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Hepatocellular carcinoma (HCC) is the most common liver malig-
nancy, representing the third and fifth leading cause of death
from cancer worldwide in men and women, respectively.
The main risk factor for the development of HCC is the hepatitis B
and C virus (HBV and HCV) infection; non-viral causes (e.g., alco-
holism and aflatoxin) are additional risk factors.
HCC prognosis is generally poor because of the low effectiveness
of available treatments and the overall 5-year survival rate is
approximately 5–6%.
In this framework, immunotherapeutic interventions, including
cancer vaccines, may represent a novel and effective therapeutic
tool. However, only few immunotherapy trials for HCC have been
conducted so far with contrasting results, suggesting that
improvements in several aspects of the immunotherapy
approaches need to be implemented.
In particular, identification of novel specific tumor antigens and
evaluation of most advanced combinatorial strategies could
result in unprecedented clinical outcomes with great beneficial
effect for HCC patients.
The state of the art in immunotherapy strategies for HCC and
future perspectives are reported in the present review.
� 2013 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
Introduction

Hepatocellular carcinoma (HCC) is the most common primary
liver malignancy and accounts for about 6% of all new cancer
cases diagnosed worldwide (nearly 750,000 new cases/year). It
is the third and fifth leading cause of death from cancer globally
in men and women, respectively. The age-standardized incidence
rate (ASR) of HCC in men in Europe, adjusted to the European
Standard Population, is about 8 per 100,000, with a peak in
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The overall prognosis for HCC patients is poor, with a dismal
5-year survival rate of approximately 5–6% [1].
The role of immune microenvironment in
hepatocarcinogenesis

The liver shows an inherent tolerogenicity, to prevent an aberrant
immune response to gut-derived microbial products which are con-
stantly re-circulated through the liver. Several cells are involved in
inducing such intra-hepatic tolerogenicity, including hepatocytes
which have been shown to prime naïve T cells in the absence of
co-stimulation, T cells which ultimately acquire an anergic cytotoxic
phenotype undergoing a clonal deletion [2,3]. Furthermore, three
distinct subsets of phagocytic cells have been identified to play a
role as ‘‘tolerogenic’’ antigen presenting cells (APCs): liver sinusoidal
endothelial cells (LSECs), Kupffer cells and liver dendritic cells (DCs).
LSECs express the inhibitory molecule B7-H1/PD-L1, which induces
antigen-specific CD8+ T-cell tolerance interacting with PD-1 on the
T cells [4,5]. Moreover, LSECs negatively regulates hepatic T-cell
immune response [6] inducing CD4+ T-cell tolerance and death
[7]. Kupffer cells exert their tolerogenic activity by producing the
anti-inflammatory molecules transforming growth factor beta
(TGF-b), IL-10, prostaglandin E2 (PGE2), as well as expressing the
inhibitory molecule B7-H1 and eliminating high affinity antigen-
specific CD8+ T cells that enter the liver [8–10]. Liver-resident DCs
show an IL-10-secreting phenotype [11–13], inducing Th2 polariza-
tion of CD4+ T cells [14], regulatory T-cell (Treg) induction and poor
antigen recall responses [15,16].

Furthermore, hepatic stellate cells (HSCs) have been proposed
to contribute to immune tolerance by induction of apoptosis of
activated T cells in mice [17,18].

The inherent intra-hepatic immunosuppressive environment
is further exacerbated by the chronic inflammation status
induced by chronic hepatitis [19–21]. In addition, several HCV
proteins are able to directly alter cytokine expression and modu-
late the tumor microenvironment, contributing to HCC develop-
ment (reviewed elsewhere [22,23]).

Once HCC is established, the tumor microenvironment is char-
acterized by a leukocyte infiltrate, whose main cellular compo-
nents include tumor-associated macrophages (TAMs) and T
cells. Such microenvironment highly supports TAM polarization
towards activated M2-macrophages that express high levels of
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cytokines such as IL-10 and TGF-b, which, in turn, support Treg
recruitment as well as development of T helper 17 polarized
immune response [24].

