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Abstract

This paper concerns trinomial extensions of Q with prescribed ramification behavior. We

first characterize the positive integers n such that, for every finite set S of prime numbers, there

exists a degree n monic trinomial in Z½X � whose Galois group over Q is contained in the

alternating group An and such that its discriminant is not divisible by any prime p in S: We

also characterize the positive integers n such that, for a given finite set of primes S; there exist
trinomial extensions with Galois group over Q contained in An which are not ramified at the

primes of S: In addition, we study the existence of trinomial extensions ofQ with Galois group

An which are tamely ramified. In particular, we show that such extensions do exist for every

odd n: On the other hand, we obtain that, for n � 4 ðmod 8Þ; every An-extension of Q defined

by a degree n trinomial must be wildly ramified at p ¼ 2:
r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The present paper concerns Galois extensions of Q; obtained as splitting fields of
rational trinomials, with prescribed ramification behavior at finitely many primes.
The Galois groups of irreducible trinomials with integer coefficients have been
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widely studied, see for example, [3,4]. The determination of the discriminant of
number fields defined by trinomials has been considered in [5].
For a positive integer n and an arbitrary given finite set S of prime numbers, we

consider the existence of degree n separable monic trinomials f ðX ÞAZ½X � satisfying
additional properties such as the following ones:

(a) the discriminant of f ðXÞ is not divisible by any prime pAS;
(b) every prime pAS is unramified in the splitting field of f ðXÞ over Q;
(c) every prime pAS is tamely ramified in the splitting field of f ðXÞ over Q:

When there is no restriction on the Galois group of f ðXÞ over Q; such trinomials do
exist for every n and every S: As a consequence, one can also require f ðX Þ to have
Galois group over Q isomorphic to the symmetric group Sn: However, this is no
longer true if we only admit trinomials with square discriminant in Z; that is, with
Galois group contained in the alternating group An:
Our main results characterize pairs of coprime positive integers kon for which

there exists a trinomial X n þ aX k þ bAZ½X � whose Galois group over Q is contained
in An and such that property (a) (resp. (b), resp. (c)) holds for a given finite set S:
Furthermore, this turns out to be equivalent to requiring that the above Galois
group is precisely An: In addition, only primes which divide n or kðn 	 kÞ appear in
the conditions we obtain.
We also consider the question of which positive integers n meet, for every finite set

S; the criteria given by these characterizations ( for some suitable k depending on S).
As a particular case of our results we show that, for every odd n; there exist

trinomial extensions of Q with Galois group An which are tamely ramified. On the
other hand, for infinitely many n we obtain that trinomials do not suffice to realize
An as the Galois group of some tame extension of Q: For instance, we show that
every An-extension of Q defined by a degree n � 4 ðmod 8Þ trinomial must be wildly
ramified at p ¼ 2: This provides examples of Q-regular An-extensions of QðTÞ which
do not admit tamely ramified rational specializations.
We thank Carl Pomerance for his suggestion that a sieve argument should suffice

to prove Proposition 17. We also thank Alain Salinier for pointing out to us that, as
in Proposition 8, there is also an exceptional case for p ¼ 3 in Proposition 7, and for
providing us with the example of Remark 9.

2. Trinomials with discriminant coprime with the primes of S

It is well known that, if kon are coprime positive integers, the discriminant of a

trinomial f ðXÞ ¼ X n þ aX k þ b is

Dð f Þ ¼ ð	1Þ
nðn	1Þ

2 bk	1ðnnbn	k þ ð	1Þn	1ðn 	 kÞn	k
kkanÞ:

Let S be a given finite set of prime numbers. It is clear that we can choose the
coefficients a; bAZ such that the discriminant Dð f Þ is not divisible by any prime of S:
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In this case, the primes of S are not ramified in the Galois extensionQf =Q; whereQf

denotes the splitting field of the trinomial f ðX Þ over Q:

Proposition 1. Let S be a finite set of prime numbers. For every positive integer n; there

exists a trinomial f ðX Þ ¼ X n þ aX k þ bAZ½X � with Galois group over Q isomorphic to

the symmetric group Sn and with discriminant Dð f Þ not divisible by any prime in S:

Proof. Let T1;T2 be indeterminates. For every n; the Galois group of the trinomial
X n þ T1X þ T2 over QðT1;T2Þ is

