, if neither edge of B is red, then uivi has color blue but not red on uivi.
If say the edge incident with ui is red, then uivi is colored both red and blue with the
red color on the end incident with ui. By minimality, there is at most one red edge
in B, so that we will never assign two red colors to one topological edge. Denote this
coloring on Hi ∪{uivi} by H b

i . In our 4gures, the red edges are formed by suppressing
a degree-2 vertex and a square indicates the blue edge.

Let H r
1 ; H

r
2 result from breaking G along a 2-edge-cut as described above.

We need to relate red covers of H b
i to face covers of the original G. There are

several possibilities for a red cover with two faces: neither face is incident with B,
exactly one face is so incident, or both faces are so incident. Faces of G incident with
an edge in B correspond to faces incident with the blue edge in the corresponding
embedding of H b

i . This motivates the following de4nition. A graph with a set of red
edges and one blue edge has a blue cover if the two faces incident with the blue edge
together are incident with every red edge.

The following lemma characterizes with certain combinations of red-outer-planarity
and blue covers. It refers to the graphs of Fig. 2.

Lemma 3.3. Let G be an edge-colored, 2-edge-connected cubic graph that is minimal
without 2-red-cover. Let H b be one of the H b

i described above.

(i) If H b is red-outer-planar, then the face covering the red edges is not incident
with the blue edge.
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(ii) H b contains either R1 or R2. If H b has a blue-cover, then it contains R1. If H b

is 3-connected and has no blue-cover, then it contains R2.
(iii) If H b is not red-outer-planar and has a blue cover, then H b contains either S1

or S2.
(iv) Suppose that H b is minimal with the property that it is not red-outer-planar and

has no blue cover. If H b is 3-edge-connected, then H b is either T1–T3 or T4.

Proof. We divide the proof into the four parts given in the statement of the lemma.
Part (i): Suppose that H b

1 has a face f1 incident with all red edges and the blue
edge. Let e be any edge of H1 and 4nd a 2-red-cover of G − e. At least one of these
faces f2 is incident with a red vertex in Hi. We can combine this embedding with the
supposed embedding of H b

i so that the two faces f1 and f2 merge to one. This gives
a 2-red-cover of G, a contradiction.
Part (ii): Recolor the blue edge of H b red and call the result H r . By Part (i), H r

is non-red-outer-planar, so it contains either K−e
3;3 or K−v

3;3 . If the blue edge is on a
topological edge of K−v

3;3 , then we get R1. If it is on a red topological edge of K−e
3;3 ,

then we get R2. If it is on a non-red-edge of K−e
3;3 , then the graph properly contains

R1. Finally, if it is in a bridge of K−v
3;3 or K−e

3;3 , then that bridge has at least two feet.
Any way of selecting these two feets give either a R1 or R2 subgraph.

If H b has a blue cover, then it cannot contain R2. The second statement now follows
from the 4rst.

If H b is 3-connected and has no blue cover, then let H b
+ denote the (non-cubic) graph

formed by adding in edges from a 4xed degree-2 vertex in the blue edge to a degree-2
vertex in each red edge. Because H b has no blue cover, this graph is non-planar, and
hence contains a K3;3. It follows that H b contains R2 as desired.
Part (iii): Because H b is non-red-outer-planar, it contains either K−v

3;3 or K−e
3;3 . If

these do not contain the blue edge, then H b cannot have a blue cover contrary to
assumption. There are two possibilities for where this blue edge can be and have a
blue cover, giving S1 and S2, respectively.
Part (iv): By Part (ii), H b contains R1. If the blue edge eb is also red, then H b is

T1 as desired. So henceforth, we assume that eb is not red. We will 4rst establish the
following claim.

Claim. If H b − eb is red-outer-planar, then Hb contains T1.

If the red-outer-planar embedding of H b − eb extends to the unique embedding of
H b, then either the outer face still covers all red edges, or it is divided into two faces
which form a blue cover. Both cases contradict the hypotheses. It follows that the
embedding of H b − eb does not extend, and hence eb is in a non-trivial 3-edge-cut B.
Label the edges of B, their incident faces, and the components of H b −B as shown in
Fig. 3.

