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Abstract

This paper concerns trinomial extensions of @ with prescribed ramification behavior. We
first characterize the positive integers n such that, for every finite set S of prime numbers, there
exists a degree n monic trinomial in Z[X] whose Galois group over @ is contained in the
alternating group 4, and such that its discriminant is not divisible by any prime p in S. We
also characterize the positive integers n such that, for a given finite set of primes S, there exist
trinomial extensions with Galois group over Q contained in 4, which are not ramified at the
primes of S. In addition, we study the existence of trinomial extensions of Q with Galois group
A, which are tamely ramified. In particular, we show that such extensions do exist for every
odd n. On the other hand, we obtain that, for n = 4 (mod 8), every A,-extension of Q defined
by a degree n trinomial must be wildly ramified at p = 2.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The present paper concerns Galois extensions of @, obtained as splitting fields of
rational trinomials, with prescribed ramification behavior at finitely many primes.
The Galois groups of irreducible trinomials with integer coefficients have been
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widely studied, see for example, [3,4]. The determination of the discriminant of
number fields defined by trinomials has been considered in [5].

For a positive integer n and an arbitrary given finite set S of prime numbers, we
consider the existence of degree n separable monic trinomials f(X) € Z[X] satisfying
additional properties such as the following ones:

(a) the discriminant of f(X) is not divisible by any prime pe S,
(b) every prime pe .S is unramified in the splitting field of f(X) over Q,
(c) every prime pe S is tamely ramified in the splitting field of f(X) over Q.

When there is no restriction on the Galois group of f(X) over Q, such trinomials do
exist for every n and every S. As a consequence, one can also require f(X) to have
Galois group over Q isomorphic to the symmetric group S,. However, this is no
longer true if we only admit trinomials with square discriminant in Z, that is, with
Galois group contained in the alternating group 4,.

Our main results characterize pairs of coprime positive integers k<n for which
there exists a trinomial X" + aX* + be Z[X] whose Galois group over @ is contained
in 4, and such that property (a) (resp. (b), resp. (c)) holds for a given finite set S.
Furthermore, this turns out to be equivalent to requiring that the above Galois
group is precisely A4,. In addition, only primes which divide n or k(n — k) appear in
the conditions we obtain.

We also consider the question of which positive integers n meet, for every finite set
S, the criteria given by these characterizations (for some suitable & depending on S).

As a particular case of our results we show that, for every odd n, there exist
trinomial extensions of @ with Galois group 4, which are tamely ramified. On the
other hand, for infinitely many » we obtain that trinomials do not suffice to realize
A, as the Galois group of some tame extension of Q. For instance, we show that
every A,-extension of Q defined by a degree n = 4 (mod 8) trinomial must be wildly
ramified at p = 2. This provides examples of Q-regular 4,-extensions of Q(7") which
do not admit tamely ramified rational specializations.

We thank Carl Pomerance for his suggestion that a sieve argument should suffice
to prove Proposition 17. We also thank Alain Salinier for pointing out to us that, as
in Proposition 8, there is also an exceptional case for p = 3 in Proposition 7, and for
providing us with the example of Remark 9.

2. Trinomials with discriminant coprime with the primes of S

It is well known that, if k<n are coprime positive integers, the discriminant of a
trinomial f(X) = X" 4+ aX* + b is
n(n

DU) = (=1 T s 4 (1) (= k)

Let S be a given finite set of prime numbers. It is clear that we can choose the
coefficients a, b € Z such that the discriminant D( f) is not divisible by any prime of S.
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In this case, the primes of S are not ramified in the Galois extension Q,/Q, where Qf
denotes the splitting field of the trinomial f(X) over Q.

Proposition 1. Let S be a finite set of prime numbers. For every positive integer n, there
exists a trinomial f(X) = X" + aX* + be Z[X] with Galois group over Q isomorphic to
the symmetric group S, and with discriminant D(f) not divisible by any prime in S.

Proof. Let T, T, be indeterminates. For every n, the Galois group of the trinomial
X"+ TWX + T, over Q(T,T>) is

Gal@(TI’TZ)(X” + T X + Tz)%Sn.

