
Journal of Symbolic Computation 37 (2004) 761–775

www.elsevier.com/locate/jsc

Symbolic computation for mobile robot path
planning

Nick T. Koussoulas∗, Photis Skiadas
Department of Electrical and Computer Engineering, University of Patras, Greece

Received 21 October 1998; accepted 11 May 1999

Abstract

Motion planning for mobile robots is an arduous task. Among the various methods that have
been proposed for the solution of this problem in its open loop version is the Lafferriere–Sussmann
method, which is based on differential geometry and employs piecewise constant inputs. This paper
gives a succinct description of the method and of a freely available software tool, called the Lie
Algebraic Motion Planner—LAMP and written in Mathematica™, which automates motion planning
based on this technique.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Mobile robotics; Motion planning; Differential geometry

1. Introduction

Mobile robotics is an actively researched area of modern industrial technology. Mobile
robots support effectively the operations in many modern factories and warehouses, while
additional applications, such as in consumer products (the autonomous vacuum cleaner),
in space (NASA’s Mars Pathfinder/Rover; multi-body spacecraft), and in underwater
activities, are being energetically pursued. Getting a mobile robot to move in a desired
fashion stumbles at difficulties arising from the necessarily intricate modeling. Given that
classical (Jacobian) linearization is either ineffective or inconclusive for such systems,
other directions have been investigated. Thus, the modeling basis is that mobile robots
belong in the category of finite dimensional mechanical systems known as nonholonomic
systems. In the case of mobile robots, nonholonomy signifies that the velocity constraints
are linear but they turn out to be not integrable, indicating that some configurations in

∗ Corresponding author. Tel.:+30-2610-997296; fax: +30-2610-997309.
E-mail address: ntk@ee.upatras.gr (N.T. Koussoulas).

0747-7171/$ - see front matter © 2004 Elsevier Ltd. Al l rights reserved.
doi:10.1016/j.jsc.1999.05.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82775891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jsc

762 N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775

the velocity space, i.e. directions of movement, are not possible. Having established a
modeling framework does not mean that things become easier: one is still faced with a
hard nonlinear problem.

Typical examples of real-life nonholonomicsystems include the rolling disk and
the rolling sphere, while controlled nonholonomic systems include the unicycle, the
front wheel directed car, and cars with trailers. Attention is concentrated mostly on
the kinematics problem, however; including dynamic effects is not particularly difficult.
Motion planning and relevant control issues for nonholonomic control systems have
been given considerable attention in recent years. The result has been a large number of
approaches and techniques.

Robot path planning refers to the derivation of feasible paths the robot can follow that
will take it from a given starting configuration to any other. Path planning is one instance
of the more general motion planning problem that also includes the point stabilization
problem and the trajectory tracking problem. The motion planning problem that we
consider here is thought of in the sense of deriving anopen loop control law that given
an initial and a final state will drive the robotfrom the former to the latter. Notice that
we donot consider any feedback control laws that rely on sensor information to drive the
robot.

In contrast to path planning for holonomic systems (i.e., those with integrable velocity
constraints), there is no one-to-one correspondence between available paths and feasible
trajectories. Only the motions that satisfy the nonholonomic constraints are allowed.
Despite this, by introducing the realistic assumption that the system is completely
controllable we make sure that at least one feasible path exists for every pair of initial
and final states. This can be done even when there are obstacles to be avoided (obstacles
are usually modeled as forbidden areas of the state space).

The motion planning problem has been tackled in a variety of ways (Latombe,
1991; Lafferriere, 1991; Murray et al., 1994). There exist additional methods based on
geometric phases and on parametrization of the input (which may lead to the use of
neural networks as learning devices). However, it seems that differential geometry is
the basis of the more elaborate methods. Among the differential geometric methods,
one can find those relying on Lie algebra, within which a further distinction is made
concerning the type of control used (piecewise constant or sinusoidal), and other
techniques based on averaging theory, exterior differential forms, and flatness. For a
very informative overview seeKolmanovsky and McClamroch(1995). Lafferriere and
Sussmann (Lafferriere and Sussmann, 1991, 1992; Lafferriere, 1991) have developed a
particularly elegant Lie algebraic technique employing (basically) piecewise constant
controls. The application range of the method is general, i.e. it can treat any form
of configuration space. The avoidance of obstacles with known positions can also be
implemented but in a non-automatic fashion through the exclusion of appropriate areas
of the configuration space, i.e. the method currently cannot handle inequality constraints.

