

Available online at www.sciencedirect.com

JOURNAL OF Algebra

Journal of Algebra 319 (2008) 3291-3300

www.elsevier.com/locate/jalgebra

Modules with finite Cousin cohomologies have uniform local cohomological annihilators

Mohammad T. Dibaei^{a,b,*,1}, Raheleh Jafari^a

^a Faculty of Mathematical Sciences, Tarbiat Moallem University, Tehran, Iran
 ^b Institute for Theoretical Physics and Mathematics (IPM), Tehran, Iran

Received 14 June 2007

Communicated by Luchezar L. Avramov

Abstract

Let *A* be a Noetherian ring. It is shown that any finite *A*-module *M* of finite Krull dimension with finite Cousin complex cohomologies has a uniform local cohomological annihilator. The converse is also true for a finite module *M* satisfying (S_2) which is over a local ring with Cohen–Macaulay formal fibers. © 2007 Elsevier Inc. All rights reserved.

Keywords: Cousin complexes; Local cohomology

1. Introduction

Throughout let *A* denote a commutative Noetherian ring and *M* a finite (i.e. finitely generated) *A*-module. Recall that an *A*-module *M* is called *equidimensional* (or unmixed) if $Min_A(M) = Assh_A(M)$ (i.e. for each minimal prime \mathfrak{p} of $Supp_A(M)$, $\dim_A(M) = \dim(A/\mathfrak{p})$). For an ideal \mathfrak{a} of *A*, write $H^i_\mathfrak{a}(M)$ for the *i*th local cohomology module of *M* with support in $V(\mathfrak{a}) = \{\mathfrak{p} \in Spec(A): \mathfrak{p} \supseteq \mathfrak{a}\}$. An element $x \in A$ is called a *uniform local cohomological annihilator* of *M* if $x \in A \setminus \bigcup_{\mathfrak{p} \in Min_A(M)} \mathfrak{p}$ and for each maximal ideal \mathfrak{m} of *A*, $xH^i_\mathfrak{m}(M) = 0$ for all $i < \dim_{A\mathfrak{m}}(M_\mathfrak{m})$. The existence of a local cohomological annihilator is studied by Hochster and Huneke [6] and

0021-8693/\$ – see front matter @ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2007.11.021

^{*} Corresponding author at: Faculty of Mathematical Sciences, Tarbiat Moallem University, Tehran, Iran. *E-mail addresses:* dibaeimt@ipm.ir (M.T. Dibaei), jafarirahele@yahoo.com (R. Jafari).

¹ The research of the first author was in part supported from IPM (No. 86130117).

proved its importance for the existence of big Cohen–Macaulay algebras and a uniform Artin– Rees theorem [7].

In [12], Zhou studied rings with a uniform local cohomological annihilator. Hochster and Huneke, in [5], proved that if A is locally equidimensional (i.e. A_m is equidimensional for every maximal ideal m of A) and is a homomorphic image of a Gorenstein ring of finite dimension, then A has a strong uniform local cohomological annihilator (i.e. A has an element which is a uniform local cohomological annihilator of A_p for each $p \in \text{Spec}(A)$). In [12], Zhou showed that if a locally equidimensional ring A of positive dimension is a homomorphic image of a Cohen–Macaulay ring of finite dimension (or an excellent local ring), then A has a uniform local cohomological annihilator.

Cousin complexes were introduced by Hartshorne in [4] and have a commutative algebra analogue given by Sharp in [10]. Recently, Cousin complexes have been studied by several authors. In [2,3] and [8], Dibaei, Tousi, and Kawasaki studied finite Cousin complexes (i.e. the Cousin complexes with finitely generated cohomologies). In [9, Proposition 9.3.5], Lipman, Nayak, and Sastry generalized these results to complexes on formal schemes.

