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The polynomial we consider here is the characteristic polynomial of a certain 
(not adjacency) matrix associated with a graph. This polynomial was introduced 
in connection with the problem of counting spanning trees in graphs [8]. In the 
present paper the properties of this polynomial are used to construct some 
classes of graphs with an extremal numbers of spanning trees. 

Most papers on trees in a graph are devoted to determination of the 
number of spanning trees. One approach to this problem proceeds from 
the fact that the number of trees of a graph equals a principal minor of a 
certain matrix related to the graph [l-3]. In many papers this fact was 
used to derive formulas for the number of trees in graphs having special 
structure (e.g., [47]). 

Investigation of the characteristic polynomial of the above matrix (this 
polynomial was called the characteristic polynomial of a graph) has led to 
an algorithm for obtaining the polynomials and the numbers of trees of 
graphs decomposable with respect to certain operations into graphs with 
known polynomials [8,9]. 

Many formulas which were derived elsewhere (see, e.g., [4-7, l&15]) 
may be easily obtained by the method described in [S] since the graphs 
for which these formulas were deduced may be constructed by using the 
above operations from graphs whose polynomials are known or may be 
easily found. 

Another way to find the number of spanning trees of a graph is to use 
the principle of inclusion and exclusion [15]. By this method formulas for 
the number of trees in some special cases were also obtained. As will be 
shown below, the basic formula for the number of trees of a graph derived 

197 
Copyright iE 1974 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



198 KELMANS AND CHELNOKOV 

in [1.5] from the principle of inclusion and exclusion is one of the relations 
between the coefficients of the characteristic polynomials of a graph and 
its complement stated in [g, 91. This shows the relationship between these 
approaches. 

Note that the problem of counting trees in a graph is a part of a more 
general problem of determination of the probability that a graph with 
randomly removed edges is connected. For certain classes of graphs 
various probabilistic characteristics, for example, the probability of the 
connectivity (and in particular, the number of trees), satisfy linear differ- 
ence equations [i6]. These graphs are constructed, roughly speaking. 
by a certain glueing of several copies of the same graph. An even simple 
cycle with diameters belongs to this type of graphs. 

Much fewer papers are devoted to construction of graphs with an 
extremal number of trees. A more general problem consists in construction 
of graphs with a maximal (or minimal) probability of the connectivity 
when edges are randomly removed. It was proved that a complete graph 
has more trees than any other graph with the same numbers of vertices 
and edges [9] and a cycle in which each edge is replaced by k multiple 
edges has less trees than any other 2k-connected graph with the same 
numbers of vertices and edges [ 171. 

In this paper, classes of graphs with extremal numbers of trees are 
constructed. Basic definitions are introduced in Section 1. In Section 2 we 
list some properties of the characteristic polynomial of a graph which 
were stated in previous works and then deduce several new properties of 
this polynomial. All these properties are used for the construction of our 
extremal graphs in Section 3. Finally, in Section 4, we derive several 
estimates for the number of spanning trees and consider some general 
principles of such estimation. 

I. BASIC NOTATION 

Non-oriented graphs will be considered. For a graph G, having II 
vertices and JJJ edges, the notations G, , Gut, or G,“” will be used. We shall 
write r :-- L, if graphs I’ and L are isomorphic, and r f f. otherwise. 
The graph G is called the complementary graph of G if it is obtained from 
G by replacement of adjacent pairs of vertices by non-adjacent pairs and 
vice versa. 

A graph without cycles will be called a forest and denoted by F. It is 
obvious that FnTn has n - m components of connectivity. A forest with k 
components will be referred to as a k-forest. A l-forest is called a tree. y(F) 
denotes the product of the numbers of vertices in components of the 
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forest F. A k-forest spanning a given graph G (i.e., being a subgraph of G 
with the same number of vertices as G) is called a k-forest of G and two 
such forests are different if they have different sets of edges. T(G) denotes 
the number of different trees of a given graph G. 