GalQðT1;T2ÞðX n þ T1X þ T2ÞDSn:

By Hilbert’s irreducibility theorem, the set of pairs ðt1; t2ÞAQ2 for which the
specialized trinomial X n þ t1X þ t2 has Sn as Galois group over Q is I-adically dense

in Q2; for every ideal ICZ: Thus, given two rational numbers a0; b0AQ; there must
exist a trinomial f ðXÞ ¼ X n þ aX þ bAQ½X � with Galois group over Q isomorphic
to Sn and such that, for every pAS; we have

f ðXÞ � X n þ a0X þ b0 ðmod pÞ:

So, taking, for example, a0 ¼ 1 and

b0 �
0 ðmod pÞ if p[n 	 1;

1 ðmod pÞ if p j n 	 1;

�

we have that p does not divide the discriminant of f ðXÞ; for all primes pAS:
Moreover, we can assume that f ðXÞ has integer coefficients, replacing f ðXÞ by
Mnf ðX=MÞ; with MAZ appropriate.

Let ðu
v
Þ denote the Jacobi symbol of integers u; vAZ; with v odd.

Proposition 2. Let kon be coprime positive integers. For a prime number p; the

following properties are equivalent:

(i) There exists a trinomial f ðXÞ ¼ X n þ aX k þ bAZ½X � with square discriminant in

Z not divisible by p:
(ii) If n is even and p is odd, then vpðnÞ ¼ 0 or ð	1

p
Þn=2 ¼ 1:

If n is even and p ¼ 2; then ð	1Þn=2ð1	 knÞ � 1 ðmod 8Þ:
If n is odd and p is odd, then vpðkðn 	 kÞÞ ¼ 0 or ðp

n
Þ ¼ 1:

If n is even and p ¼ 2; then ð	1Þ
n	1
2 n � 1 ðmod 8Þ or ð	1Þ

n	1
2 n � 5 ðmod 8Þ and

kðn 	 kÞ ¼ 2ðn 	 2Þ:

Proof. Using the quadratic reciprocity law and the formula for the discriminant of a
trinomial, we can check that (i) implies the conditions of (ii).
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Assume that (ii) is satisfied and that n is even. Let r; sAN be such that

sðn 	 kÞ 	 rn ¼ 1; 0oson and 0pron 	 k:

Let us write h ¼ vpðnÞ and n ¼ mph: Taking a ¼ mtr and b ¼ ts; the discriminant of

the trinomial f ðX Þ ¼ X n þ aX k þ b is

Dð f Þ ¼ tsðk	1Þþrnmnðð	1Þn=2ðk 	 nÞn	k
kk þ ð	1Þn=2

phntÞ:

For the primes p dividing n; hypothesis (ii) implies that the equation

Y 2 	 ðð	1Þn=2ðk 	 nÞn	k
kkÞ � 0 ðmod phnÞ

has integer solutions. Since p does not divide ðk 	 nÞn	k
kk (n42), there exists a tAZ

such that Dð f Þ is a square in Z which is not divisible by p: The result in the case

where p[n is clear since then h ¼ 0 and phn ¼ 1:
Assume that (ii) is satisfied and that n is odd. Let r; sAN such that

rn 	 sðn 	 kÞ ¼ 1; 0oson and 0orpn 	 k:

Let ðn 	 kÞn	k
kk ¼ mph; where h ¼ vpððn 	 kÞn	k

kkÞ: Taking a ¼ mphtr and b ¼
mnþ1ts; the discriminant of the trinomial f ðXÞ ¼ X n þ aX k þ b is

Dð f Þ ¼ tsðn	1Þmðnþ1Þkðð	1Þ
n	1
2 nnmðnþ1Þðn	k	1Þ þ ð	1Þ

n	1
2 phðnþ1ÞtÞ:

For every prime p dividing kðn 	 kÞ; hypothesis (ii) ensures that the equation

Y 2 	 ðð	1Þ
n	1
2 nnmðnþ1Þðn	k	1ÞÞ � 0 ðmod pnÞ

has integer solutions. Since p does not divide nnmðnþ1Þðn	k	1Þ (and n þ 142), there
exists an integer tAZ such that Dð f Þ is a square not divisible by p: The same
conclusion is clear if p[kðn 	 kÞ:

Remark 3. It is known that trinomials of type f ðXÞ ¼ X n þ aX k þ b can be classified

by the parameter bn	k

an : Namely, if ðn; kÞ ¼ 1; there exist positive integers s; r such that

sðn 	 kÞ 	 rn ¼ 1; 0oson; 0pron 	 k and we have

br

as

� �n

f
as

br
X

� �
¼ X n þ bn	k

an

� �r

X k þ bn	k

an

� �s

:

Clearly, the discriminant of the trinomial

X n þ TrX k þ TsAQðTÞ½X �;

as a polynomial in X is, modulo squares in QðTÞ; a polynomial of degree 1 in Q½T �
or Q½1=T �: As a consequence, there exists aðTÞAQðTÞ such that the coefficients of
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any trinomial X n þ aX k þ bAQ½X � whose discriminant is a square in Q can be
obtained by

a ¼ aðtÞrmn	k; b ¼ aðtÞsmn; where t; mAQ:

In addition, the trinomial X n þ aðTÞr
X k þ aðTÞsAQðTÞ½X � defines a Q-regular

Galois extension of QðTÞ with Galois group isomorphic to An (cf., for example, [4]).

Proposition 4. Let kon be coprime positive integers. For every finite set S of prime

numbers, the following properties are equivalent:

(i) There exists a trinomial f ðXÞ ¼ X n þ aX k þ bAZ½X � with Galois group

GalQð f ðXÞÞDAn and discriminant Dð f Þ not divisible by any prime in S:
(ii) For each prime pAS; there exists a trinomial X n þ apX k þ bpAZ½X � whose

discriminant is a square integer not divisible by p:

Proof. Clearly, (i) )(ii). Assume that condition (ii) holds. By the above remark, for
each pAS there exist rational numbers tp; mpAQ such that

ap ¼ aðtpÞrmn	k
p and bp ¼ aðtpÞsmn

p:

Assume that T1;T2 are indeterminates and consider the polynomial

f ðT1;T2;XÞ ¼ X n þ aðT1Þr
Tn	k
2 X k þ aðT1Þs

Tn
2AQðT1;T2Þ½X �:

If t1; t2AQ are rational numbers such that, for every pAS; t1; t2 are p-adically near
enough to tp; mp; then we have

f ðt1; t2;X Þ � X n þ apX k þ bp ðmod pÞ; for all pAS:

Since we know that

GalQðT1;T2Þð f ðT1;T2;X ÞÞDAn;

Hilbert’s irreducibility theorem allows us to take t1; t2AQ as above and such that

GalQð f ðt1; t2;X ÞÞDAn:

Hence, we can choose an integer M � 1 ðmod
Q

pAS pÞ such that the trinomial

f ðX Þ ¼ Mnf ðt1; t2;X=MÞ

has integer coefficients and satisfies property (i).

Theorem 5. For a positive integer n; the following properties are equivalent:

(i) For every finite set S of prime numbers, there exists a trinomial f ðX Þ ¼
X n þ aX k þ bAZ½X � with Galois group over Q isomorphic to An and discriminant

not divisible by any prime in S:
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(ii) For every finite set S of prime numbers, there exists a trinomial f ðX Þ ¼
X n þ aX k þ bAZ½X � with Galois group over Q contained in An and discriminant

not divisible by any prime in S:
(iii) n satisfies one of the following conditions:

n � 0; 1 ðmod 8Þ;
n � 2 ðmod 8Þ and every odd prime number p j n is p � 1 ðmod 4Þ;
n � 3 ðmod 8Þ and every prime number p j ðn 	 2Þ is p � 1 or 3 ðmod 8Þ:

Proof. Assume that f ðXÞ ¼ X n þ aX k þ bAZ½X � satisfies the hypothesis of (ii), for
the set S of primes less than or equal to n: Then, ðn; kÞ ¼ 1: If n is even, by
Proposition 2, we have

(a) ð	1
p
Þ

n
2 ¼ 1; for every odd prime p dividing n;

(b) ð	1Þ
n
2ð1	 nkÞ � 1 ðmod 8Þ:

Condition (a) is only possible if n � 0; 4 ðmod 8Þ or n � 2; 6 ðmod 8Þ and p �
1 ðmod 4Þ: For n � 6 ðmod 8Þ; necessarily there is a prime p j n with p � 3 ðmod 4Þ: If
n � 4 ðmod 8Þ; condition (b) is not satisfied. In conclusion, the only possibilities for n

even are those considered in (iii). In an analogous way, we obtain that only the
possibilities of (iii) can appear, also in the odd n case.
Now assume that n is a positive integer as in (iii). Let us take k ¼ n 	 2; if n �

3 ðmod 8Þ; and k ¼ n 	 1; otherwise. Then, for each prime number p; the conditions
in Proposition 2 (ii) hold. From Proposition 4, we obtain property (i).