In Section 2, it is proved that any finite A-module of finite Krull dimension with finite Cousin complex cohomologies has a uniform local cohomological annihilator (Theorem 2.7). As a result it follows that if (A, \mathfrak{m}) is local, satisfies Serre's condition (S_2) , and such that all of its fibers of $A \rightarrow \widehat{A}$ are Cohen-Macaulay, then A has a uniform local cohomological annihilator (Corollary 2.10). For a finite module M over a local ring (A, \mathfrak{m}) satisfying (S_2) and with Cohen-Macaulay formal fibers, it is proved that the following conditions are equivalent: (i) \widehat{M} , the completion of M with respect to \mathfrak{m} -adic topology, is equidimensional; (ii) $C_A(M)$, the Cousin complex of M is finite; (iii) M has a uniform local cohomological annihilator (Theorem 2.13).

In Section 3, for certain modules M, the relationship between the cohomology modules of the Cousin complex of M and the local cohomology modules of M with respect to an arbitrary ideal of A is studied. It is shown that the M-height of \mathfrak{a} is equal to the infimum of numbers r for which $0:_A H^r_{\mathfrak{a}}(M)$ does not contain the product of all the annihilators of the Cousin cohomologies of M (Theorem 3.2).

2. Cousin complexes

Let *M* be an *A*-module and let $\mathcal{H} = \{H_i: i \ge 0\}$ be the family of subsets of $\operatorname{Supp}_A(M)$ with $H_i = \{\mathfrak{p} \in \operatorname{Supp}_A(M): \dim_{A_\mathfrak{p}}(M_\mathfrak{p}) \ge i\}$. The family \mathcal{H} is called the *M*-height filtration of $\operatorname{Supp}_A(M)$. Define the Cousin complex of *M* as the complex

$$\mathcal{C}_{A}(M): \quad 0 \xrightarrow{d^{-2}} M^{-1} \xrightarrow{d^{-1}} M^{0} \xrightarrow{d^{0}} M^{1} \xrightarrow{d^{1}} \cdots \xrightarrow{d^{i-1}} M^{i} \xrightarrow{d^{i}} M^{i+1} \longrightarrow \cdots, \qquad (*)$$

where $M^{-1} = M$, $M^i = \bigoplus_{\mathfrak{p} \in H_i \setminus H_{i+1}} (\operatorname{Coker} d^{i-2})_{\mathfrak{p}}$ for i > -1. The homomorphism $d^i : M^i \to M^{i+1}$ has the following property: for $m \in M^i$ and $\mathfrak{p} \in H_i \setminus H_{i+1}$, the component of $d^i(m)$ in $(\operatorname{Coker} d^{i-1})_{\mathfrak{p}}$ is $\overline{m}/1$, where $\overline{:} M^i \to \operatorname{Coker} d^{i-1}$ is the natural map (see [10] for details).

Throughout, for the Cousin complex (*), we use the following notations:

$$K^{i} := \operatorname{Ker} d^{i}, \qquad D^{i} := \operatorname{Im} d^{i-1}, \qquad H^{i} := K^{i}/D^{i}, \quad i = -1, 0, \dots$$

We call the Cousin complex $C_A(M)$ finite if, for each *i*, the cohomology module H^i is finite. Recall that for an ideal \mathfrak{a} of *A* and an *A*-module *M*, the *M*-height of \mathfrak{a} is defined by $ht_M(\mathfrak{a}) :=$ inf{dim $M_{\mathfrak{p}}$: $\mathfrak{p} \in \text{Supp}_A(M) \cap V(\mathfrak{a})$ }. Note that $ht_M(\mathfrak{a}) \ge 0$ whenever $M \neq \mathfrak{a}M$. If M is finitely generated then $ht_M(\mathfrak{a}) = ht(\frac{\mathfrak{a}+I}{I})$, where $I = \text{Ann}_A(M)$.

We begin by the following lemma which for the first part we adopt the argument in [11, Theorem].

Lemma 2.1. Let *M* be an *A*-module. For any integer *k* with $0 \le k < ht_M(\mathfrak{a})$, the following statements are true.