For any two graphs I’and L let I’ + L = r u L and r . L be the graph 
which consists of all elements of r and L and such that every vertex of r 
is joined by one edge with every vertex of L [18]. Below these operations 
of addition and multiplication will be applied only to graphs without 
common elements. In particular, if g is a graph with one vertex, then 

is the complete graph with 12 vertices, 

II I- 
gfgt . . . + g 1 ,,g = gn. 

N,,m = mg’ + (n - 2m)g 

/\ 11 **.[ s;;;r; Hnm=g(2g)+(m-2)g’+(n--2mfl)g 
0 00 

._cI 
m-2 

0-o 00 0 

/ ) / / ... 1 0 0 ... 0 nnm=f143+(m-3)g2+(n-2m+2)g 

0 0 0 0 o ia-z5 
m - 3 

/\ 11 . . . (j 0 0 *.* 0 d,~‘g~+(n7-3)g~+(n-22m+3)g 

o-----o 0 0 o niai$ 

m-3 

0 

A 0 0 .‘. 0 ‘4,” = g(mg) + (n - m - 1)g 
0 0 0 -- . . . n-m-l 

m 
FIGURE 1 
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Let us introduce the special notation for some types of graphs (see 
Fig. 1): 

NnTn = rng’ + (n - 2m) g, n 3 2771; 

HnJn = g(2g) + (m - 2) g2 + 02 - 2m + 1) g, n 2 2m - I ; 

flnm = g(n7g) + (n - 111 + 1) g, n 3 172 + 1; 

dnWL = g3 + (nz - 3) g2 + (n - 2m + 3) g, n 3 2m - 3. 

If Ii’ is a simple chain of three edges, then let 

LInrn = I7 + (m - 3) g2 i (fa - 2m + 2) g, n 3 2m - 2. 

In this notation we shall omit the lower index if the corresponding 
graphs have no isolated vertices. 

We shall need the following formulas, which are easily obtainable by 
the methods developed in [8] or [15]: 

T(Nen‘) = /7”+“-2(/7 - 2)‘>1 [4]; (1.1) 

T(H,“) = tz “-+yn - 2)m-2 (n - I)(17 - 3); (1.2) 

T&m) = I7 ‘L-‘“-y77 - 1)+1 (n - 112 - 1)[4]. (1.3) 

Let !P[G] = Y(G, rnI ,..., T,!) denote the graph obtained from non- 
empty graphs G, I’,l ,..., T,< (k = I, Z,...) by additions and multiplica- 
tions applied in the fashion defined by the operator Y. Since 

we have 

(1.4) 

where F means that in Y the operations of addition are replaced by 
multiplications and vice versa. Since for any non-empty graphs their 
product is a connected graph and their sum is disconnected, then the 
graphs !?‘[r] and lu[L] are both connected or both disconnected depending 
on which of two operations is the last in the operator Y. For any G, the 
graphs Y[G,,] have the same number of vertices, which we shall denote by 

Pn . 
For a graph G with vertices x1 ,..., -Y,, , let C(G) = {C;jj be the n >: n 

matrix in which cii is the degree of the vertex xi in G and -cij equals the 
number of multiple edges joining the vertices xi and xj . 
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2. CHARACTERISTIC POLYNOMIAL OF A GRAPH 

This paper is based essentially on the properties of the polynomial 
det{hE - C(G)} introduced and investigated in [S, 91 and which has been 
called (with an allowance for differences in notation) the characteristic 
polynomial of a graph.l Consider the properties of this polynomial which 
we shall need in further discussion: 

1. Since det C(G) = 0, then 

P(h, G,) = i det{hE - C(G,)) 

n-1 

= fl (A - Ai) 

i=l 

= An-1 _ blAti- + . . . f (-l)i bJn-l-i + . . . + (-1)?2-lb,-1 

(2.1) 
where 

bi = bi(G,ri) = ai(h, )...) A,-,) W) 

is the symmetric polynomial of the order n - 1. 