The rest of the paper contains the following. InSection 2we present an overview of
the Lafferriere–Sussmann method, treating concurrently a simple but important example
involving acar-like robot. In an effort to automate the task of motion planning, we describe
in Section 3a tool for symbolic implementation of that method which is called LAMP

N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775 763

(Lie Algebraic Motion Planner). The code has been written in Mathematica1 3.0 and
contains routines that may prove useful outside the context of mobile robotics. Finally,
in Section 4, we comment on the use of the new tool and the motion planning method.

2. The Lafferriere–Sussmann method for motion planning

The object of control is a nonholonomic system represented by the following differential
equation:

ẋ(t) = g1(x)u1 + g2(x)u2 + · · · + gm(x)um (2.1)

where the statex(t) belongs to an open setN of Rn andgi , i = 1, . . . , m, arereal analytic
vector fields defined onN and linearly independent,∀ x ∈ N . We note that we deal only
with kinematic aspects and that the system is driftless, that is, motion is possible only
when some input is being applied. The motion planning problem (MPP) consists in finding
reasonable algorithms producing for every pair of pointsx0 andx f an open loop control

t → u(t) = (u1(t) u2(t) · · · um(t))T (2.2)

that steersx0 to x f .
The basic idea of the Lafferriere–Sussmann (LS) method is to solve the MPP for a

“milder” system, which is created by suitably extending the given one. The extension
consists in adding a number of vector fields, which are formed as Lie brackets of the
original vector fields, to the dynamics of the system. Then, an MPP for the extended
system is solved for nominal trajectories that are identical orclose to the desired path. The
resulting control law for the extended system can now be used as a basis for determining
the sought control law for the original system. First, one has to determine the coordinates
of the nominal trajectory with respect to the basis used for the original system. This action
leads to the formation of a system of differential equations, which, when solved, provides
the coordinates of the target point in a special basis. Finally, by equating the motions of
the original and extended system, we get the desired control law in the following way.
We equate the formal representations of the trajectories considering them as flows of
the corresponding differential equations. Then, by solving an algebraic system for the
unknown coefficients that correspond to the moves made by the original system, we form
the final control law.

At this point two issues must be further clarified. First, the special basis on which we de-
scribe the system is much simpler when a condition called nilpotency is present. A system
is called nilpotent when the iterated Lie brackets are zero beyond a certain order, which
we call the nilpotency degree. In this way, the representation of the system is guaranteed to
befinite. The basis for the relevant algebra when nilpotency is present is called the Philip
Hall basis and contains those elements that are free of any relations (skew symmetry and
Jacobi identity) among themselves. Second, the formal representation of the flows implies
that all calculations are carried out at the formal level on the corresponding (nilpotent)
Lie group and the results are translated into a control policy. These calculations involve

1 Mathematica is a registered trademark of Wolfram Research Inc.

764 N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775

the Baker–Campbell–Hausdorff formula, which gives a precise expression for the compo-
sition of two moves resulting from a specific selection of vector fields. More details can
be found inLafferriere and Sussmann(1991, 1992) andLafferriere(1991). The detailed
sequence of necessary steps can be better understood via the following detailed example.

Let us consider a car described by the following driftless model, which has been already
converted to its nilpotentized form:

ẋ(t) = g1(x)u1 + g2(x)u2 (2.3)

where

x(t) = (x1 x2 x3 x4)T (2.4)

and

g1(x) = (1 0 x2 x3)T and g2(x) = (0 1 0 0)T . (2.5)

Our task is to compute the open loop control lawt → u(t) = (u1 u2)T, which
moves the system from the initial statex0 = (0 0 0 0)T to the final statex f =
(0 0 0 −1)T.