The incidence of tumor infiltrating lymphocytes (TILs) in HCC
is significantly low, confirming the presence of an intrahepatic
suppressive mechanism. In particular, HCC prognosis is strictly
related to the predominant TILs’ population identified in the
tumor [25]. Indeed, high levels of Treg cells play a central role
in promoting tumor growth and progression, being associated
with a poor HCC prognosis [26].

In summary, the intrahepatic tolerogenic and immune sup-
pressive microenvironment appears to be a very favorable milieu
for a multi-step process potentially leading to HCC development
(Fig. 1), when the risk factor conditions (e.g., chronic hepatitis
infection) occur. Such inherent immunological uniqueness needs
to be taken into high account when immunotherapeutic
approaches are designed and implemented, or they will likely
result in poor outcomes.
Loco-regional treatments for HCC with immunological
implication

When applicable, surgery (i.e., tumor resection and liver trans-
plantation) represents the standard treatment of HCC, since a
5-year survival rate is achieved in 70% of treated patients [27–29].

However, several loco-regional non-surgical treatments (i.e.,
radiofrequency (RF), thermal and non-thermal ablation, transar-
terial chemoembolization (TACE)) provide a second line of
therapy for patients with unresectable HCC or for those who
are not eligible for liver transplantation, with an extremely
variable 3 to 5-year survival rates according to the disease stage
at the time of treatment [30].

The spontaneous regression of untreated tumors has been con-
sistently reported in different tumor diseases after thermoablation
of distant tumor masses, suggesting a tumor-specific immune acti-
vation induced by the loco-regional treatment [31–34]. This effect
is likely the result of the release of cellular material by necrotic
cells, generated by ablation, which is able to induce a local inflam-
mation and, ultimately, a specific immune response [35–37]. Such
an effect of providing tumor antigens to the immune system is fur-
ther boosted by the recruitment and activation of immune effector
cells at the tumor site, including DCs, which results in the induction
of effector as well as memory immune response [38,39]. Moreover,
it has been shown that the removal of tumor tissue leads to deple-
tion of Treg reverting the intratumoral balance towards effective
antitumor immunity [40]. Other loco-regional treatments may
exert similar positive effects on the anti-tumor immune response
(for a most complete review, see [41]).

Nevertheless, such immune responses induced by the loco-
regional treatments are not sufficient to induce a full tumor pro-
tection but show a great potential as adjuvanting strategy to
improve immunogenicity of specific immunotherapy approaches
[42]. Such adjuvanting effect, however, needs to be more exten-
sively demonstrated in randomized clinical trials.
Immunotherapy approaches for HCC

A limited number of immunotherapy trials for HCC have been
conducted based on several strategies, with yet modest results.
Cytokines have been used to activate subsets of immune cells
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and/or increase the tumor immunogenicity [43,44]. Further strat-
egies have been based on infusion of tumor infiltrating lympho-
cytes or activated peripheral blood lymphocytes [45–47].
Alternatively, direct delivery of genetically modified or designer
T cells (dTc) into the hepatic artery has been recently proposed
as a promising novel strategy and is currently evaluated in a
phase I human clinical trial (ClinicalTrials.gov Identifier:
NCT01373047). Indeed, the latter strategy has recently been suc-
cessfully used for treatment of different cancers and several
human clinical trials are currently ongoing (reviewed in [48]).

Alternatively, considering active immunotherapy strategies
(i.e., therapeutic vaccination), the number of human clinical trials
published to date is extremely small. The first HCC vaccine clini-
cal trial was conducted by Butterfield et al. based on CD8+ T-cell
epitopes specific for alpha fetoprotein (AFP), showing the gener-
ation of AFP-specific T-cell responses in vaccinated subjects [49].
To improve the immune response, the same authors performed a
subsequent phase I/II trial administering AFP epitopes presented
by autologous DCs loaded ex vivo. This treatment, however,
resulted only in transient CD8+ T-cell responses, possibly caused
by the lack of CD4+ help [50,51]. To overcome this limitation and
to increase the number of tumor associated antigens (TAAs) tar-
geted by the immune response elicited by the vaccine, few vac-
cine approaches, based on autologous DCs pulsed ex vivo with a
lysate of the autologous tumor [52] or of hepatoblastoma cell line
HepG2 [53,54], have been evaluated in human clinical trials,
showing limited improvements in clinical outcomes.