Remark 6. In fact, if S is a given finite set of prime numbers and n is a positive
integer satisfying condition (iii) in Theorem 5, then there exist infinitely many monic
trinomials in Z½X �; with discriminant not divisible by any prime in S; and such that
their splitting fields define linearly disjoint An-extensions of Q:

3. Trinomial An-extensions of Q unramified at S

The following propositions establish that, under certain hypotheses on the p-adic

valuations of the coefficients a; b of a rational trinomial f ðX Þ ¼ X n þ aX k þ b; the
prime p must divide, not only the discriminant of f ðX Þ; but also the discriminant of
the extensionQf =Q: In some cases, these hypotheses are precisely the conditions that

one obtains when requiring the discriminant Dð f Þ to be a square in Q: In order to
know the ramification behavior in Qf =Q of the primes dividing Dð f Þ; we use basic
results in Newton polygon theory (cf., for example, [6, II.Section 6.]).

Proposition 7. Let kon be coprime positive integers and let f ðX Þ ¼ X n þ aX k þ
bAZ½X � be a separable trinomial such that ba0:
(a) Let p be an odd prime number such that vpðanÞXvpðnnbn	kÞ: Assume we are not in

the case n ¼ p ¼ 3: If vpðnÞ40 (resp. vpðnÞ41), then p is ramified (resp. wildly

ramified) in the extension Qf =Q:
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(b) If v2ðnÞ41 and v2ðanÞXv2ðnnbn	kÞ 	 2; then p ¼ 2 is wildly ramified in the

extension Qf =Q:

Proof. Let p be a prime divisor of n which satisfies the above hypothesis (we allow

p ¼ 2). Since vpðanÞXvpðbn	kÞ; we can assume vpðbÞon: Let us write d ¼ ðn; vpðbÞÞ;
vpðbÞ ¼ dh; n ¼ de; r ¼ vpðnÞ; n ¼ n0pr and b ¼ b0pdh: In case vpðeÞ40; the Newton

polygon of f ðXÞ has a segment of slope 	h
e
and the extensionQf =Q is wildly ramified

at p:

From now on, we assume that vpðeÞ ¼ 0: Let y; ZAQp be roots of X e 	 p and

X n0 þ b0; respectively. Note that the extension QpðZÞ=Qp (resp. QpðyÞ=Qp) is

unramified (resp. tamely ramified). Let us consider the following polynomial in
Qpðy; ZÞ½X �:

gðXÞ ¼ 1

yhn
f ðyhðX þ ZÞÞ ¼ ðX þ ZÞn þ a

yhðn	kÞðX þ ZÞk þ b0 ¼
X

0pipn

ciX
i:

If r ¼ vpðnÞ41; then it must be vpð a

yhðn	kÞÞXr: This forces the Newton polygon of gðXÞ
to be of one of the following types:

In both cases, p must be wildly ramified in ðQpÞg=Qp and, hence, also in Qf =Q:

We now consider the case r ¼ vpðnÞ ¼ 1 and pa2: If vpðbÞ40; then clearly the

extension Qf =Q is ramified at p: Assume that vpðbÞ ¼ 0: So, yh ¼ 1: If pan; then we

can choose Z such that vpðc1Þ ¼ 1: Otherwise, pa3 and, replacing, if necessary, f ðXÞ
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by X n

b
f ð b

X
Þ and k by n 	 k; one checks that we can assume vp

k
j

� �
40 or koj; for some

jop 	 1: It follows that vpðcjÞ ¼ 1: We conclude that the Newton polygon of gðXÞ
must have a segment of non-integer slope 	 1

p	j
4	 1: This ensures that p is ramified

in ðQpÞg=Qp; hence, in Qf =Q:

The same type of argument allows us to prove the following analogous result.