By Hilbert’s irreducibility theorem, the set of pairs (¢,%)e Q’ for which the
specialized trinomial X" 4 #; X + t, has S, as Galois group over Q is /-adically dense

in @2, for every ideal I = Z. Thus, given two rational numbers ag, by € Q, there must
exist a trinomial f(X) = X" + aX + be Q[X] with Galois group over Q isomorphic
to S, and such that, for every pe S, we have

f(X)=X"+apX + by (mod p).
So, taking, for example, @y = 1 and

5 _{O(modp) if ptn—1,
* =1 (mod p) if pln—1,
we have that p does not divide the discriminant of f(X), for all primes peS.

Moreover, we can assume that f(X) has integer coefficients, replacing f(X) by
M"f(X /M), with M €Z appropriate.

Let (%) denote the Jacobi symbol of integers u,ve Z, with v odd.

Proposition 2. Let k<n be coprime positive integers. For a prime number p, the
Jfollowing properties are equivalent:

() There exists a trinomial f(X) = X" + aX* + be Z[X] with square discriminant in
Z not divisible by p.

() If n is even and p is odd, then vy(n) =0 or (’71)"/2 =1.
If n is even and p = 2, then (—1)"*(1 — kn) = 1 (mod 8).
If nis odd and p is odd, then vy(k(n —k)) =0 or () = 1.
n—1 n—1
If n is even and p =2, then (—1) 2 n=1(mod 8) or (—1) 2 n =5 (mod 8) and
k(n—k)=2(n-2).

Proof. Using the quadratic reciprocity law and the formula for the discriminant of a
trinomial, we can check that (i) implies the conditions of (ii).
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Assume that (ii) is satisfied and that n is even. Let r,se N be such that
s(n—k)y—m=1, O<s<n and O0<r<n—k.

Let us write & = v,(n) and n = mp". Taking @ = m¢" and b = £, the discriminant of
the trinomial f(X) = X" + aX* + b is

D(f) = e (1) (k= )" R 4 (1)),
For the primes p dividing n, hypothesis (ii) implies that the equation

Y2 — ((=1)"*(k — n)"*k*) = 0 (mod p")

has integer solutions. Since p does not divide (k — n)"_kkk (n>2), there exists a teZ

such that D(f) is a square in Z which is not divisible by p. The result in the case

where p}n is clear since then 7 =0 and p = 1.
Assume that (ii) is satisfied and that » is odd. Let r,se N such that

m—sm—k)=1, O<s<n and O<r<n-—k.

Let (n— k)" *kk = mp", where h=uv,((n — k)" *k¥). Taking a = mp"r" and b=
m" ¢, the discriminant of the trinomial /(X) = X" + aX* + b is

D(f) = £V (1) T e V0mk=1) (17 phlrs) )

For every prime p dividing k(n — k), hypothesis (ii) ensures that the equation

n—1

Y2 _ ((_1)%nnm(n+l)(nfk71)) =0 (l’l’lOdpn)

has integer solutions. Since p does not divide n"m"+D"=*=1) (and n 4 1>2), there
exists an integer reZ such that D(f) is a square not divisible by p. The same
conclusion is clear if ptk(n — k).

Remark 3. Tt is known that trinomials of type f(X) = X" + aX* + b can be classified
by the parameter ”Z—4 Namely, if (n,k) = 1, there exist positive integers s,  such that

s(n—k)—m=1,0<s<n, 0<r<n—k and we have

N 7 S n—k\ " n—k\ $
@)1 (5x) e (F) = ()
a’ br a" a"

Clearly, the discriminant of the trinomial

X"+ T'X* + TP eQ(T)[X],

as a polynomial in X is, modulo squares in Q(7), a polynomial of degree 1 in Q[T]
or Q[1/T]. As a consequence, there exists a(7) e Q(T) such that the coefficients of
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any trinomial X" 4+ aX* + bheQ[X] whose discriminant is a square in @ can be
obtained by

a=a(t) W * b=a(t)'y", where t,ucQ.