The last clinical trial in the literature is based on a combina-
tion of low-dose cyclophosphamide treatment followed by a tel-
omerase peptide (GV1001) vaccination which did not show
antitumor efficacy [55].

Few phase I/II clinical trials, testing immunotherapy strategies
for the treatment of HCC, are currently ongoing in recruiting par-
ticipants (Table 1).

Specific limiting factors need to be addressed in order to
improve the limited outcomes from the clinical trials, some of
which are discussed below.
Limiting factors in immunotherapy approaches for HCC

HCC-specific tumor associated antigens (TAAs)

HCC-specific TAAs are limited in number and can be classified in
distinct classes, including (a) widely occurring, overexpressed anti-
gens (i.e., telomerase reverse transcriptase – TERT; Wilms’ tumor
1-WT-1) [56–59]; (b) oncofetal antigens (i.e., alpha fetoprotein –
AFP, glypican 3 – GPC3) [60–62]; and (c) cancer/testis (CT) anti-
gens (i.e., MAGE-A, SSX-2, NY-ESO-1) [63]. Only HLA class-I
restricted epitopes from TAAs of the first two classes (i.e., TERT
and AFP) have been tested in human clinical trials with limited
results [49,55].

New and more specific TAAs and/or epitopes should be iden-
tified, both HLA class I and II restricted, aiming at inducing CD4+
as well as CD8+ T-cell activation. Indeed, clonal expansion and
acquisition of cytolytic functions of CD8+ CTL are obtained only
in the presence of the helper function provided by CD4+ T helper
(Th) cells [64–67].

To this aim, a systems biology approach could be applied,
integrating multiple high-throughput ‘‘omics’’ technologies
(reviewed in [68]). Novel TAAs identified by these high-through-
put technologies are currently analyzed by immune-informatics
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Table 1. Published and ongoing HCC cancer vaccines evaluated in human
clinical trials.

Antigen Vaccine strategy Ref.
AFP Peptides [57]
AFP DC pulsed [58,59]
Autologous tumor lysate DC pulsed [60]
Tumor cell line lysate DC pulsed [61,62]
Telomerase Peptides (GV1001) [63]
NY-ESO-1 Peptide Clinical 

trial identifier:
NCT01522820
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algorithms to predict specific epitopes that interact with MHC
complexes in order to stimulate a T-cell-associated immune
response [69–73]. Prediction algorithms, however, cannot take
into considerations all the biological variables related to the com-
plexity of the process governing the peptide fragmentation by the
proteasome and the transportation to HLA class I molecules in the
endoplasmic reticulum, via the transporter associated with anti-
gen processing (TAP). To overcome such limitations, alternative
strategies based on high resolution mass spectrometry (MS) have
been recently used for directly sequencing peptides presented by
HLA molecules (HLA ligandome) from tumor cells, to identify nat-
urally processed class I and class II tumor-associated peptides
[74]. This strategy, indeed, allows the identification of T-cell epi-
topes presented by the tumor cells, thus representing a valid tar-
get of T cells, and it has been employed to identify the HLA
ligandome for glioblastoma (GB) [75], renal cell cancer (RCC),
and colorectal cancer (CRC). Cancer vaccines based on peptides
identified with this strategy have been developed. A safety phase
I clinical trial is currently ongoing for the GB; for RCC and CRC,
cancer vaccines phase II clinical trials have been conducted, both
showing the association of T-cell responses with clinical benefit
[76,77]. A phase III efficacy trial is currently ongoing for the
RCC cancer vaccine.

Combinatorial strategies

Improvement of the immune response elicited by active cancer
immunotherapies may be achieved also by improving the
epitopes for HCC

Identification of
novel specific tumor

Peptides

Proteins

DNA

Live attenuated vectors

Genetically modified T cells

Ex vivo loaded DCs

Vaccine strategies

Fig. 2. Proposed scheme for improving HCC cancer vaccines. The identification of nov
new vaccine concepts, based on any of the listed strategies or combination of them. Thi
listed adjuvanting strategies or combination of them. The final expected outcome is the
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immunogenicity of the vaccine antigen and/or counterbalancing
the immune-suppressive tumor environment. To this aim, several
lines of evidence suggest that combination of immunotherapy
and cancer standard-of-care therapies (i.e., chemotherapy) may
provide better results than individual treatments (reviewed in
[78,79]).