First, we check the nilpotency degree of the given system (implicitly, we verify that the
system is indeed nilpotent). We discover that this degree is equal to three:

g3 = [g1, g2] = (0 0 −1 0)T (2.6)

g4 = [g1, [g1, g2]] = (0 0 0 1)T (2.7)

g5 = [g2, [g1, g2]] = (0 0 0 0)T (2.8)

g6 = [g1, [g1, [g1, g2]]] = (0 0 0 0)T (2.9)

g7 = [g2, [g1, [g1, g2]]] = (0 0 0 0)T (2.10)

g8 = [g1, [g2, [g1, g2]]] = (0 0 0 0)T (2.11)

g9 = [g2, [g2, [g1, g2]]] = (0 0 0 0)T . (2.12)

The Philip Hall basis will have the form

B = {g1, g2, g3, g4, g5}. (2.13)

The corresponding extended system will be

ẋ(t) = g1(x)w1 + g2(x)w2 + g3(x)w3 + g4(x)w4 + g5(x)w5 (2.14)

wherew(t) = (w1 w2 w3 w4 w5)T is its control vector.
Now we can proceed with the actual calculations of the LS method.
Wecalculate the control for the extended systemw(t), whichdrives the extended system

from x0 to x f . This control law will be constructed in such a way that the trajectory of the
extended system fromx0 to x f will have the formγ (t) : [0, 1] → R4, where

γ (t) =

γ1(t)
γ2(t)
γ3(t)
γ4(t)

 =

A1t + B1

A2t + B2

A3t + B3

A4t + B4

 (2.15)

N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775 765

andAi , Bi ∈ R, i = 1, 2, 3, 4. The curveγ (t) is such that

γ (t = 0) = x0 = (0 0 0 0)T (2.16)

and

γ (t = 1) = x f = (0 0 0 −1)T . (2.17)

Therefore, the real numbersAi , Bi can be determined as

A1 = B1 = A2 = B2 = A3 = B3 = B4 = 0, A4 = −1 (2.18)

yielding finally

γ (t) =

γ1(t)
γ2(t)
γ3(t)
γ4(t)

 =

0
0
0
−t

 . (2.19)

The extended system will have eventually the following model:

0
0
0

−1

 =

1
0
x2

x3

w1 +

0
1
0
0

w2 +

0
0

−1
0

w3 +

0
0
0
1

w4 +

0
0
0
0

w5. (2.20)

or

0
0
0

−1

 =

w1

w2

x2w1 − w3

x3w1 + w4

 . (2.21)

Solving the above system forw1, w2, w3, andw4 we will get

(w1 w2 w3 w4)T = (0 0 0 −1)T . (2.22)

Applying this control law to the extended system, we will observe that its trajectory starts
from x0, follows the curveγ (t), and finally rests onx f .

With the control laww(t) known, we will calculate next the control lawu(t) that drives
the original system fromx0 to x f . To begin with, we will determine the coordinates of a
point x(t) that lies on the curveγ (t) in the P. Hall basis. This can be achieved by solving
the system of differential equations

w1g1 + w2g2 + w3g3 + w4g4 + w5g5

= c1(hi , gi)ḣ1 + c2(hi , gi)ḣ2 + c3(hi , gi)ḣ3 + c4(hi , gi)ḣ4 + c5(hi , gi)ḣ5

with initial conditions

h1(0) = h2(0) = h3(0) = h4(0) = h5(0) = 0. (2.23)

The coefficientsci (hi , gi), i = 1, 2, . . . , 5, have the following form:

c1(hi , gi) = g1 (2.24)

766 N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775

c2(hi , gi) = Ade−h1g1 g2

= e−h1g1g2eh1g1

= g2 − h1g3 + 1
2h2

1g4 (2.25)

c3(hi , gi) = Ade−h1g1e−h2g2 g3

= e−h1g1e−h2g2g3eh2g2eh1g1

= g3 − h2g5 − h1g4 (2.26)

c4(hi , gi) = Ade−h1g1e−h2g2 e−h3g3g4

= e−h1g1e−h2g2e−h3g3g4eh3g3eh2g2eh1g1

= g4 (2.27)

c5(hi , gi) = Ad
e−h1g1 e−h2g2 e−h3g3 e−h4g4 g5

= e−h1g1e−h2g2e−h3g3e−h4g4 g5eh4g4 eh3g3eh2g2eh1g1

= g5. (2.28)

Finally, we have that

c1(hi , gi) = g1

c2(hi , gi) = g2 − h1g3 + 1
2h2

1g4

c3(hi , gi) = g3 − h2g5 − h1g4

c4(hi , gi) = g4

c5(hi , gi) = g5.