Let P12
i denote the edges in Hi incident with f1 ∪ f2, and let P3

i denote those
edges incident with f3. The paths P12

1 and P3
2 are shown as bold edges in Fig. 3. Let

Ci = P12
i ∪ P3

i .
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Fig. 3. The graph in the claim.

First, we note that each Hi must contain a red edge. If not, then we can replace Hi
by a single vertex incident with three edges, where these three edges inherit the colors
on the edges of B. Any red-outer-planar embedding of this new graph can be easily
modi4ed to a red-outer-planar embedding of H b. The same holds for blue covers of
these two graphs. The new graph is a strict subgraph of H b, contradicting minimality.

Second, we note that each red edge in Hi is contained in Ci. If not, then we replace
the other Hj with a single vertex, where either one of the edges e1 or e2 are colored
red. This new graph is not red-outer-planar (no face can cover both red edges) nor has
a blue cover (the two faces are not incident with the red edge in Hi − Ci). Again the
new graph is a strict subgraph of H b, contradicting minimality.

Now, observe that if all the red edges of H1 ∪ H2 are contained in P12
1 ∪ P12

2 , then
H b has a blue cover. If all of the red edges are in P3

1 ∪P3
2, then H b is red-outer-planar.

Hence, without loss of generality, there is a red edge in P12
1 and one in P3

2. The
resulting graph contains T1 as desired. The claim is demonstrated.

The proof of Part (iv) is now easy. Any graph not containing T1 must have the blue
edge disjoint from either a K−e

3;3 or from a K−v
3;3 . Moreover, the blue edge forms the

whole of the only bridge, because adding any such edge cannot have a blue cover. If
the blue edge is disjoint from a K−e

3;3 , then the only choice for a 3-connected graph
that does not contain T1 gives T2. If the blue edge is disjoint from a K−v

3;3 , there are
two possible ways to add in an edge to give a 3-connected graph. These give graphs
T3 and T4.

We are now ready to characterize the desired graphs with edge-connectivity two.

Proposition 3.4. Let G be an edge-colored cubic graph that is minimal without a
2-red-cover. If G has edge-connectivity exactly two, then G is one of the graphs
G14–G22 of Fig. 1.

Proof. We break the proof into three main cases. The 4rst is when G has two diHerent
2-edge-cuts that share an edge. The second is when G has two 2-edge-cuts that do not
share an edge. The third is when G has a unique 2-edge-cut.
Case 1: There are two 2-edge-cuts with an edge in common. Let B1 = {e2; e3} and

B2 = {e1; e3}. Note that B3 = {e1; e2} is also a 2-edge-cut. Hence G − {e1; e2; e3} has
three components H1; H2; H3. Label these so that Bi separates Hi from the remaining
two Hj’s.
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At least one of the three H b
i does not have a blue cover, or else the two faces on

{e1; e2; e3} are a 2-red-cover of G. Say H b
3 does not have a blue cover. To cover the

red vertices in H3 requires at least one face not incident with B3. To cover the red
vertices in H2 ∪ B2 requires either one face not incident with B2, or two faces.

Now, delete a single non-red-edge from H1. The resulting graph has a 2-red-cover.
It must involve one face incident with H1 in order to cover the red edge in H1, this
face may also be incident with e1 ∪ e2 ∪ e3. There are two possibilities for the other
face. If it is incident with these three edges, then we contradict that H b

3 does not have
a blue cover. If it is not incident with one of these three edges, then we contradict
Lemma 3.3(i) applied to H b

2 .
Case 2: There are two disjoint 2-edge-cuts. Let G−B1 have components H1 and RH 1,

G− B2 have components H3 and RH 3, and label the components so that H2 = RH 1 ∩ RH 3

is non-empty. So B1 is a bond joining H1 to H2, and B2 is a bond joining H2 to H3.
Suppose that both H b