2. Following [8], 

P(X, r f L) = hP(h, r) P(h, L), (2.3) 

P@, Gn, . G,,) = (h - ill - nz) P(h - 11~ , G,,) P(h - n, , G,,). (2.4) 

3. From (2.3) and (2.4), it follows [8] that 

p@> Y[GJ) = P(k VG, 3 rn, ,..., rn,)) = R(X) P(h - a, G,), (2.5) 

where R(X) is uniquely determined by the operator !P and the polynomials 
PO, r, .) and 01 is uniquely determined by the operator !P and the numbers 
of vertices 12~ of the graphs rni , i = l,..., k. In the expression 

0 < 3 < pn - II, (2.6) 

a = 0 is equivalent to Y[G,] = G, + I’and 01 = p, - n is equivalent to 
!P[G,] = (G, + r) . L, where r may be an empty graph. 

* The same term is used for the characteristic polynomial of the adjacency matrix 
of a graph. 
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4. Since C(G) is a non-negative definite matrix, then it has the eigen- 
values 

Xi = h;(G) 2 0, ; = i,..., 12 - 1. (2.7) 

5. If G, has no multiple edges, then [8] 

h,(G,) = I? --- X,(G,), i = l,..., ?I - 1. (2.8) 

6. Let 

B(h, G,) = k det{XE -t C(G,)J = ‘2 b,(G,) X’l-lpi. 
;=a 

From (2.8), 

P(X, G,) = B(X - ti, G,). 

7. From (2.7) and (2.8), 

(2.9) 

(2.10) 

and, from (2.3) and (2.4), 

m:x X,(G,) = h,,,(G,) = 11 

if and only if < is a disconnected graph (see also (2.18)) [9]. 

8. From (2.10), 

P(X, G,) > 0 at x > 17 (2.11) 

and P(n, G,,,) = 0 if and only if c, is a disconnected graph (see also (2.18)). 

9. From (2.11) and (2.6) it follows that, in (2.5), 

R(A) 1 0 at h > pa (2.12) 

and R(p,) ) 0 if Y[G,] is connected. 

10. Let G be a disconnected graph with the components Gnl ,..., G,(,, . 
Then, from (2.10), 

&(G) 5: max t7,. (2.13) s 

I I. If cl, is the degree of the vertex x in G, then [9] 



POLYNOMIALS AND TREES OF GRAPHS 203 

12. Let GY be the graph obtained from G by identifying the vertices of 
the set Y with subsequent removal of the loops. Then, from [9], 

h, = b,(G,) = c T(G,), i = 0, l)...) I2 - 1. 
YCG,IYI=n-i 

Every k-forest (k = n - i) of a graph G, with exactly one vertex of 
Y( j Y 1 = k) in every component is associated with the tree of GY obtained 
from this k-forest by identifying all vertices of Y. This correspondence 
between k-forests of the above type and trees of Gy is obviously one-to-one. 
Since, for any k-forest Fi from G, there are exactly y(P) different sets Y 
with k = n - i vertices which have exactly one common vertex with 
every component of Fi, then 

bi(G,) = c ym, i = 0, 1,. .., II - 1. (2.14) 
FiCG, 

In particular, 

b,(G) = 1, /!I,(@‘) = 2/7J, b,(G”‘) = 2w? - I?? - @,(G”), (2.15) 

L(GJ = nT(GJ, (2.16) 

where 

S,(G) = c dzk. 
ZEG 

13. From (2.8) it follows [9] that 

b,(G,) = i (- l)i (1 1; 1 ;) P+&(G,) 
i=o 

1 
I+-l)(n, G,). 

= (/I - k - I)! ’ 

In particular, for k = n - 1, 

T(&) = ; b,&G,) = nfl (-l)i b,(G,) IZ’~-~-~ = ; P(rr, G,). (2.18) 
i=O 

It should be noted that the latter relation may also be obtained by the 
principle of inclusion and exclusion [15]. Indeed, let t,(G7) be the number 
of different trees of the complete graph K, containing a given graph G”; 
Sk = &W~ t,(Gk), where G = G,” and the summation is over all (T) 
subgraphs Gk of G. By the method of inclusion and exclusion [ 191: 

T(G) = so - !sl + ... + (-l)‘~S, + v.. + (-l)“&. 
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As stated in [15], 

f  ( G ” )  zzz ! ”  
if Gk has a cycle, 

n ir( F”) nn-2-Ic, if Gk = Fk has no cycles. 