(2.29)

Replacing the coefficients in Eq. (2.21), we get

ḣ1g1 + ḣ2(g2 − h1g3 + 1
2h2

1g4) + ḣ3(g3 − h2g5 − h1g4) + ḣ4(g4) + ḣ5(g5)

= w1g1 + w2g2 + w3g3 + w4g4 + w5g5 (2.30)

or

(ḣ1)g1 + (ḣ2)g2 + (ḣ3 − h1ḣ2)g3 + (−h1ḣ3 + 1
2h2

1ḣ2 + ḣ4)g4 + (ḣ5 − h2ḣ3)g5

= w1g1 + w2g2 + w3g3 + w4g4 + w5g5 (2.31)

so after some algebra we end up with the following system:

ḣ1 = 0

ḣ2 = 0

ḣ3 − h1ḣ2 = 0
1
2ḣ2

1ḣ2 − h1ḣ3 + h4 = −1

ḣ5 − h2ḣ3 = 0

(2.32)

which gives

ḣ1 = 0, ḣ2 = 0, ḣ3 = 0, ḣ4 = −1, ḣ5 = 0. (2.33)

Solving this set of equations with initial conditions

h1(0) = h2(0) = h3(0) = h4(0) = h5(0) = 0 (2.34)

N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775 767

we find that

h1(t) = 0

h2(t) = 0

h3(t) = 0

h4(t) = −t

h5(t) = 0.

(2.35)

Therefore, the Philip Hall coordinates of the final pointx f can be computed by substituting
the valuet = 1 in the solution:

(h1 h2 h3 h4 h5)T = (0 0 0 −1 0)T . (2.36)

At this point, a major decision must be taken concerning the number of steps
(movements) that are necessary for reaching the target state from the initial state. This
problem has not been solved in its general form and thus only approximate techniques may
be applied. The LS formulation proves to be helpful in this respect because it is possible to
use the following relation (in the case of bang-bang moves):

x f = x0ea1g1ea2g2 · · · eas g1 = x0ehmgm · · · eh1g1 (2.37)

wheres is the number of desired moves,m is the dimension of the P. Hall basis, and e
denotes the formal exponential (or, equivalently, the flow of the corresponding differential
equation). Then, one must determine the unknown coefficientsai , which can be done
with the help of the Campbell–Baker–Hausdorff formula (Murray et al., 1994). These
coefficients are not independentfrom each other. As explained inVaradarajan(1984), a
move along the Lie bracket of two vector fieldsg1 and g2 can be analyzed in a series
of four independent moves alongg1 andg2 in turn. Note also that the coefficients of all
four exponentials depend on the same coefficient. In a similar way, one can discover that
movement along a Lie product (nested set of Lie brackets) of order 4 implies a series of ten
moves, again with a single coefficient involved. In this way, it is possible to derive relations
that connect the coefficientsai with the known quantitiesh j .

Now, returning to our example, let us assume that the original system can move from
the initial statex0 to the final statex f in nine bang-bang moves. Then, the corresponding
control vectors will be of the form

u1 = (u1 u2)T = (a1 0)T for time T1 = 1

u2 = (u1 u2)T = (0 a2)T for time T2 = 1

u3 = (u1 u2)T = (a3 0)T for time T3 = 1

u4 = (u1 u2)T = (0 a4)T for time T4 = 1

u5 = (u1 u2)T = (a5 0)T for time T5 = 1

u6 = (u1 u2)T = (0 a6)T for time T6 = 1

u7 = (u1 u2)T = (a7 0)T for time T7 = 1

u8 = (u1 u2)T = (0 a8)T for time T8 = 1

u9 = (u1 u2)T = (a9 0)T for time T9 = 1

768 N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775

where the coefficientsai , i = 1, . . . , 9, are real numbers. Thus, the original system will
follow a trajectory of the form

x f = x0ea1g1ea2g2ea3g1ea4g2ea5g1ea6g2ea7g1ea8g2ea9g1 (2.38)

= x0eh5g5eh4g4eh3g3eh2g2eh1g1 (2.39)

= x0e−g4. (2.40)