(a) H^s_a(M^k) = 0 for all integers s ≥ 0.
(b) Ext^s_A(A/a, M^k) = 0 for all integers s ≥ 0.

Proof. (a) Set $C_{k-1} := \operatorname{Coker} d^{k-2} = M^{k-1}/D^{k-1}$ so that $M^k = \bigoplus_{\substack{\mathfrak{p} \in \operatorname{Supp}_A(M) \\ \operatorname{ht}_M(\mathfrak{p}) = k}} (C_{k-1})_{\mathfrak{p}}$. For

each $k < \operatorname{ht}_{M}(\mathfrak{a})$ and each $\mathfrak{p} \in \operatorname{Supp}_{A}(M)$ with $\operatorname{ht}_{M}(\mathfrak{p}) = k$, there exists an element $x \in \mathfrak{a} \setminus \mathfrak{p}$. Thus the multiplication map $(C_{k-1})_{\mathfrak{p}} \xrightarrow{x} (C_{k-1})_{\mathfrak{p}}$ is an automorphism and so the multiplication map $\operatorname{H}^{s}_{\mathfrak{a}}((C_{k-1})_{\mathfrak{p}}) \xrightarrow{x} \operatorname{H}^{s}_{\mathfrak{a}}((C_{k-1})_{\mathfrak{p}})$ is also an automorphism for all integers *s*. One may then conclude that $\operatorname{H}^{s}_{\mathfrak{a}}((C_{k-1})_{\mathfrak{p}}) = 0$. Now, from additivity of local cohomology functors, it follows that $\operatorname{H}^{s}_{\mathfrak{a}}(M^{k}) = 0$.

(b) Assume in general that N is an A-module such that $H^s_{\mathfrak{a}}(N) = 0$ for all $s \ge 0$. We show, by induction on $i, i \ge 0$, that $\operatorname{Ext}^i_A(A/\mathfrak{a}, N) = 0$. For i = 0, one has $\operatorname{Hom}_A(A/\mathfrak{a}, N) = \operatorname{Hom}_A(A/\mathfrak{a}, H^0_{\mathfrak{a}}(N))$ which is zero. Assume that i > 0 and the claim is true for any such module N and all $j \le i - 1$. Choose E to be an injective hull of N and consider the exact sequence $0 \to N \to E \to N' \to 0$, where N' = E/N. As $\operatorname{H}^0_{\mathfrak{a}}(E) = 0$, it follows that $\operatorname{H}^s_{\mathfrak{a}}(N') = 0$ for all $s \ge 0$. Thus $\operatorname{Ext}^{i-1}_A(A/\mathfrak{a}, N') = 0$, by our induction hypothesis. As, by the above exact sequence $\operatorname{Ext}^{i-1}_A(A/\mathfrak{a}, N') \cong \operatorname{Ext}^i_A(A/\mathfrak{a}, N)$, the result follows. \Box

The following technical result is important for the rest of the paper.

Proposition 2.2. Let M be an A-module and let \mathfrak{a} be an ideal of A such that $\mathfrak{a}M \neq M$. Then, for each non-negative integer r with $r < ht_M(\mathfrak{a})$,

$$\prod_{i=0}^{r} \left(0:_{A} \operatorname{Ext}_{A}^{r-i} \left(A/\mathfrak{a}, H^{i-1} \right) \right) \subseteq 0:_{A} \operatorname{Ext}_{A}^{r} \left(A/\mathfrak{a}, M \right).$$

Here \prod *is used for product of ideals.*

Proof. For each $j \ge -1$, there are the natural exact sequences

$$0 \longrightarrow M^{j-1}/K^{j-1} \longrightarrow M^j \longrightarrow M^j/D^j \longrightarrow 0, \tag{1}$$

$$0 \longrightarrow H^{j-1} \longrightarrow M^{j-1}/D^{j-1} \longrightarrow M^{j-1}/K^{j-1} \longrightarrow 0.$$
⁽²⁾

Let $0 \leq r < \operatorname{ht}_M(\mathfrak{a})$.