Proposition 8. Let kon be coprime positive integers and let f ðX Þ ¼ X n þ aX k þ
bAZ½X � be a separable trinomial such that ba0:

(a) Let p be an odd prime number such that vpðbn	kÞXvpðkkðn 	 kÞn	k
anÞ: Assume we

are not in the case n ¼ 4 and p ¼ 3: If vpðkðn 	 kÞÞ40 (resp. vpðkðn 	 kÞÞ41),

then p is ramified (resp. wildly ramified) in the extension Qf =Q:

(b) If v2ðkðn 	 kÞÞ41 and v2ðbn	kÞXv2ðkkðn 	 kÞn	k
anÞ 	 2; then p ¼ 2 is wildly

ramified in the extension Qf =Q:

Remark 9. The above results fail in the ‘‘exceptional case’’. For example, one checks

that p ¼ 3 does not ramify in Qf =Q if we take f ðXÞ ¼ X 3 	 21X 2 þ 49 or f ðX Þ ¼
X 4 þ 5X 3 	 216:

As the following result shows, statement (a) in the above two propositions does
not hold for the prime p ¼ 2:

Proposition 10. Let kon be coprime positive integers and let f ðXÞ ¼ X n þ aX k þ
bAZ½X � be a separable trinomial. Assume that we are in one of the following cases:

(1) n even, v2ðnÞ ¼ 1; ð	1Þn=2ð1	 knÞc1 ðmod 8Þ; v2ðb þ 1ÞX3 and v2ðaÞX3:

(2) n odd, v2ðkÞ ¼ 1; ð	1Þ
n	1
2 nc1 ðmod 8Þ; v2ða þ 1ÞX2 and v2ðbÞ ¼ lðn 	 kÞX2 for

some lAN:

Then p ¼ 2 does not ramify in the splitting field of f ðXÞ over Q:

Proof. Assume that we are in case (1), let ZAQ2 be a root of cðXÞ ¼ X
n
2 	 1 and

consider the following polynomial in Q2ðZÞ½X �:

hðXÞ ¼ f ðX þ ZÞ ¼ ðX þ ZÞn þ aðX þ ZÞk þ b ¼
X

0pipn

ciX
i:

It can be checked that v2ðc0ÞX3; v2ðc1Þ ¼ 1 and v2ðc2Þ ¼ 0: It follows that hðXÞ has
two roots inQ2ðZÞ (with different positive valuations), corresponding precisely to the
two roots of f ðX Þ congruent to Z modulo 2: Hence, we have an inclusion
ðQ2Þf DðQ2Þc and the extension ðQ2Þf =Q2 must be unramified.

If we are in case (2), let us first consider the factorization f ðX Þ ¼ f1ðXÞ:f2ðXÞ
in Z2½X � given by Hensel’s Lemma, where f1ðX Þ � X n	k ðmod 2Þ and f2ðX Þ �
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ðX k0 	 1Þ2 ðmod 2Þ: The extension ðQ2Þf1
=Q2 must be unramified. To see this, it

suffices to note that the polynomial

gðXÞ ¼ X n

b
f

2lb

X

� �
� X n 	 X k ðmod 2Þ

has a factor g1ðX Þ � X n	k 	 1 ðmod 2Þ in Z2½X � such that ðQ2Þf1
¼ ðQ2Þg1

: In order

to prove that also the extension ðQ2Þf2
=Q2 is unramified, let ZAQ2 be a root of

cðX Þ ¼ X k0 	 1 and consider the following polynomial in Q2ðZÞ½X �

hðXÞ ¼ f ðX þ ZÞ ¼ ðX þ ZÞn þ aðX þ ZÞn	k þ b ¼
X

0pipn

ciX
i:

From our hypothesis, it can be seen that v2ðc0ÞX2; v2ðc1Þ ¼ 1 and v2ðc2Þ ¼ 0: The
polynomial hðX Þ must have a degree 2 factor h2ðXÞ ¼ ðX 	 b1ÞðX 	 b2Þ in
Q2ðZÞ½X �; obtained from the two roots of f2ðXÞ which are congruent to Z modulo