At this point application of the Campbell–Baker–Hausdorff formula will give us a
system of algebraic equations relating the known quantitiesh1, . . . , h5 with the unknown
coefficientsa1, . . . , a9. In principle, we can find a solution that will be parametrized by
the four superfluous coefficients whose values we may fix. However, hunting for a set of
values that will indeed be suitable for the prescribed move is an arduous task. It is far
preferable and not at all limiting to select the kind of moves the system will make. Thus,
we accept that a series of four bang-bang moves corresponds to a move along the Lie
bracket (represented byg3 in Eq. (2.4)). Assuming thatthis move will be the first one, we
fix the corresponding coefficient to be equal to one and then we can determine the unknown
coefficientsa5, . . . , a9, finding eventually that

a1 = 1, a2 = 1, a3 = −1, a4 = −1, a5 = 1, a6 = 1, a7 = 1,

a8 = −1, a9 = −2 (2.41)

so finally

u1 = (u1 u2)T = (1 0)T for time T1 = 1

u2 = (u1 u2)T = (0 1)T for time T2 = 1

u3 = (u1 u2)T = (−1 0)T for time T3 = 1

u4 = (u1 u2)T = (0 −1)T for time T4 = 1

u5 = (u1 u2)T = (1 0)T for time T5 = 1

u6 = (u1 u2)T = (0 1)T for time T6 = 1

u7 = (u1 u2)T = (1 0)T for time T7 = 1

u8 = (u1 u2)T = (0 −1)T for time T8 = 1

u9 = (u1 u2)T = (−2 0)T for time T9 = 1.

We calculate now the first two movements just to illustrate what the trajectory will be.

Move 1

Applied control:

u1 = (1 0)T . (2.42)

Time interval: 0≤ t ≤ 1.

Systemmodel:

ẋ1

ẋ2

ẋ3

ẋ4

 =

1
0
x2

x3

 . (2.43)

N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775 769

Initial conditions:

x1(0) = x2(0) = x3(0) = x4(0) = x5(0) = 0. (2.44)

Solution:

x1(t)
x2(t)
x3(t)
x4(t)

 =

t
0
0
0

 . (2.45)

Final state att = 1: (1 0 0 0)T.

Move 2

Applied control:

u2 = (0 1)T . (2.46)

Time interval: 1+ ≤ t ≤ 2.

Systemmodel:

ẋ1

ẋ2

ẋ3

ẋ4

 =

0
1
0
0

 . (2.47)

Initial conditions:

x1(1) = 1, x2(1) = x3(1) = x4(1) = x5(1) = 0. (2.48)

Solution:

x1(t)
x2(t)
x3(t)
x4(t)

 =

1
t
0
0

 . (2.49)

Final state att = 2: (1 1 0 0)T.
And so on for the rest of the moves.Figs. 1–4 show the trajectory for each state. The

plots have been produced by the software code described inSection 3and the time is in
s/10.

3. Implementation for symbolic computation

The Lafferriere–Sussmann motion planning method just described requires a large
amount of tedious calculations should one wish to use it for development purposes. In
the course of our research, where we investigated motion planning with piecewise constant
inputs whose values are limited to a finite set (Skiadas and Koussoulas, 1997), we have
been confronted with a need for an experimentation platform and thus we decided to
implement the method in a symbolic manipulation environment. The result has been a set

770 N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775

20 40 60 80

0.5

1

1.5

2

Fig. 1. Evolution of statex1.

20 40 60 80

0.2

0.4

0.6

0.8

1

Fig. 2. Evolution of statex2.

20 40 60 80

–1

–0.8

–0.6

–0.4

–0.2

Fig. 3. Evolution of statex3.

of routinesthat fully automates the LS motion planning method while some of the routines
developed can be used for more general computations in the area of geometric nonlinear
control. We do not call this set of routines a “package” since some functionalities are

N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775 771

20 40 60 80

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

Fig. 4. Evolution of statex4.

realized in a non-fancy simplistic way, especially the problem definition requested from
the user. The set has been named LAMP v1.0, for Lie Algebraic Motion Planner.

When setting out to automate the motion planning method described above, the first
decision had to do with the choice of a suitable symbolic manipulation platform. Finally,
Mathematica was chosen on the basis of two facts: first, there has been some basic
work on theoretical topics done within that environment (cf.Murray et al. (1994) and
the dissertation of the first author ofMurray et al. (1994)); and second, it seems that
Mathematica is being established as the primary environment in the area of robotics,
e.g. the Robotica package (Nethery and Spong, 1994), Screws inMurray et al. (1994).
Affordability, being always a consideration, combined with the above facts led to the choice
of Mathematica 3.0.1 as the software platform.