Thus, for k 3 n, SI, = 0 and 

By (2.14), this relation coincides with (2.18). 

Now we shall derive some properties of the characteristic polynomial 
which we shall use below. 

LEMMA 2.1. 

b3(Gn2) = $nz3 - 2rn” - (,n - 1) 6, + $8, - 24, (2.19) 

where A is the number of triangles in G and 

Proof. Let {f13}, (da), {n}, {H3), {N3) be the numbers of selections of 
the corresponding types in the set of all (7) selections of three edges from G 
so that 

{A3: + {A3) + (II; + {W) f {N3: = ‘; . 
i i 

At the same time, 

z. ($) = {A"}, pn - d) ($) = 3gl3: -I-- 2x7: + {H3). 

According to (2.14) b,(G) = 4{n3) + 4{171 + 6{H3) + 8(N3). From these 
four reIations one can easily obtain the required statement. 

Let G\zt denote the graph obtained from G by removal of the edge u. We 
shall assume from now on that 

Am&G,) = AI > &(G,) > ... > A,-l(G,) = Amin( 

LEMMA 2.2. For any edge u of a graph G 

X,(G,) 2 h,(G,\u), k = I, 2 I..., n - I. 
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ProoJ Let C, = C(G,) - C(G,\u). The matrix C, is non-negative 
definite since det(hE - C,) = X+2(h - 2). By virtue of the Courant- 
Fischer Theorem [20], 

A,(G,) = h,(C(G\u) + C,) 3 h,(G,\u), k = l,..., it - 1. 

Let &,,(G) = dmax and &in(G) be the maximal and minimal degrees 
of vertices in G, respectively. 

LEMMA 2.3. If m > 1, then 

Amax = X,(Gm) > dmax(G”) + 1, UG”) > 1 (2.20) 

for k = 2, 3 ,..., dmax . If G # K, then 

Amin < dmin(G). 

Proof. Let L be obtained from G by removal of all edges which are 
non-incident to the vertex of the maximal degree. By Lemma 2.2, 

and 
&c(G) 2 &d-L) 

P(h, L) = (A - dmax - l)(h - l)dmax-1 in-l--d,,, 

from whence follows the truth of (2.20). The inequality for Ami, is 
obtained from the inequality for Amax by using (2.8). 

Let u be an edge in G = G” and 

@(A, Grim) = A”-n+lP(& G,**). 

LEMMA 2.4. 

@(A, G) = @(a, G) + c j” @(x, G\u) dx. 
UEG a 

Proof. From (2.14) (nz - i) hi(G) = CueG b((G\u) for i 
Therefore 

(2.21) 

(2.22) 

0, l)...) n - 1. 

c @(A, G\u) = c (-l)i (m - i) b,(G) h+-l = GA’@, G), 
USC i=O 

which is equivalent to required statement. 

Let Pn be the number of vertices of the graph Y[G,]. 
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LEMMA 2.5. Let P(A, r,) > P(A, L,) for h 3 n. Then 

(1) P(h, Y[r,]) > P(A, Y[L,]) for h > pn (for X 3 pn if Y[r,] is a 
connected graph); 

(3) T(Y[r,]) > T(Y[L,]) for a comected Y[T,]. 