2: In case v2ðc0Þ42; we have that ðQ2ðZÞÞh2
¼ Q2ðZÞ: If v2ðc0Þ ¼ 2; then 2

b1
; 2
b2

are

precisely the two roots of valuation 0 of the following polynomial in Q2ðZÞ½X �

X n

c0
h

2

X

� �
� X n	2 X 2 þ 2c1

c0
X þ 4c2

c0

� �
ðmod 2Þ:

Since X 2 þ 2c1
c0

X þ 4c2
c0

is a separable polynomial modulo 2; it follows that the

extension ðQ2ðZÞÞh2
=Q2ðZÞ must be unramified. We conclude that the extension

ððQ2ÞcÞf2
=ðQ2Þc is unramified, so this is also true for the extension ðQ2Þf2

=Q2:

From the above, we obtain the main result of this section.

Theorem 11. Let kon be coprime positive integers and let S be an arbitrary prefixed

finite set of prime numbers. Then the following properties are equivalent:

(i) For every prime pAS; there exists a trinomial f ðXÞ ¼ X n þ apX k þ bpAZ½X �
whose discriminant is a non-zero square in Z and such that p does not ramify in the

extension Qf =Q:

(ii) Every prime pAS satisfies one of the following conditions:

If n is even and p is odd, then vpðnÞ ¼ 0 or ð	1
p
Þn=2 ¼ 1:

If n is even and p ¼ 2; then ð	1Þn=2ð1	 knÞ � 1 ðmod 8Þ or v2ðnÞ ¼ 1:
If n is odd and p is odd, then vpðkðn 	 kÞÞ ¼ 0 or ðp

n
Þ ¼ 1:

If n is odd and p ¼ 2; then ð	1Þ
n	1
2 n � 1 ðmod 8Þ or v2ðkðn 	 kÞÞ ¼ 1:

Proof. Let p be a prime number and let f ðX Þ ¼ X n þ apX k þ bpAZ½X � be a

separable trinomial. If p does not ramify in the extension Qf =Q; then the possible p-

adic valuations of the coefficients ap; bp are restricted by Propositions 7 and 8. It can
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be checked that, when one also requires f ðXÞ to have square discriminant in Z; these
restrictions force p to satisfy condition (ii).
In Proposition 2, we already obtained that condition (i) follows from condition

(ii), in some cases. Only the following ones are new:

* even n; p ¼ 2; v2ðnÞ ¼ 1 and ð	1Þn=2ð1	 knÞc1 ðmod 8Þ:
* odd n; p ¼ 2; v2ðkðn 	 kÞÞ ¼ 1 and ð	1Þ

n	1
2 nc1 ðmod 8Þ:

Both can be easily obtained from Proposition 10. For example, for even n; we can
consider natural numbers r; s such that sðn 	 kÞ 	 rn ¼ 1 and take a2 ¼ nAtr; b2 ¼ ts;
for well-chosen A; tAZ:

Remark 12. Property (ii) above characterizes the existence of trinomials f ðX Þ ¼
X n þ aX k þ bAZ½X � with An as Galois group over Q and such that all primes in S

are unramified in Qf =Q: This follows from Hilbert’s irreducibility theorem and

Krasner’s Lemma, arguing as in the proof of Proposition 4.

As a consequence of Theorem 11, we obtain:

Corollary 13. Let n be a positive integer. The following properties are equivalent:

(i) For every finite set S of prime numbers, there exists a trinomial f ðX Þ ¼
X n þ aX k þ bAZ½X � with An as Galois group over Q and such that all primes in S

are unramified in the extension Qf =Q:

(ii) For every finite set S of prime numbers, there exists a trinomial f ðX Þ ¼
X n þ aX k þ bAZ½X � with discriminant a non-zero square in Z and such that all

primes in S are unramified in the extension Qf =Q:

(iii) n satisfies one of the following conditions:
n � 0; 1 ðmod 8Þ;
n � 2 ðmod 8Þ and p � 1 ðmod 4Þ; for every odd prime number pjn;
n � 3 ðmod 8Þ and there exists a natural number kon such that ðk; nÞ ¼ 1;
v2ðkðn 	 kÞÞ ¼ 1 and ðp

n
Þ ¼ 1; for every odd prime number pjkðn 	 kÞ:

4. Tamely ramified trinomial An-extensions of Q

Proposition 14. Let kon be coprime positive integers and let S be an arbitrary

prefixed finite set of prime numbers. Then the following conditions are equivalent:

(i) There exists a separable trinomial f ðX Þ ¼ X n þ aX k þ bAZ½X � whose discrimi-

nant is a square in Z and such that all primes in S are tamely ramified in the

extension Qf =Q:

(ii) Every prime pAS satisfies one of the following conditions:
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If n is even and p is odd, then vpðnÞp1 or ð	1
p
Þn=2 ¼ 1:

If n is even and p ¼ 2; then ð	1Þn=2ð1	 knÞ � 1 ðmod 8Þ or v2ðnÞ ¼ 1:
If n is odd and p is odd, then vpðkðn 	 kÞÞp1 or ðp

n
Þ ¼ 1:

If n is odd and p ¼ 2; then ð	1Þ
n	1
2 n � 1 ðmod 8Þ or v2ðkðn 	 kÞÞ ¼ 1:

Proof. We can proceed as in the proof of Theorem 11, taking into account
Propositions 7, 8 and 10. The only additional point that must be proved is that
condition (i) also holds in the following (new) cases:

(a) even n; odd p; vpðnÞ ¼ 1 and ð	1
p
Þn=2 ¼ 	1;

(b) odd n; odd p; vpðkðn 	 kÞÞ ¼ 1 and ðp
n
Þ ¼ 	1:

Let us prove the even n case. The odd n case works analogously.

One easily checks (as in Proposition 11) that there exists a trinomial f ðX Þ ¼
X n þ aX k þ bAZ½X � with non-zero square discriminant in Z such that

vpðb þ 1ÞX2 and vpðaÞX2:

We want to show that these conditions suffice to ensure that p is tamely ramified in
the extension Qf =Q: Let us consider the following polynomial in QpðZÞ½X �:

hðXÞ ¼ f ðX þ ZÞ ¼ ðX þ ZÞn þ aðX þ ZÞk þ b ¼
X

0pipn

ciX
i;

where ZAQp is a root of cðXÞ ¼ X
n
p 	 1: By inspection of the Newton polygon of

hðXÞ; one immediately concludes that the extensions ððQpÞcÞf =ðQpÞc and ðQpÞf =Qp

are tamely ramified.

The above result allows us to characterize the existence of tame An-extensions ofQ
obtained as splitting fields of degree n trinomials.

Theorem 15. For a positive integer n; the following properties are equivalent:

(i) There exists a trinomial f ðXÞ ¼ X n þ aX k þ bAZ½X � such that the extension

Qf =Q is tamely ramified and has Galois group isomorphic to An:

(ii) If n is even, then there exists a natural number kon such that ðk; nÞ ¼ 1 and

vpðnÞ ¼ 1; for every prime p j n such that ð p
kðn	kÞÞ ¼ 	1:

If n is odd, then there exists a natural number kon such that ðk; nÞ ¼ 1 and

vpðkðn 	 kÞÞ ¼ 1; for every prime p j kðn 	 kÞ such that ðp
n
Þ ¼ 	1:

Now we exhibit infinitely many natural numbers n such that property (ii) (and (i))
above holds.

Proposition 16. Let n be a positive integer which satisfies one of the following

conditions:
n � 0 ðmod 8Þ;
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n is square-free and even,
n is odd.

Then, there exists a degree n trinomial f ðXÞ ¼ X n þ aX k þ bAZ½X � such that the

extension Qf =Q is tamely ramified and has An as Galois group.

Only the case n odd requires a proof, which follows immediately from the next
result.

Proposition 17. Every positive integer n41 can be represented as the sum of two

square-free coprime positive integers.