In addition, the trinomial X" + a(T) X* + a(T)'eQ(T)[X] defines a Q-regular
Galois extension of Q(7') with Galois group isomorphic to 4, (cf., for example, [4]).

Proposition 4. Let k<n be coprime positive integers. For every finite set S of prime
numbers, the following properties are equivalent:

() There exists a trinomial f(X)= X"+ aX* +beZ[X] with Galois group
Galg(f (X)) = A, and discriminant D(f) not divisible by any prime in S.

(i) For each prime peS, there exists a trinomial X"+ a,X* +b,eZ[X] whose
discriminant is a square integer not divisible by p.

Proof. Clearly, (i) =(ii). Assume that condition (ii) holds. By the above remark, for
each pe S there exist rational numbers 7,, i, € Q such that

r on—k

ap =a(ty)' iy and b, = a(t,)’ 1.
Assume that T, T, are indeterminates and consider the polynomial
f(T), T, X) = X" +a(Th) TS X5 +a(Th)’ Ty e Q(T), TH) [ X].

If 71,1, € @ are rational numbers such that, for every peS, ¢, 1, are p-adically near
enough to #,, ,, then we have

f(t1,t2,X) = X" + a,X* + b, (mod p), for all peS.

Since we know that
Galg(r, ) (f(T1, T2, X)) = A,

Hilbert’s irreducibility theorem allows us to take ¢;,#, €Q as above and such that
Galg(f (11,12, X)) = A,.

Hence, we can choose an integer M =1 (mod [], s p) such that the trinomial
f(X) = Mnj(([lat%X/M)

has integer coefficients and satisfies property (i).

Theorem 5. For a positive integer n, the following properties are equivalent:

() For every finite set S of prime numbers, there exists a trinomial f(X) =
X"+ aX* + beZ[X] with Galois group over Q isomorphic to A, and discriminant
not divisible by any prime in S.
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(i) For every finite set S of prime numbers, there exists a trinomial f(X) =
X"+ aX* + beZ[X] with Galois group over Q contained in A, and discriminant
not divisible by any prime in S.
(iii) n satisfies one of the following conditions:
n=0, 1 (mod8),
n =2 (mod 8) and every odd prime number p|n is p =1 (mod 4),
n = 3 (mod 8) and every prime number p | (n—2) is p =1 or 3 (mod 8).

Proof. Assume that f(X) = X" + aX* + be Z[X] satisfies the hypothesis of (ii), for
the set S of primes less than or equal to n. Then, (n,k) =1. If n is even, by
Proposition 2, we have

(a) (*1—)1)g = 1, for every odd prime p dividing n,
(b) (—1)2(1 — nk) = 1 (mod 8).

Condition (a) is only possible if n =0, 4 (mod8) or n =2, 6 (mod8) and p =
1 (mod 4). For n = 6 (mod 8), necessarily there is a prime p | n with p = 3 (mod 4). If
n = 4 (mod 8), condition (b) is not satisfied. In conclusion, the only possibilities for n
even are those considered in (iii). In an analogous way, we obtain that only the
possibilities of (iii) can appear, also in the odd »n case.

Now assume that »n is a positive integer as in (iii). Let us take k =n—2,if n =
3 (mod 8), and k = n — 1, otherwise. Then, for each prime number p, the conditions
in Proposition 2 (ii) hold. From Proposition 4, we obtain property (i).

Remark 6. In fact, if S is a given finite set of prime numbers and # is a positive
integer satisfying condition (iii) in Theorem 5, then there exist infinitely many monic
trinomials in Z[X], with discriminant not divisible by any prime in S, and such that
their splitting fields define linearly disjoint 4,-extensions of Q.

3. Trinomial A4,-extensions of () unramified at S

The following propositions establish that, under certain hypotheses on the p-adic
valuations of the coefficients @, b of a rational trinomial f(X) = X" + aX* + b, the
prime p must divide, not only the discriminant of f(X), but also the discriminant of
the extension Q@ /Q. In some cases, these hypotheses are precisely the conditions that
one obtains when requiring the discriminant D(f') to be a square in Q. In order to
know the ramification behavior in Q,/Q of the primes dividing D( /'), we use basic
results in Newton polygon theory (cf., for example, [6, I1.Section 6.]).