Proqf: Consider the relation (2.5) for the graphs Y[r,] and Y[L,]. 
Since, from (2.6), it follows that h ~ 0: > n for h > pvl , then by the 
lemma’s condition P(h - 01, r,) > P(h - CX, L,) for h > pn . At the 
same time, by (2.12), R(h) > 0 for X > pn (for h > pn if Y[T,] is a connec- 

ted graph). Therefore Inequality (1) follows from (2.5) for Y[r,] and 
Y[L,]. Inequality (2) may be obtained from the lemma’s condition by 
using (2.18) with h = II. Inequality (3) follows from (2.18) and Inequality 
(1)withh =pn. 

Remark 2.1. In view of (1.4) Inequality (3) in Lemma 2.5 may be 
replaced by Inequality (3’): 

for a connected Y[FJ. 

Remark 2.2. From (2.5) (2.6), and (2.12), it follows that Inequalities 
(1) and (3) of the lemma hold also when the lemma’s conditions are satis- 
fied only at h > II. 

Tables 1 and II illustrate the characteristic polynomials of the graphs G,” 
and GE3. 

Since, by (2.3) P(A, G + kg) = h’“P(h, G), then for graphs from the 
tables the relationships between the polynomials P(X, G + kg) are the 
same as between the polynomials P(X, G) for X > 0. 

TABLE I 

Gq% 

N,’ 

‘$9 

P(h G) hllXlX(Gj T(G) Remarks 

~.-~ -- 

A3 - 4h” + 4A = X(X ~ 2y 2 4 P(A, N,“) :> 

A3 - 4X” + 3x ; X(h ~ l&l - 3) 3 3 ;- P(A, A,%, 
atX> 0 
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TABLE II 

G P(4 G) bm(G, T(G) Remarks 
____. 
Ns3 ~‘6hl+12h3-88h2=h2(h-2)3 2 384 P(A, Ne3)> P(A, Hs3);. 

He3 h”-6h~+11X3-6h”=h”(X-l)(h-2)(h-3) 3 360 > PO, Gs3) for GC3f NG3, 
ZIG3 hj--bP+lOP-4A*=X?(A-2)[(h-2)“-21 2+ d/2 336 GG3#H,” and h>h,,,(G,3); 

Aa h” -6Xd+9h3=P(h-3)” 

x’lG3 h”-6h~+9h3--4~‘=h?(h~l)“(h-4) 

V! v P(A, II,“) < PO, G,3) 

3 324 for Gs3” Ae3 and A;:4 

4 300 

3. GRAPHS WITH EXTREMAL NUMBERS OF TREES 

In this section the above properties of the characteristic polynomial of a 
graph will be used to show that the graphs of a certain type have the 
following extremal property: their polynomials are greater (or less) than 
polynomials of other graphs with the same numbers of vertices and edges 
for all h exceeding a certain threshold. Thence it will follow that the 
complements of these graphs have the maximal (or minimal) numbers of 
trees over the graphs with the same numbers of vertices and edges. 

THEOREM 3.1. Let N,“” # G,“” = G. Then 

P(h, N,"") > P(A, G) for X > X,,,(G). 

Proof(by induction). When 111 = 2, the inequality may be verified 
immediately for any n > 4 (see Table I). By Lemma 2.4, 

@(A, Nn,“) - @(A, G) = @(h,,x(G), N,““) - @Omax~G), G) 

+ UT& ia;,. CC) 
[@(x, N,“-l) - @(x, G\u)] dv. 

x (3.1) 

By Lemma 2.2, Ama, > h,,,(G\,u). Therefore, by the induction assump- 
tion for all x E [Amax( X], every square bracket in (3.1) is non-negative 
and from G # N,” at least one of them is positive. At the same time, 
hmax(N,nP) = 2 and, since G # N,,“‘, then dmax(G) 2 2 and, by 
Lemma 2.3, h,,,(G) > 3. Hence 

@Omax(G), Nnm) - @@max(G), G) = @An,,(G), NT,"") > 0 
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and therefore, for X 3 h,,,,,(G), 

@(A, N,“‘) > @(A, G). 

In view of (2.21), P(A, N,“L) > P(A, G) for X 3 h,,,(G), as required. 