We prove by induction on $j, 0 \le j \le r$, that

$$\prod_{i=0}^{j} \left(0:_{A} \operatorname{Ext}_{A}^{r-i} \left(A/\mathfrak{a}, H^{i-1} \right) \right) \cdot \left(0:_{A} \operatorname{Ext}_{A}^{r-j} \left(A/\mathfrak{a}, M^{j-1}/K^{j-1} \right) \right) \subseteq 0:_{A} \operatorname{Ext}_{A}^{r} \left(A/\mathfrak{a}, M \right).$$
(3)

In case j = 0, the exact sequence (2) implies the exact sequence

$$\operatorname{Ext}_{A}^{r}(A/\mathfrak{a}, H^{-1}) \longrightarrow \operatorname{Ext}_{A}^{r}(A/\mathfrak{a}, M) \longrightarrow \operatorname{Ext}_{A}^{r}(A/\mathfrak{a}, M^{-1}/K^{-1})$$

so that

$$\left(0:_{A}\operatorname{Ext}_{A}^{r}\left(A/\mathfrak{a}, H^{-1}\right)\right) \cdot \left(0:_{A}\operatorname{Ext}_{A}^{r}\left(A/\mathfrak{a}, M^{-1}/K^{-1}\right)\right) \subseteq 0:_{A}\operatorname{Ext}_{A}^{r}\left(A/\mathfrak{a}, M\right)$$

and thus the case j = 0 is justified.

Assume that $0 \le j < r$ and formula (3) is settled for *j*. Therefore, by Lemma 2.1(b), formula (1) implies that

$$\operatorname{Ext}_{A}^{r-j}\left(A/\mathfrak{a}, M^{j-1}/K^{j-1}\right) \cong \operatorname{Ext}_{A}^{r-j-1}\left(A/\mathfrak{a}, M^{j}/D^{j}\right).$$
(4)

On the other hand the exact sequence (2) implies the exact sequence

$$\operatorname{Ext}_{A}^{r-j-1}(A/\mathfrak{a}, H^{j}) \longrightarrow \operatorname{Ext}_{A}^{r-j-1}(A/\mathfrak{a}, M^{j}/D^{j}) \longrightarrow \operatorname{Ext}_{A}^{r-j-1}(A/\mathfrak{a}, M^{j}/K^{j}),$$

from which it follows that

$$\left(0:_{A}\operatorname{Ext}_{A}^{r-j-1}\left(A/\mathfrak{a}, H^{j}\right)\right) \cdot \left(0:_{A}\operatorname{Ext}_{A}^{r-j-1}\left(A/\mathfrak{a}, \frac{M^{j}}{K^{j}}\right)\right) \subseteq 0:_{A}\operatorname{Ext}_{A}^{r-j-1}\left(A/\mathfrak{a}, \frac{M^{j}}{D^{j}}\right).$$
(5)

Now (4) and (5) imply that

$$\left(0:_{A}\operatorname{Ext}_{A}^{r-j-1}\left(A/\mathfrak{a},H^{j}\right)\right)\cdot\left(0:_{A}\operatorname{Ext}_{A}^{r-j-1}\left(A/\mathfrak{a},\frac{M^{j}}{K^{j}}\right)\right)\subseteq0:_{A}\operatorname{Ext}_{A}^{r-j}\left(A/\mathfrak{a},\frac{M^{j-1}}{K^{j-1}}\right).$$
 (6)