Proof. For each prime number q; let rqðnÞ denote the number of positive integers

apn 	 1 such that ða; nÞ ¼ 1 and vqðaÞ41: The property we must prove clearly

follows from the inequality X
q[n

rqðnÞo
fðnÞ
2

;

where f stands for Euler’s function.
Let p1;y; ps be the prime factors of n: If q does not divide n; then we have

rqðnÞ ¼
n

q2

� 	
	
X
1pips

n

q2pi

� 	
þ

X
1piojps

n

q2pipj

� 	
	?

o
n

q2

Y
1pips

1	 1

pi

� �
þ 2s	1 ¼ fðnÞ

q2
þ 2s	1:

Hence, we obtain

X
q[n

rqðnÞofðnÞ
X
q[n

1

q2

 !
þ 2s	1pð

ffiffiffi
n

p
Þ;

where pðxÞ denotes the number of rational primes px: Thus, it suffices to prove the
following inequality:

2s	1pð
ffiffiffi
n

p
Þ

fðnÞ o
1

2
	
X
q[n

1

q2
:

It is well known that, for every mX2; we have (cf. [1, Theorem 4.6]):

pðmÞo 6m

lnðmÞ:

In addition, from equality zð2Þ ¼ p2
6
; one immediately obtains

X
q

1

q2
o0; 4523:
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Thus, the stated property holds for every n such that

aðnÞo0; 0477þ
X
1pips

1

ðpiÞ2
; ð�Þ

where we define the function aðnÞ as being

aðnÞ ¼ 2sn

fðnÞ
6ffiffiffi

n
p

lnðnÞ:

If q1;y; qs are the smallest s prime numbers, then we have that aðnÞpaðq1:?:qsÞ:
One then easily checks that inequality (�) holds provided sX10:
On the other hand, if n has at most 9 different prime divisors, then

aðnÞp29:
2:3:5:7:11:13:17:19:23

fð2:3:5:7:11:13:17:19:23Þ:
6ffiffiffi

n
p

lnðnÞ:

It follows that n satisfies inequality (�), for every nX109: Indeed, it can be checked

that the same conclusion holds for every nX15� 104: For, it suffices to argue as
above, also taking into account which of the primes 2; 3; 5 divide n:
Finally, the stated result can be directly checked in the finitely many remaining

cases 1ono15� 104:

There are also infinitely many n for which neither property (ii) (nor property (i)) in
Theorem 15 holds: for example, every n � 4 ðmod 8Þ: Moreover, we have:

Proposition 18. Let Qf be the splitting field over Q of a separable trinomial f ðX Þ ¼
X n þ aX k þ bAQ½X � of degree n � 4 ðmod 8Þ; where kon is assumed to be an odd

positive integer. If GalQð f ðXÞÞDAn; then the extension Qf =Q is wildly ramified at

p ¼ 2:

Proof. It suffices to note that, if we put d ¼ ðn; kÞ; n ¼ n0d and k0 ¼ kd; then the

trinomial gðXÞ ¼ X n0 þ aX k0 þ b also has degree n0 � 4 ðmod 8Þ and, clearly,
QgDQf :

Remark 19. Using the same type of argument as above, one checks that Proposition

18 remains valid if we replace f ðXÞ ¼ X n þ aX k þ b by f ðXÞ ¼ X kðX 	 aÞn	k þ b:
As in the case with trinomials, the polynomials of such a family can be classified by

one parameter (in this case, by t ¼ b

an
), giving rise to a cover of P1

Q ramified at three

rational points and unramified elsewhere. These covers (ðk; nÞ ¼ 1) are typically
obtained when one uses the rigidity method in order to obtain Q-regular Sn-
extensions ofQðTÞ:Moreover, in this situation one can always deduceQ-regular An-
extensions of QðUÞ; defined by polynomials of the same type (see, for example,
[8, Lemma 4.5.1] and [8, 8.3.1]). The fact that these An-extensions do not admit
tamely ramified rational specializations seems consistent with Birch’s suggestion
[2, p. 35] that ‘rigid’ constructions usually give rise to wild specializations. We may
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note that, however, only the Sn-extensions of QðTÞ alluded to above are ‘rigid’ (not
the deduced An-extensions of QðUÞ) and these always admit tame specializations (as
in Proposition 1).

Remark 20. If we do not restrict ourselves to considering trinomial extensions, then
it is possible to obtain, for every n; An-extensions of Q unramified at all primes in an
arbitrary prefixed finite set S; possibly including the infinity prime. Indeed, in [7] we
proved that there always exists a totally real monic polynomial f ðXÞAZ½X � of degree
n; with Galois group An over Q; and such that its discriminant Dð f Þ is not divisible
by any prime in S: Moreover, more specific local behaviors can also be required ( for
every n and every S) as, for example, that all primes in S split completely in the An-
extension Qf =Q:
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