Cytotoxic chemotherapies induce an immunogenic cell death
with the release of danger signals from tumor cells, which can
promote anti-tumor immunity, polarizing DCs towards a pro-
inflammatory phenotype which drives a T helper 1 (Th1)
response (reviewed in [80,78]). Moreover, cyclophosphamide is
toxic to immunosuppressive Treg cells and a metronomic regi-
men has been shown to improve anti-tumor cell response
[81,82] as well as cancer vaccine efficacy [83–87]. Similarly, gem-
citabine selectively kills myeloid-derived suppressor cells
(MDSCs) in vitro and in vivo [88], and has been tested in combi-
nation with cancer vaccines [89–91]. Docetaxel has been
reported to modulate different cell subsets, enhancing CD8+
function and deleting Tregs [92] and has been evaluated in sev-
eral human clinical trials to test the enhancement of immune
response to cancer vaccine [93,94].

Targeted cancer therapies may induce remarkable tumor
regression in cancer patients positive for the target pathway/pro-
tein, but the relatively rapid selection of tumor cells resistant to
such therapies represents a significant limitation to their utility
[95]. Nevertheless, as for the cytotoxic chemotherapies, several
observations indicate that targeted therapies may help improve
anti-tumor immune responses elicited by immunotherapies
(reviewed in [79]). In particular, the combination of cancer vac-
cines and immune checkpoint blockade to prevent T-cell anergy
may result in a potentiated anti-tumor immune response
(reviewed in [96]). Alternatively, targeted therapies may improve
antigen presentation (e.g., anti-HER2 Abs) [97,98] or maintain the
activation of vaccine-specific T cells and promote their differenti-
ation into memory T cells (e.g., mTOR inhibitors) [99].

Specifically concerning the HCC, combinatorial strategies have
been evaluated in a single clinical trial based on a combination of
low-dose cyclophosphamide treatment combined with a telome-
rase peptide (GV1001) vaccination [55]. A phase I clinical trial is
currently ongoing to evaluate a combination therapy based on
rapamycin and NY-ESO-1 fusion protein vaccine, in patients with
cancers expressing the NY-ESO-1 antigen, including HCC
Improved 
efficacy of HCC
cancer vaccine

Combinatorial 
strategies

Loco-regional
treatments

Adjuvants

Adjuvanting strategies

el specific tumor epitopes for HCC will represent the ground for development of
s will take great advantage from the immune potentiating activities of any of the
improved efficacy of cancer vaccine.
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(ClinicalTrials.gov Identifier: NCT01522820). Considering all the
data generated for other cancer models, it is reasonable to predict
that HCC immunotherapies may take significant advantages by
designing combinatorial protocols including chemotherapeutic
agents to improve the experienced limited clinical outcomes
(Fig. 1B).

Key Points

• Current treatment options for hepatocellular carcinoma
have been summarized

• The intrinsic tolerogenic environment of the liver organ
has been discussed

• The limited outcome of the immunotherapy approaches
for HCC has been discussed

• Possible solutions have been proposed, in particular,
discovery of new tumor associated antigens (TAAs)
and evaluation of combinatorial strategies
Concluding remarks

Treatment of HCC is a primary goal, given its poor prognosis for the
lack of an effective therapy. The liver is intrinsically an immune-
suppressive environment, further worsened by chronic hepatitis
infection, which represents a favorable context for cancer develop-
ment. Each of the current available treatments is palliative and
immunotherapy has been only partially explored with limited clin-
ical outcomes. Improving the knowledge on molecular and anti-
genic characteristics of HCC, to identify more specific and
immunogenic tumor-associated antigens, and testing the potential
benefits of the combinatorial strategies, to increase the vaccine
immunogenicity and efficiently counterbalance the immune-sup-
pressive environment, will very likely result in unprecedented clin-
ical outcomes with great beneficial effects for HCC patients (Fig. 2).
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