COROLLARY 3.1.1. Let IV,‘” # G,“. Then 

(1) P(h, Y[N,“]) > P(X, y[G,W~])for A :B pTL (/or h > p, if!?‘[N,“‘] is a 
connected graph); 

(2) T(N,““) = ~z’l-~~-~(n - 2)” > T(G,“); 

(3) T(Y[N,n]) > T(Y[G,““])fir a connected Y[iV,“]. 

By (2.10) h,,,(G,) S, n, so the required inequalities follow from 
Theorem 3.1 and Lemma 2.5 (see also (I .I)). 

THEOREM 3.2. Let fl,rm # G,” = G. Then P(h, G) > P(A, A.“) for 
X>???+1. 

Proof (by induction). It is easily checked the inequality for m  = 2 
(see Table I). 

From (2.22), 

@(A, G) - @(A, Ann&) = @(m + I, G) - @(m + 1, A,“) 

+ & j-i+l [@,(x, G\\u) - @(x, L’I’,“-‘)] dx. (3.2) 

By virtue of induction assumption, every square bracket in (3.2) is non- 
negative for all x E [m + 1, A]. If, in every component of the graph G, the 
number of vertices is less than ~1 + 1, then, by (2.13), h,,,(G) < 1~ + 1. 
Let there be a component L of G with nz + 1 vertices. Then all other 
components of G are isolated vertices, and so h,,,(G) = Am,,(L). Since 
G f A;‘“, then L # Am and, by (2.10), Amas = Amax < 171 :- 1, i.e., 
@(nz + I, G) > @(nz + 1. Anqn). This completes the proof. 

COROLLARY 3.2.1. Let &ln f  G,‘?“. Then 

(1) P(X, Y[G,m]) > P(h, YIAnwb])for X > pn (for X > pn fY[G,“] is a 
connected graph): 

(2) T(G,‘“) > T(Anm) = nn-m-2 (n - 1),-l (n - m - 1); 

(3) T(Y[Gnm]) > T(Y[.A,m])fir a connected Y[Gnm]. 

These inequalities follow from Theorem 3.2 and Lemma 2.5 by II 2 111 + 1 
(see also (1.3)). 
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THEOREM 3.3. Let G,” = G f N,“, G,” # H,“. Then 

P(h, H,““) > P(X, G) for A > h,,,(G). 

Proqf (by induction). For 1~ = 3 the inequality may be verified by 
using Table 11. 

From Lemma 2.4, 

@(A, H,““) - @(A, G) 

= @Omax(G), HRrn) - W&x(G), G) 

+ G,,m LE& 
@(x, Hnm\u) - c @(x, G\u)] dx. (3.3) 

n UEG 

The graph H,” has two subgraphs isomorphic to N,“-l and m - 2 sub- 
graphs isomorphic to H,“-’ over all subgraphs with m - 1 edges. If the 
graph G is non-isomorphic to N,” and H,“, then it has no more than one 
subgraph isomorphic to NC-‘. Indeed, if such subgraph of G does exist, 
then the removal of any edge of this subgraph from G gives a graph non- 
isomorphic to N,“-‘. Thence it follows that, by Theorem 3.1 and the induc- 
tion assumption, the integral in (3.3) is positive for h > Amax( At the 
same time Am&H,“) = 3 and, by Lemma 2.3, 

h&G) 3 &dG) + 1 > 3, i.e., @(Amas( H,‘“) 3 @(AmaX( G). 

Hence @(A, H,“) > @(A, G) and by (2.21), P(h, H,“) > P(A, G) for 
X > h,,,(G) as required. 

COROLLARY 3.3.1. Let G,“” f N,“, G,“’ f H,“. The)1 

(1) P(X, Y[H;rn]) > P(A, YIG,m])for A > pn (far A 3 p,, f!i’[H,~p] is a 
conrlected graph); 

(2) T(H,““) = I?-~~-* (n - 2)v’b-2 (n - l)(n - 3) > T(G,““); 

(3) T(!?‘[Hnm]) > T(YIIGnm]) for a connected Y[H,“]. 