1 and H b
3 are red-outer-planar. Then we can cover all of the

red edges in G − H2 with these two faces. Hence H2 has a red edge. By Lemma
3.3(ii) both H b

i contain either R1 or R2 of Fig. 2. This combination using both H b
i =R1

together with a single red edge in H2 give the graph G14 of Fig. 1. Using R2 for one
of the H b

i gives an edge whose deletion contains G17. Using R2 for both H b
i ’s gives

an edge whose deletion contains G19.
Without loss of generality we can suppose that H b

1 is non-red-outer-planar. If H b
1

has no blue cover, then consider a 2-red-cover of G−e for some edge e in H2. If both
of these faces are incident with B1, then we contradict that H b

1 has no blue cover. If
only one of these faces are incident with B1, then we contradict Lemma 3.3(ii) applied
to H b

3 .
We conclude that H b

1 is non-red-outer-planar and has a blue cover. By Lemma
3.3(iii) H b

1 contains either S1 or S2. By Lemma 3.3(ii) H b
3 contains either R1 or R2.

Also, H2 contains at least one edge. We check the four ways to combine these graphs.
Using S1 and S2 with R1 give G15 and G16 of Fig. 1, respectively. Using S1 with R2,
we can delete the edge in H2 and get G17. Using S2 with R2, we can delete the edge
in H2 and get G18.
Case 3: There is a unique 2-edge-cut. We note that both H b

i are 3-edge-connected.
As before, at least one of the H b

i do not have a blue cover, assume that H b
1 does not.

We 4rst consider the possibility that H b
1 is red-outer-planar. Then H b

2 cannot be
red-outer-planar. By Lemma 3.3(iii) and (iv) H b

2 either contains S1; S2, or it contains
T1; T2; T3; T4. Each of T2; T3; T4 contain S1 or S2. We conclude that H b

2 contains one
of S1; S2; T1. By Lemma 3.3(ii) H b

1 contains R2 because it is 3-connected. Combining
these graphs in the three possible ways give G17; G18, and G19 of Fig. 1, respectively.

We next consider the possibility that H b
1 is not red-outer-planar. Then by Lemma

3.3(iv) H b
1 contains one of T1–T4. By Part (i) of that lemma, H b

2 contains either R1 or
R2. There are eight possible ways to combine these parts. Combining T1 with R1 again
gives G17. Combining T2–T4 with R1 gives G17; G18, and G19 of Fig. 1, respectively.
Combining T1 with R2 again gives G19. Combining T2 or T4 with R2 both give graphs
that properly contain G18. Finally, combining T3 with R2 gives a graph that properly
contains G17.

This completes the cases and the proof of the proposition.
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By Proposition 3.4 we can assume that G is 3-edge-connected. Before covering this
remaining case in Proposition 3.6 we need one more lemma.

Lemma 3.5. Let R∗ be a graph with the property that no two vertices cover all of its
edges. Moreover, suppose that R∗ is minimal with this property under edge deletions
and deleting isolated vertices. Then R∗ is either K4, K3 ∪ K2, K2 ∪ K2 ∪ K2, or C5.

Proof. Cattell and Dinneen [8] found the minor-minimal graphs without a k-vertex
cover for k6 5. Their set for k = 2 is the four graphs above. Because the maximum
degree of these graphs is at most 3, they are also minimal without a 2-vertex-cover
under our coarser graph order.

Proposition 3.6. Let G be a planar edge-colored cubic graph that is minimal without
a red-cover. If G is 3-edge-connected, then G is one of the graphs in G23–G29 of
Fig. 1.

Proof. We 4rst establish that every face f of G is incident with a red edge. For
suppose not. Then there is an edge e incident with f such that G − e is still 3-edge-
connected. Deleting this edge gives a 2-red-cover. This now makes a 2-red-cover of G
that doesn’t use the face f.