Proposition 7. Let k<n be coprime positive integers and let f(X) = X" + aX* +

beZ[X] be a separable trinomial such that b+#0.

(@) Let p be an odd prime number such that v,(a") = uv,(n"b"*). Assume we are not in
the case n =p = 3. If v,(n) >0 (resp. v,(n)>1), then p is ramified (resp. wildly
ramified) in the extension Qr/Q.
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(®) If va(n)>1 and va(a®)=va(n"b" %) — 2, then p =2 is wildly ramified in the
extension Qy/Q.

Proof. Let p be a prime divisor of n which satisfies the above hypothesis (we allow
p = 2). Since v,(a") =>v,(b"*), we can assume v,(b) <n. Let us write d = (n,v,(b)),
vp(b) = dh, n = de, r = v,(n), n=n'p" and b = b'p™. In case v,(e) >0, the Newton
polygon of f(X) has a segment of slope —% and the extension Q,/Q is wildly ramified
at p.

From now on, we assume that v,(e) = 0. Let 0,7€Q, be roots of X¢ —p and
X" + b, respectively. Note that the extension @,(n)/Q, (resp. Q,(0)/Q,) is
unramified (resp. tamely ramified). Let us consider the following polynomial in

Q, (0, n)[X]:

Q(X):0%/(9]’()(“7))=(X+n)"+ﬁ()(+n b =Y X

0<i<n

If r = vy(n)>1, then it must be v, (57i) =r. This forces the Newton polygon of g(X)
to be of one of the following types:

i

pr—l p?"

In both cases, p must be wildly ramified in (Q,),/Q, and, hence, also in Q//Q.
We now consider the case r = v,(n) =1 and p#2. If v,(b) >0, then clearly the

extension Q) /@ is ramified at p. Assume that v,(b) = 0. So, 0" = 1. If p#n, then we
can choose 7 such that v,(c;) = 1. Otherwise, p# 3 and, replacing, if necessary, f(X)
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by % ( ) and k by n — k, one checks that we can assume v,,( ) >0 or k<, for some
Jj<p — L. It follows that v,(¢;) = 1. We conclude that the Newton polygon of g(X)
must have a segment of non-integer slope —p%j> — 1. This ensures that p is ramified

in (@,),/Q,, hence, in Qr/Q.
The same type of argument allows us to prove the following analogous result.

Proposition 8. Let k<n be coprime positive integers and let f(X) = X" + aX* +
beZ[X] be a separable trinomial such that b+#0.

() Let p be an odd prime number such that v,(b"*) = v,(k*(n — k)"~ Kar). Assume we
are not in the case n =4 and p = 3. If v,(k(n — k))>0 (resp. v,(k(n—k))>1),
then p is ramified (resp. wildly ramified) in the extension Q;/Q.

®) If va(k(n— k))>1 and vy (b" )= vy (k5(n — k)" *a") =2, then p =2 is wildly
ramified in the extension Qs /Q.

Remark 9. The above results fail in the “exceptional case”. For example, one checks
that p = 3 does not ramify in Q;/Q if we take f(X) = X° — 21X +49 or f(X) =
X4+ 5Xx3 - 216.

As the following result shows, statement (a) in the above two propositions does
not hold for the prime p = 2.

Proposition 10. Let k<n be coprime positive integers and let f(X) = X" + aX* +
beZ[X)] be a separable trinomial. Assume that we are in one of the following cases:

(1) n even, vy(n) =1, (71)"/12(1 —kn)#1 (mod 8), va(b+ 1)=3 and vy(a) = 3.

) nodd, (k) =1, (1) Z n#£1 (mod 8), va(a + 1)>2 and v2(b) = A(n — k) =2 for
some AeN.

Then p = 2 does not ramify in the splitting field of f(X) over Q.