This follows from Theorem 3.3. and Lemma 2.5 because h,,,(G,“) < 
m + 1 < 2112 - 1 < n when m 3 3 and only for nz 3 3 do graphs G,” 
non-isomorphic to N,” and Hnnk exist (see also (1.2)). 

THEOREM 3.4. Let G,Lm # N,” and G,&” # H,*. Then 

P(h, N,“) > P(h, H,“) > P(A, Gnvl) for X > n. 

Proof. The inequalities B(h. N,‘lL) > B(x, H,“) > B(A, G,vz) for X > 0 
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may be derived by the same arguments as Theorems 3.1 and 3.3. In view 
of (2.9) these inequalities are equivalent to the required ones. 

COROLLARY 3.4.1. Under the rotditions of Theorem 3.4. 

(1) P(h, Y[N71”L]) > P(h, Y[H,“L]) > P(X, Y[G,““]) ,for ,\ :-. pn (for 
X > pn rj’YINnln] is a connected graph); 

(2) T(Y[NnJrL]) > T(Y[H,““]) > T(Y[GnW]) fir a connected YIN,rlL]. 

This corollary follows from Theorem 3.4 by Remark 2.2 to Lemma 2.5. 

LEMMA 3.1. Let G,“’ f &I’~ and k be a natural number less than the 
minimal iengfh of a cycle in G,“. T/ten b,?( A n’tl) < b,J G,“‘). 

Proof. The required statement follows from (2.14) because 
y(/17() < y(P) and FL = /I” for FL C /lrV8 and any set of k edges of G with k 
less than the minimal length of a cycle in G,” is a forest. 

As the immediate consequence of Lemma 3.1 we have 

LEMMA 3.2. Let D,“’ denote a graph which has (117 I 1 )-rertices 
component and D,,” # Anrn. Then bi,(A,)“) < bk(Dn’“,) fur k = 2, 3,..., 
m - 1 and b,.,,(A,,“l) = b,,,( D,“) = m + I. 

Note that, by (2.14), b,,(G) = I. b,(G”‘) = 2m and b;(G,“‘) = 0 for 
i = m f- I..... n - I. So in view of (2.9) from Lemma 3.2 we have 

THEOREM 3.5. Let D,!“’ +i- fl,t’k. Thett.,for x > n, 

P(h, 0,“‘) :- P(A. A,“‘), 

COROLLARY 3.5. 1. Let D,ttl” =& fl.lll. Then 

(I) P(h, Y[Dn”‘]) > P(h, Y[A,,)j]),for h ::> pn (.for h > JJ,~ iJ’Y[An”] is a 
connected graph); 

(2) Z-(YID,,rrl]) ;- T(Y[A,7V6]). 

Remark. Generally speaking, for graphs different from D,““, 
Theorem 3.5 and Corollary 3.5.1 are not true. For exampIe, by 
Theorem 3.2 for h > 4 

P(X, A,3) 3, P(A, A,“) = PO, [g” + gl) 

and the graph [g3 $- g] has a triangle, i.e., it is not a graph of the type Da3. 
When graphs are compared by the numbers of their trees, the following 

question is in order: will the relation between the numbers of trees of two 
given graphs be preserved after applying an operator Y to these graphs 
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(provided that the graphs Y/[G] are connected)? For example, will or will 
not r(r) > T(L) imply T(gr) > T(gL)? The following example 
illustrates that, in the general case, this inequality is not preserved. Let Q” 
denote a graph which consists of a simple cycle of m edges and one isolated 
vertex. It is obvious that 7’(rlm) = 1 > r(p) = 0. Let us prove that, for 
nz 3 5, r(gk”) < T( gQ”“). According to (2.16) and (2.14), 

n-1 

TkGJ = 1 ~i(GJ. 
i=O 

By Lemma 3.1, bi(/lm) < b&Q”“) for i = 2,..., NI - 1. At the same time, 
from (2.14) it follows that bo(fl”‘) = b,(Q”) = I, b,(fl”) = 2~7, 
b,(A”) = 4(y), b3(Qv1) 3 6(T) - 2/n, b,&'P) = I?? + 1, b&Q”) = 0. 
Therefore 

when M >, 5. At the same time T( gA4) > T(gQ4). Thence it follows that 
0 = P(nz + 1, Q”“) < P(NI + 1, ADA). However, P(m + 2, p,) > 
P(n7 + 2,s) for nz 3 5. 