3.1. Structure of code

The package contains a number of routines that implement some general differential
geometric and group theoretic operations and another set of more specialized routines
strictly related to the motion planning method.

The user interface is not at all fancy. Near the beginning of the code, the user keys in
the definition of his/her problem that includes the specific vector fields, initial and target
states, initial and final times, and the dimension of the control vector. Some examples from
standard problems of the field are provided as a guide. The user is later asked about the
desired number of moves and the sequence of the activated vector fields. In case of two
vector fields, only the initial one must be indicated. Otherwise, full details are necessary.
The above represent the total user involvement.

The code is about 1100 lines long (with comments). There are in total 17 routines or
functions. Seven of those are borrowed from the dissertation of R.M. Murray and they
are marked with an asterisk in the list below. Their total size is about 25 lines of pure
code. Another set of small routines deals with group theoretic and differential geometric
operations. Finally, there are four larger routines, which actually implement the motion
planning method.

Ad: adjoint representation (AdX,Y = eX Y eX , where e denotes the formal exponential)
fexp: the formal exponential; the (finite becauseof nilpotency) order of the series

expansion is an argument

772 N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775

fbracket: the formal Lie bracket([X, Y] = X ∗ Y − Y ∗ X)

jacobian: calculation of the Jacobian
SLieBracket: the symbolic Lie bracket; calculates theLie bracket for specific vector

fields
BCH: implementation of the Baker–Campbell–Hausdorff formula
Bracket ∗: definition of the Lie bracket for symbolic manipulation purposes
degree ∗: calculates the degree of a Lie product
leq ∗, lt ∗: they define the ordering on the Lie algebra
PHallCheck ∗, PHallFilter ∗: they sift the basis elements according to the P. Hall

criteria
PhilipHallBasis ∗: construction of the Philip Hall basis given the list of generators

and the order
NilpDegree: given a set of vector fields, it checks andcalculates their nilpotency

degree up to a user-defined limit
PHbasis: calculates the Philip Hall basis (using PhilipHallBasis), its actual value for

the given vector fields, and constructs a valid basis retaining only linearly independent
elements

ExtendedSystem: implements the first two stages of the LS method—namely, it forms
the extended system and calculates nominal controls

MovementODE: formulates and solves the system of ordinary differential equations
(ODEs) that calculates the backward P. Hall coordinates of the target point

Naturally, some of the routines can be used independently. For example, NilpDegree
can determine the degree of nilpotency for any set of vector fields while BCH can be used
in other contexts (e.g. coadjoint orbits in quantum mechanics) where actual calculations
are needed. It should be noted that the authors know of no other implementation of the
Baker–Campbell–Hausdorff formula.

3.2. Remarks

During the development of the code, several difficulties appeared due mostly to
some features (or lack thereof) of Mathematica. Besides some necessary redefinition
of properties for some user-provided functions and heavy use of string-to-expression
conversions (ToExpression[] command) to facilitate flexible substitutions for example,
the greatest source of difficulty proved to benoncommutative multiplication. Mathematica,
just like other widely used symbolic manipulation packages, does not support calculations
in a noncommutative environment very well, even though noncommutative multiply is
available as an operation. In this code, noncommutative multiply isimplemented through
the redefinition of the commandTimes[] by removing its commutativity property. This is
done instead of usingNonCommutativeMultiply[] because it created fewer difficulties
in the calculations ofother things, such as identifying the coefficients of powers in
polynomials, expansion of expressions, and the like. The greatest difficulty occurred
in the routine MovementODE (whose most operations are done under an algebra with
noncommutative multiplication), where Mathematica had to be tricked to correctly perform
Collect[], which collects together terms involving the same powers in an expression. Such
occurrences are clearly marked in the code.

N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775 773

The code works under Mathematica 3.0 as well but we believe that its overall complexity
will not allow it to run under earlier versions (we did not even try). Even under these
circumstances, there is a particular behavior of the Mathematica kernel that users must be
aware of. When the code is first run after Mathematica starts, the execution is incorrect. The
user can either wait for the useless calculations to come to an end (and ignore the results,
of course) or abort the computation. Following that and for all subsequent executions, the
program runs correctly. This is most probably due to the less than perfect handling by the
kernel of the redefined multiplication commandTimes[].

