Note

A Remark about Permutations

Walter Feit, Roger Lyndon, and Lfonard L. Scott*
Department of Mathematics, Yale University, New Haven, Connecticut 06520;
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104;
and Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903

Communicated by N. S. Mendelsohn

Received April 1, 1974

In [2] Ree proved a theorem about permutation groups by making use of a formula for the genus of Riemann surfaces. The purpose of this note is to provide a direct proof of Ree's theorem.

Let Ω be a finite set of n letters. For a permutation π on Ω define $v(\pi)=\sum_{i=1}^{k}\left(l_{i}-1\right)$ where π is a product of disjoint cycles of lengths l_{1}, \ldots, l_{k}.

Lemma 1. Let T be a minimal set of transpositions generating a transitive group on Ω. Then
(a) $|\cdot T|=n-1$,
(b) the product in any order of all elements of T is an n-cycle.

Proof. Define a graph G_{T} on Ω by joining α to β whenever $(\alpha \beta) \in T$. The fact that T generates a transitive group means that G_{T} is connected. Moreover G_{T} is a tree because of the minimality of T. Now (a) is immediate.

Let $\tau_{1}, \ldots, \tau_{n-1}$ be the elements of T. We will show by induction on $|\Omega|$ that $\tau_{1} \cdots \tau_{n-1}$ is an n-cycle. Of course we may rearrange the order of $\tau_{1}, \ldots, \tau_{n-1}$ by any cyclic permutation, so we may assume $\tau_{1}=(\alpha \beta)$ where α is joined only to β in G_{T}. Thus $G_{T-\left\{\tau_{T}\right\}}$ is a tree on $\Omega-\{\alpha\}$. By induction $\tau_{2} \cdots \tau_{n-1}$ is an ($n-1$)-cycle ($\beta \gamma \cdots$). So $\tau_{1} \tau_{2} \cdots \tau_{n-1}=(\beta \alpha \gamma \cdots$) is an n cycle as required.

[^0]Ree's Theorem. Let $\pi_{1}, \ldots ., \pi_{m}$ be permutations on Ω such that $\pi_{1} \cdots \pi_{m}=1$. Then

$$
v\left(\pi_{1}\right)+\cdots+v\left(\pi_{m}\right) \geqslant 2(n-s),
$$

where s is the number of orbits of the group generated by π_{1}, \ldots, π_{m}.
Proof. As Ree observes it clearly suffices to settle the case $s=1$. We may also assume each π_{i} is a cycle, for if $\pi=\rho_{1} \cdots \rho_{k}$ is a product of disjoint cycles, we have $v(\pi)=v\left(\rho_{1}\right)+\cdots+v\left(\rho_{k}\right)$. Finally if $\rho=\left(\alpha_{1} \cdots \alpha_{k}\right)$ is a k-cycle, then $\rho=\tau_{1} \cdots \tau_{k-1}$ where $\tau_{i}=\left(\alpha_{1} \alpha_{i+1}\right)$, and $v(\rho)=k-1=$ $v\left(\tau_{1}\right)+\cdots+v\left(\tau_{k-1}\right)$. So we may even assume that each π_{i} is a transposition.

Select from π_{1}, \ldots, π_{m} a minimal subset $\pi_{i_{1}}, \ldots, \pi_{i_{r}}$ which generates a group transitive on Ω. By Lemma $1 r=n-1$ and $\pi_{i_{1}} \cdots \pi_{i_{r}}$ is an n-cycle. From the equation $\pi_{1} \cdots \pi_{m}=1$ we obtain, by moving $\pi_{i_{1}}, \ldots, \pi_{i_{n-1}}$ to the left, an equation $\pi_{i_{1}} \cdots \pi_{i_{n-1}} \pi_{n}{ }^{\prime} \cdots \pi_{m}{ }^{\prime}=1$ where the $\pi_{j}^{\prime \prime}$'s are conjugates of those π_{i} 's not among $\pi_{i_{1}}, \ldots, \pi_{i_{n-1}}$.

Since $\pi_{i_{1}} \cdots \pi_{i_{n-1}}$ is an n-cycle, its inverse $\pi_{n}{ }^{\prime} \cdots \pi_{m}{ }^{\prime}$ is also an n-cycle. Thus $\pi_{n}{ }^{\prime}, \ldots, \pi_{m}{ }^{\prime}$ generate a transitive group and so $m-n+1 \geqslant n-1$ by part (a) of Lemma 1. Hence $v\left(\pi_{1}\right)+\cdots+v\left(\pi_{m}\right)=m \geqslant 2(n-1)$ and the proof is complete.

The function $v(\pi)$ has arisen previously in connection with Riemann surfaces. See for instance [1, Definition 3].

The following lemma provides alternative descriptions of $v(\pi)$.
Let $l(\pi)$ be the smallest integer l such that π is a product of l transpositions.

Let $t(\pi)$ be the multiplicity of 1 as a characteristic value of π considered as a permutation matrix.

Lemma 2. $l(\pi)=v(\pi)=n-t(\pi)$.
Proof. Clearly $v(\pi)+t(\pi)=n$. Since a k-cycle is a product of $k-1$ transpositions we see that $l(\pi) \leqslant v(\pi)$. Each transposition has the characteristic value 1 with multiplicity $n-1$. Thus $t(\pi) \geqslant n-l(\pi)$. Therefore,

$$
l(\pi) \leqslant v(\pi)=n-t(\pi) \leqslant l(\pi),
$$

as required.

References

1. M. Fried, On a Conjecture of Schur, Mich. Math. J. 17 (1970), 41-55.
2. R. Ree, A Theorem on Permutations, J. Combinatorial Theory 10 (1971), 174-175.

[^0]: * This work was partially supported by the N.S.F., and represents independent work of the second author, and the first and third author in collaboration.