Consider the graph R∗ whose vertices are the faces of G, with two vertices joined
by an edge if and only if the faces share a common red edge of G. By the preceding
paragraph there are no isolated vertices in R∗. Because G has no 2-red-cover, no two
vertices of R∗ cover all edges of R∗. By minimality, any edge deletion from R∗ does
have this property. By Lemma 3.5 R∗ is one of four graphs. We consider the graphs
in turn.

If R∗ = K4, then G has exactly four faces and hence is K4. All edges must be red,
giving G23.

If R∗ = K3 ∪ K2, then G has exactly 4ve faces and six vertices. There is a unique
such graph, the 3-prism C3 × K2. It is easy to show that up to isomorphism there is
exactly one way to pick R∗ in this graph, giving G24.

If R∗ = C5, then again G is the 3-prism, and the choice of R∗ is unique up to
isomorphism. This gives G25.

If R∗ = K2 ∪ K2 ∪ K2, then G has exactly eight vertices. There are two graphs to
consider. The 4rst is the 3-cube. There is a unique way to pick a matching in the dual
of the 3-cube, up to isomorphism, giving G26. The second graph is the one underlying
G27–G29. There are three non-isomorphic ways to pick a matching in the dual K5−K2.
These give G27; G28, and G29, respectively. The details are left to the reader.

4. The proof of the main theorem and concluding remarks

We begin this section by combining the propositions of the previous section to prove
our main result, Theorem 1.1.
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Proof (Theorem 1.1). By the collective results of Section 2, it suSces to 4nd the
minimal edge-colored cubic graphs without a 2-red-cover (Problem 2.6). Proposition
3.1 4nds all such graphs that are either non-planar or disconnected. Proposition 3.2
4nds all such connected planar graphs with a cut edge. Proposition 3.4 4nds all such
graphs with edge-connectivity exactly two. Finally, Proposition 3.6 4nds these graphs
with edge-connectivity exactly three.

Combining the lists of the four propositions gives exactly the graphs of Fig. 1.

There is an interesting connection between Halin’s Theorem and Kuratowski’s The-
orem. Namely, consider the four possible graphs formed from K3;3 and from K5 by
deleting either an edge (or a vertex), then coloring all incident (or adjacent) vertices
black. The four graphs formed in this manner are exactly the four planar graphs of
Halin’s Theorem.

For the MIobius band, a colored graph G embeds with a 1-black-cover if and only if
the corresponding G+ embeds in the projective plane. Using this relation and the known
minimal graphs that do not embed in the projective plane, Archdeacon et al. [2] 4nd the
minimal colored graphs that embed in the projective plane with a 1-black-cover. This
corresponds to Halin’s Theorem for graphs that embed on the MIobius band without
an accumulation point.

The spindle surface S is formed from the sphere by identifying two distinct points,
commonly known as the north and south pole as a common pinch point. Given a
colored graph G, let G+ denote the graph with one additional vertex v+ adjacent to
every colored vertex of G. If G has a 2-black-cover, then G+ embeds in the spindle
surface. The converse is not necessarily true, as it is possible that G+ embeds in the
spindle surface with V+ not on the pinch point. This embedding does not necessarily
correspond to an embedding of G with a 2-black cover.

It is tempting, nevertheless, to try to relate the minimal non-spindle graphs to the
minimal non-2-black-cover graphs. We do not know the exact relation.

A graph is outer-cylindrical if it embeds on the plane so that every vertex is on the
boundary of one of two faces. The vertices are not colored, so that such an embedding
is equivalent to a 2-black-cover where all vertices are colored black. The set of mini-
mal non-outer-cylindrical graphs is known [1]. These graphs are subgraphs of minimal
graphs with no 2-black-cover formed by coloring only a subset of the vertices. How-
ever, not all graphs without a 2-black-cover arise in this way, and the relation between
the two sets is again unclear.

We close by asking the reader to extend these techniques, or invent new ones, to
completely characterize the (non-cubic) vertex 2-colored graphs without a 2-black-cover.
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