The execution time depends on the dimension of the problem and the complexity of the
particular vector fields. Expected execution times for the typical cases of the rolling disk
(dimension 3) and the car (dimension 4), such as the one in the example above, are 1 min
and 24 min, respectively. However, in the case of the rolling disk, the figure can easily
become three or four times as large if the number of moves isincreased or the target state
creates further demands. These values were realized on a Pentium PC with 64 MB of RAM
running at 133 MHz under Microsoft Windows 95. Finally, it should be mentioned that the
authors are not aware of any similar package implementing algorithms for motion planning
that are based on differential geometry.

3.3. Example output

As an example of application, theoutput for the example presented inSection 2appears
in Fig. 5. Thisoutput is followed by the figures shown in the last section (Figs. 1–4).

4. Discussion

The Lafferriere–Sussmann method for motion planning of mobile robots (and
nonholonomic systems in general) is an elegant differential geometric approach to a
difficult problem. The method has the usual shortcomings that are common to all currently
available methods, namely, sensitivity to modeling errors, sensitivity to disturbances, and
generation of open loop solutions only. In particular, the sensitivity of the procedure
to small changes in the problem definition, even values of the target state, leads to
unexpectedly different results. Despite the above, the method is quite general and therefore
potentially useful for a wide range of motion planning problems.

The generality and applicability of the method justify an implementation that will
provide an automated way for performing the large number of necessary calculations and
computations. This is now available in the form of a software tool written in the symbolic
manipulation language Mathematica. The tool behaves well in general but may present
some minor difficulties in its use. One has to do with the execution time, which can be
quite long for medium sized systems (state space dimension larger than four). The other
difficulty has to do (in all appearances) withMathematica’s handling of the redefined
basic multiplication routine for noncommutative multiplication. Fortunately, this problem
is alleviated by a dummy execution of the code the first time it is used.

The tool is flexible enough to suit the users’ needs for motion planning tasks. The
code can be easily adapted to display intermediate results, do additional plotting, etc.
Furthermore, some routines can be used independently in other contexts too, mainly

774 N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775

Fig. 5.

differential geometric nonlinear control. Finally, the tool is freely available electronically
at the following address:http://www.lar.ee.upatras.gr/koussoulas/software/LAMP-v1.nbor
by contacting the first author (ntk@ee.upatras.gr).

http://www.lar.ee.upatras.gr/koussoulas/software/LAMP-v1.nb
mailto:ntk@ee.upatras.gr

N.T. Koussoulas, P. Skiadas / Journal of Symbolic Computation 37 (2004) 761–775 775

References

Kolmanovsky, I., McClamroch, N.H., 1995. Developments in nonholonomic control problems.
IEEE Control Systems 40, 20–36.

Lafferriere, G., 1991. A general strategy for computing steering controls of systems without drift.
In: Proceedings of 30th CDC, Brighton, England.

Lafferriere, G.A., Sussmann, H.J., 1991. Motion planning for controllable systems without drift.
In: Proceedings of IEEE Robotics & Automation Conference, Sacramento, CA.

Lafferriere, G.A., Sussmann, H.J., 1992. A differential geometric approach to motion planning.
In: Li, Z., Canny, J.F. (Eds.), Nonholonomic Motion Planning. Kluwer, Boston.

Latombe, J.-C., 1991. Robot Motion Planning. Kluwer AP, Boston.
Murray, R.M., Li, Z., Sastry, S.S., 1994. A Mathematical Introduction to Robotic Manipulation.

CRC Press, Boca Raton.
Nethery, J., Spong, M., 1994. Robotica: a Mathematica package for Robot analysis. IEEE Robotics

and Automation Magazine 1 (1).
Skiadas, Ph., Koussoulas, N.T., 1997. Motion planning for drift-free nonholonomic systems under

a discrete levels control constraint. In: Proc. 5th IEEE Mediterranean Symposium in Control and
Automation 1997. Paphos, Cyprus.

Varadarajan, V.S., 1984. Lie Groups, Lie Algebras, and Their Representations. Springer, New York.

	Symbolic computation for mobile robot path planning
	Introduction
	The Lafferriere--Sussmann method for motion planning
	Implementation for symbolic computation
	Structure of code
	Remarks
	Example output

	Discussion
	References