Proof. Assume that we are in case (1), let e @, be a root of ¥(X) = Xi-1 and
consider the following polynomial in @, (n)[X]:
hX)=f(X+n) =X +n)"+aX +n) +b= > X’
0<i<n

It can be checked that vy(co) =3, v2(c1) = 1 and vy(cz) = 0. It follows that #(X) has
two roots in @, () (with different positive valuations), corresponding precisely to the
two roots of f(X) congruent to 5 modulo 2. Hence, we have an inclusion
(@2),<=(Q2),, and the extension (Q2),/Q@> must be unramified.

If we are in case (2), let us first consider the factorization f(X) = fi(X).f2(X)
in Z,[X] given by Hensel's Lemma, where f;(X)= X""% (mod2) and f£,(X)=
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(X* —1)* (mod 2). The extension (@2),,/Q@> must be unramified. To see this, it
suffices to note that the polynomial

g(X) = %ﬂ f (2;(1’) = X" — X* (mod 2)

has a factor g;(X) = X" ¥ — 1 (mod 2) in Z,[X] such that (Q2); = (@2),,. In order
to prove that also the extension (@2)f2/®2 is unramified, let ne@, be a root of
¥(X) = X*¥ — 1 and consider the following polynomial in @, (7)[X]

WX)=f(X+n) =X +n)"+aX +n)" " +b= > ax'

0<i<n

From our hypothesis, it can be seen that vs(c) =2, va(c1) = 1 and va2(c2) = 0. The
polynomial A(X) must have a degree 2 factor /h(X)= (X —pf,)(X —p,) in
Q2(n)[X], obtained from the two roots of f,(X) which are congruent to n modulo

2. In case v2(c)>2, we have that (Qa(n));, = Qa(n). If v2(co) =2, then 7,7 are
precisely the two roots of valuation 0 of the following polynomial in Q;(n)[X]

n
X <3> =x"? (X2 c By @> (mod 2).
Co X Co Co

Since X 2—|—%X —1—% is a separable polynomial modulo 2, it follows that the
extension (Q2(1)),,/@2(n) must be unramified. We conclude that the extension
((@2),)5,/(@2),, is unramified, so this is also true for the extension (@2),/Q>.

From the above, we obtain the main result of this section.

Theorem 11. Let k<n be coprime positive integers and let S be an arbitrary prefixed
finite set of prime numbers. Then the following properties are equivalent:

(i) For every prime peS, there exists a trinomial f(X) = X"+ a,X* + b,eZ[X]
whose discriminant is a non-zero square in Z and such that p does not ramify in the
extension Qy/Q.

(ii) Every prime pe S satisfies one of the following conditions:

If n is even and p is odd, then v,(n) =0 or (’71)"/2 =1.
If nis even and p =2, then (—1)"*(1 — kn) = 1 (mod 8) or v2(n) = 1.
If nis odd and p is odd, then v,(k(n —k)) =0 or (&) = 1.

n—1
If nis odd and p =2, then (—1) 2 n =1 (mod 8) or vp(k(n—k)) = 1.
Proof. Let p be a prime number and let f(X) = X" +a,X* +b,eZ[X] be a

separable trinomial. If p does not ramify in the extension Q,/Q, then the possible p-
adic valuations of the coefficients a,, b, are restricted by Propositions 7 and 8. It can
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be checked that, when one also requires f(X) to have square discriminant in Z, these
restrictions force p to satisfy condition (ii).

In Proposition 2, we already obtained that condition (i) follows from condition
(i1), in some cases. Only the following ones are new:

® cvenn, p=2,vo(n) =1 and (=1)"*(1 — kn)#1 (mod 8).
n—1
® oddn,p=2,v(k(n—k))=1and (—1) 2 n#1 (mod8).

Both can be easily obtained from Proposition 10. For example, for even n, we can
consider natural numbers r, s such that s(n — k) — rn = 1 and take ay = ndt", b, = £,
for well-chosen A4,teZ.

Remark 12. Property (ii) above characterizes the existence of trinomials f(X) =
X"+ aX* + beZ[X] with A4, as Galois group over @ and such that all primes in S
are unramified in Q;/Q. This follows from Hilbert’s irreducibility theorem and
Krasner’s Lemma, arguing as in the proof of Proposition 4.

