JOURNAL OF COMBINATORIAL THEORY (A) 18, 234-235 (1975)

Note

A Remark about Permutations

WALTER FEIT, ROGER LYNDON, AND LEONARD L. SCOTT*

Department of Mathematics, Yale University, New Haven, Connecticut 06520; Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104; and Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903

Communicated by N. S. Mendelsohn

Received April 1, 1974

In [2] Ree proved a theorem about permutation groups by making use of a formula for the genus of Riemann surfaces. The purpose of this note is to provide a direct proof of Ree's theorem.

Let Ω be a finite set of *n* letters. For a permutation π on Ω define $v(\pi) = \sum_{i=1}^{k} (l_i - 1)$ where π is a product of disjoint cycles of lengths $l_1, ..., l_k$.

LEMMA 1. Let T be a minimal set of transpositions generating a transitive group on Ω . Then

- (a) |T| = n 1,
- (b) the product in any order of all elements of T is an n-cycle.

Proof. Define a graph G_T on Ω by joining α to β whenever $(\alpha\beta) \in T$. The fact that T generates a transitive group means that G_T is connected. Moreover G_T is a tree because of the minimality of T. Now (a) is immediate.

Let $\tau_1, ..., \tau_{n-1}$ be the elements of *T*. We will show by induction on $|\Omega|$ that $\tau_1 \cdots \tau_{n-1}$ is an *n*-cycle. Of course we may rearrange the order of $\tau_1, ..., \tau_{n-1}$ by any cyclic permutation, so we may assume $\tau_1 = (\alpha\beta)$ where α is joined only to β in G_T . Thus $G_{T-\{\tau_1\}}$ is a tree on $\Omega - \{\alpha\}$. By induction $\tau_2 \cdots \tau_{n-1}$ is an (n-1)-cycle $(\beta\gamma \cdots)$. So $\tau_1\tau_2 \cdots \tau_{n-1} = (\beta\alpha\gamma \cdots)$ is an *n*-cycle as required.

* This work was partially supported by the N.S.F., and represents independent work of the second author, and the first and third author in collaboration.

REE'S THEOREM. Let $\pi_1, ..., \pi_m$ be permutations on Ω such that $\pi_1 \cdots \pi_m = 1$. Then

$$v(\pi_1) + \cdots + v(\pi_m) \ge 2(n-s),$$

where s is the number of orbits of the group generated by $\pi_1, ..., \pi_m$.

Proof. As Ree observes it clearly suffices to settle the case s = 1. We may also assume each π_i is a cycle, for if $\pi = \rho_1 \cdots \rho_k$ is a product of disjoint cycles, we have $v(\pi) = v(\rho_1) + \cdots + v(\rho_k)$. Finally if $\rho = (\alpha_1 \cdots \alpha_k)$ is a k-cycle, then $\rho = \tau_1 \cdots \tau_{k-1}$ where $\tau_i = (\alpha_1 \alpha_{i+1})$, and $v(\rho) = k - 1 = v(\tau_1) + \cdots + v(\tau_{k-1})$. So we may even assume that each π_i is a transposition.

Select from $\pi_1, ..., \pi_m$ a minimal subset $\pi_{i_1}, ..., \pi_{i_r}$ which generates a group transitive on Ω . By Lemma 1 r = n - 1 and $\pi_{i_1} \cdots \pi_{i_r}$ is an *n*-cycle. From the equation $\pi_1 \cdots \pi_m = 1$ we obtain, by moving $\pi_{i_1}, ..., \pi_{i_{n-1}}$ to the left, an equation $\pi_{i_1} \cdots \pi_{i_{n-1}} \pi_n' \cdots \pi_m' = 1$ where the π_j 's are conjugates of those π_i 's not among $\pi_{i_1}, ..., \pi_{i_{n-1}}$.

Since $\pi_{i_1} \cdots \pi_{i_{n-1}}$ is an *n*-cycle, its inverse $\pi_n' \cdots \pi_m'$ is also an *n*-cycle. Thus π_n', \dots, π_m' generate a transitive group and so $m - n + 1 \ge n - 1$ by part (a) of Lemma 1. Hence $v(\pi_1) + \cdots + v(\pi_m) = m \ge 2(n - 1)$ and the proof is complete.

The function $v(\pi)$ has arisen previously in connection with Riemann surfaces. See for instance [1, Definition 3].

The following lemma provides alternative descriptions of $v(\pi)$.

Let $l(\pi)$ be the smallest integer l such that π is a product of l transpositions.

Let $t(\pi)$ be the multiplicity of 1 as a characteristic value of π considered as a permutation matrix.

LEMMA 2.
$$l(\pi) = v(\pi) = n - t(\pi)$$
.

Proof. Clearly $v(\pi) + t(\pi) = n$. Since a k-cycle is a product of k - 1 transpositions we see that $l(\pi) \leq v(\pi)$. Each transposition has the characteristic value 1 with multiplicity n - 1. Thus $t(\pi) \geq n - l(\pi)$. Therefore,

$$l(\pi) \leqslant v(\pi) = n - t(\pi) \leqslant l(\pi),$$

as required.

References

1. M. FRIED, On a Conjecture of Schur, Mich. Math. J. 17 (1970), 41-55.

2. R. REE, A Theorem on Permutations, J. Combinatorial Theory 10 (1971), 174-175.