Thus the graphs with extremal numbers of trees have been constructed. 
In particular, it has been proved that, in removal of 117 edges (in < (n/2)) 
from the complete graph K, , the number of retained trees is maximal 
when the removed edges form the graph N,“. The second best after N,“’ 
removal is the graph H,“. Finally, the minimal number of trees remains 
after removal of the graph flnPIL (nz -G II - 1). The next best choice after 
H,” seems to be the graph flVTfl and the worst choice after flnm the graph 
A;>)*. However, in these cases our scheme of proof of the extremality of the 
graph N,” and others is not suitable. It may be illustrated by the example 
of graphs with 6 vertices and 3 edges (see Table II !). Indeed, Xmax(ll,~) > 
hmas(d;~) and at the same time T(lIqLn”) > T(A,S9Sf). 

4. ESTIMATES FOR THE NUMBER OF TREES OF A GRAPH 

Since to find the number of trees for most graphs is very difhcult, 
estimates of the number of trees in different terms of the graph seem to be 
of interest. 

$3zb/r6/3-z 
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One way to construct these estimates is given by relation (2.18). Since 
this may be obtained by the principle of inclusion and exclusion, then 
according to Bonferroni’s Inequalities [21], 

np~-2 - bl(Gn) n’r-3 + *.. + (-1)2i+1 b,i,l(G,) 

< w%) 

< I1 n-2 - bl(G,) /z”-~ + ..a + (-1)2j bzj(G,) nn-2j-8, (4.1) 

where 

i = 0, l,..., ‘f - 1. 
II 2 ’ 

j = 0, l,..., [+-I. 

Thus bounds for r(G) may be obtained if a certain number of the first 
coefficients bk(G) (or bounds for them) are known. 

In particular, using (2.15), (2.19), and (4.1) with i = .j = 1, we obtain: 

T(G,) > nTz-2 - 2nvz7L-3 + [2rt2” - m - &Ti2(G,,J] nn-4 

- [@73 - 2~2” - (m - 1) 6,(G,) + @,(G,) - 24G,)] n’L-5. 

T(G,) :g 77’L-2 - 2mn11-3 + [2m2 - nr - #,(G,)] tF4, 

where, as above, II? is the number of edges of G,, , d(G) is the number of 
triangles in G, and 6,(G) = CrEC dzk. 

Another way to construct the bounds is to use the expression (2.2) of the 
coefficients b,(G) as symmetric polynomials. If the first s coefficients 
b,(G,) are known, then bounds for b,(G,) s < k -< n - 1, may result 
from solving the following optimal problem P.y.k : 

(JL(Xl , XJ ,..., .~,~+i) - max, min: 

Gi(X1 ,  x2 .  .  .  .  .  x,-J = 6, , i -z 1, 2 ,..., s; 

-Xj > 03,) y I, 2 ,..., ?I - 1. 

For example, the solution of the problem PI., with b,(G)“) = 2111 (2.15) 
gives 

0 < bfi(GIL1’L) < i” r, ‘) (+)“, k =- 2, 3 ,.... /I - 1. 

These bounds are derived in [9]. In that paper the upper bounds have also 
been proved to be reached only in the case of graphs in which every two 
vertices are joined by one and the same number of multiple edges. 
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Solving the problem Pn,,-l under the condition (2.15), we have 

I’ = \/(F? - I) S2(GnnL) - 4m2. 
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