As a consequence of Theorem 11, we obtain:

Corollary 13. Let n be a positive integer. The following properties are equivalent:

(1) For every finite set S of prime numbers, there exists a trinomial f(X) =
X" + aX* + beZ[X] with A, as Galois group over @ and such that all primes in S
are unramified in the extension Q/Q.

(i) For every finite set S of prime numbers, there exists a trinomial f(X) =
X"+ aX* + beZ[X] with discriminant a non-zero square in 7 and such that all
primes in S are unramified in the extension Qy/Q.

(i) n satisfies one of the following conditions:

n=0, 1 (modS8),

n =2 (mod8) and p = 1 (mod 4), for every odd prime number p|n,

n = 3 (mod 8) and there exists a natural number k<n such that (k,n) =1,
va(k(n—k)) =1 and () = 1, for every odd prime number p|k(n — k).

4. Tamely ramified trinomial A4,-extensions of Q

Proposition 14. Let k<n be coprime positive integers and let S be an arbitrary
prefixed finite set of prime numbers. Then the following conditions are equivalent:

() There exists a separable trinomial f(X) = X" + aX* 4+ beZ[X] whose discrimi-
nant is a square in Z and such that all primes in S are tamely ramified in the
extension Qy/Q.

(ii) Every prime pe S satisfies one of the following conditions:
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If n is even and p is odd, then v,(n)<1 or (‘7‘)”/2 =1.

If nis even and p = 2, then (—l)"/2(1 —kn) =1 (mod 8) or va(n) = 1.
If nis odd and p is odd, then v,(k(n —k))<1 or () = 1.

n—1

If nis odd and p =2, then (—1) 2 n =1 (mod 8) or va(k(n—k)) = 1.

Proof. We can proceed as in the proof of Theorem 11, taking into account
Propositions 7, 8 and 10. The only additional point that must be proved is that
condition (i) also holds in the following (new) cases:

(@) even n, odd p, v,(n) = 1 and (=1)"* = —1,

(b) odd n, odd p, v,(k(n —k)) = 1pand @& =-1.

n
Let us prove the even n case. The odd n case works analogously.
One easily checks (as in Proposition 11) that there exists a trinomial f(X) =

X" 4+ aX* + be Z][X] with non-zero square discriminant in Z such that
vp(b+1)=2 and v,(a)>2.

We want to show that these conditions suffice to ensure that p is tamely ramified in
the extension Q;/Q. Let us consider the following polynomial in Q,(n)[X]:

hX)=f(X+n)=X+n"+aX+n +b= > X',
0<i<n
— n
where ne @, is a root of /(X) = X7 — 1. By inspection of the Newton polygon of
h(X), one immediately concludes that the extensions ((Q,),),/(Q,), and (Q,),/Q,
are tamely ramified.

The above result allows us to characterize the existence of tame A,,-extensions of Q
obtained as splitting fields of degree n trinomials.

Theorem 15. For a positive integer n, the following properties are equivalent:

() There exists a trinomial f(X) = X"+ aX* +beZ[X] such that the extension
Qy/Q is tamely ramified and has Galois group isomorphic to A,.

(i) If n is even, then there exists a natural number k<n such that (k,n) =1 and
vy(n) = 1, for every prime p | n such that (ﬁ) =—1.
If n is odd, then there exists a natural number k<n such that (k,n) =1 and
vp(k(n—k)) = 1, for every prime p | k(n — k) such that (8) = —1.

Now we exhibit infinitely many natural numbers # such that property (ii) (and (i))
above holds.

Proposition 16. Let n be a positive integer which satisfies one of the following
conditions:
n =0 (mod8),
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n is square-free and even,

n is odd.

Then, there exists a degree n trinomial f(X) = X" 4+ aX* + beZ[X] such that the
extension Qr /Q is tamely ramified and has A, as Galois group.

Only the case n odd requires a proof, which follows immediately from the next
result.

Proposition 17. Every positive integer n>1 can be represented as the sum of two
square-free coprime positive integers.

Proof. For each prime number ¢, let r,(n) denote the number of positive integers
a<n—1 such that (a,n) =1 and v,(a)>1. The property we must prove clearly

follows from the inequality
¢(n
> ryn <22

qin
where ¢ stands for Euler’s function.
Let py, ..., ps be the prime factors of n. If ¢ does not divide n, then we have

n n "
q ¢l lerl A5
1 ] '
< n2 (1 - ) +2‘\7l = &Z)_;'_ZA*I.
q s . p

léiS' pl

Hence, we obtain

> rgm)<¢(n) (Z %) +27 n(v/n),

qtn qtn

where 7(x) denotes the number of rational primes <x. Thus, it suffices to prove the
following inequality:

2s-1 1 1

27 n(ym) 1 v L
b (n) ‘i

It is well known that, for every m>2, we have (cf. [1, Theorem 4.6]):

- 6m
In(m)’

In addition, from equality {(2) = %2, one immediately obtains

1
Y —5<0,4523.
l’



B. Plans, N. Vila | Journal of Number Theory 105 (2004) 387-400 399

Thus, the stated property holds for every n such that
1

a(n)<0,0477+ > —, (%)
1<i<s i)
where we define the function o(n) as being
_ 2'n 6
0= ) Vinn)
If g1, ..., q, are the smallest s prime numbers, then we have that a(n)<oa(q.---.gs).

One then easily checks that inequality () holds provided s> 10.
On the other hand, if » has at most 9 different prime divisors, then

w(n) <2’ 2.3.5.7.11.13.17.19.23 6
ST 9(2.3.5.7.11.13.17.19.23) /uln(n)’

It follows that n satisfies inequality (x), for every n>10°. Indeed, it can be checked
that the same conclusion holds for every n>15 x 10*. For, it suffices to argue as
above, also taking into account which of the primes 2, 3, 5 divide n.

Finally, the stated result can be directly checked in the finitely many remaining
cases 1<n<15 x 10*.

There are also infinitely many » for which neither property (ii) (nor property (i)) in
Theorem 15 holds: for example, every n = 4 (mod 8). Moreover, we have:

Proposition 18. Let Qf be the splitting field over Q of a separable trinomial f(X) =
X" +aX* + beQ[X] of degree n = 4 (mod 8), where k<n is assumed to be an odd
positive integer. If Galg(f (X)) < Ay, then the extension Qr/Q is wildly ramified at

p=2.

Proof. It suffices to note that, if we put d = (n,k), n =n'd and k' = kd, then the
trinomial g(X) = X" +aX* +b also has degree n' =4 (mod8) and, clearly,
@gg@f.

Remark 19. Using the same type of argument as above, one checks that Proposition
18 remains valid if we replace /(X) = X" + aX* + b by f(X) = X*(X —a)" " +b.
As in the case with trinomials, the polynomials of such a family can be classified by

o b, .. . .
one parameter (in this case, by 7 = —), giving rise to a cover of P};D ramified at three
a

rational points and unramified elsewhere. These covers ((k,n) = 1) are typically
obtained when one uses the rigidity method in order to obtain Q-regular S),-
extensions of Q(7'). Moreover, in this situation one can always deduce Q-regular A4,,-
extensions of Q(U), defined by polynomials of the same type (see, for example,
[8, Lemma 4.5.1] and [8, 8.3.1]). The fact that these A,-extensions do not admit
tamely ramified rational specializations seems consistent with Birch’s suggestion
[2, p. 35] that ‘rigid’ constructions usually give rise to wild specializations. We may
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note that, however, only the S,-extensions of Q(7') alluded to above are ‘rigid’ (not
the deduced 4,-extensions of Q(U)) and these always admit tame specializations (as
in Proposition 1).

Remark 20. If we do not restrict ourselves to considering trinomial extensions, then
it is possible to obtain, for every n, 4,-extensions of Q unramified at all primes in an
arbitrary prefixed finite set .S, possibly including the infinity prime. Indeed, in [7] we
proved that there always exists a totally real monic polynomial f(X) e Z[X] of degree
n, with Galois group 4, over @, and such that its discriminant D(f) is not divisible
by any prime in S. Moreover, more specific local behaviors can also be required ( for
every n and every S) as, for example, that all primes in S split completely in the 4,-
extension Q/Q.
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