From (6), it follows that

$$\begin{split} &\prod_{i=0}^{j+1} \left(0:_A \operatorname{Ext}_A^{r-i} \left(\frac{A}{\mathfrak{a}}, H^{i-1} \right) \right) \cdot \left(0:_A \operatorname{Ext}_A^{r-j-1} \left(\frac{A}{\mathfrak{a}}, \frac{M^j}{K^j} \right) \right) \\ &= \prod_{i=0}^j \left(0:_A \operatorname{Ext}_A^{r-i} \left(\frac{A}{\mathfrak{a}}, H^{i-1} \right) \right) \cdot \left(0:_A \operatorname{Ext}_A^{r-j-1} \left(\frac{A}{\mathfrak{a}}, H^j \right) \right) \\ &\cdot \left(0:_A \operatorname{Ext}_A^{r-j-1} \left(\frac{A}{\mathfrak{a}}, \frac{M^j}{K^j} \right) \right) \\ &\subseteq \prod_{i=0}^j \left(0:_A \operatorname{Ext}_A^{r-i} \left(\frac{A}{\mathfrak{a}}, H^{i-1} \right) \right) \cdot \left(0:_A \operatorname{Ext}_A^{r-j} \left(\frac{A}{\mathfrak{a}}, M^{j-1}/K^{j-1} \right) \right), \end{split}$$

and, by the induction hypothesis (3), it follows that

$$\prod_{i=0}^{j+1} \left(0:_A \operatorname{Ext}_A^{r-i} \left(A/\mathfrak{a}, H^{i-1} \right) \right) \cdot \left(0:_A \operatorname{Ext}_A^{r-j-1} \left(A/\mathfrak{a}, M^j/K^j \right) \right) \subseteq 0:_A \operatorname{Ext}_A^r(A/\mathfrak{a}, M).$$

3294

This is the end of the induction argument. Putting j = r in (3) gives the result, because $\operatorname{Ext}_A^0(A/\mathfrak{a}, M^r) = 0$ by Lemma 2.1(b) and, as by (1) for j = r there is an embedding $\operatorname{Ext}_A^0(A/\mathfrak{a}, M^{r-1}/K^{r-1}) \hookrightarrow \operatorname{Ext}_A^0(A/\mathfrak{a}, M^r)$, it follows that $\operatorname{Ext}_A^0(A/\mathfrak{a}, M^{r-1}/K^{r-1}) = 0$. \Box

An immediate corollary to the above result is the following.

Corollary 2.3. Assume that M is a finite A-module and that a is an ideal of A such that $aM \neq M$. Then, for each integer r with $0 \leq r < ht_M(a)$,

$$\prod_{i=-1}^{r-1} (0:_A H^i) \subseteq \bigcap_{i=0}^r (0:_A \operatorname{Ext}^i_A(A/\mathfrak{a}, M)).$$

Proof. It follows by Proposition 2.2 and the fact that the extension functors are linear. \Box

Corollary 2.4. Let M be a finite A-module of dimension n and let \mathfrak{a} be an ideal of A such that $\mathfrak{a}M \neq M$. Assume that x is an element of A such that $xH^i = 0$ for all i. Then x^n annihilates all the modules $\operatorname{Ext}_A^r(A/\mathfrak{a}, M), r = 0, 1, \dots, \operatorname{ht}_M(\mathfrak{a}) - 1$ for all ideals \mathfrak{a} of A.

Proof. It follows clearly from Corollary 2.3 \Box

The following lemma states an easy but essential property of annihilators of Cousin cohomologies.

Lemma 2.5. Assume that M is a finite A-module of finite $\dim_A(M) = n$ and that $C_A(M)$ is finite, then $\bigcap_{i \ge -1} (0:_A H^i) \notin \bigcup_{\mathfrak{p} \in Min_A(M)} \mathfrak{p}$.

Proof. By [10, (2.7), vii], $V(0:_A H^i) = \operatorname{Supp}_A(H^i) \subseteq \{\mathfrak{p} \in \operatorname{Supp}_A(M): \dim_{A\mathfrak{p}}(M_\mathfrak{p}) \ge i+2\}$ for all $i \ge -1$. Hence $(0:_A H^i) \nsubseteq \bigcup_{\mathfrak{p} \in \operatorname{Min}_A(M)} \mathfrak{p}$. Now Prime Avoidance Theorem implies that $\bigcap_{i\ge -1} (0:_A H^i) \nsubseteq \bigcup_{\mathfrak{p} \in \operatorname{Min}_A(M)} \mathfrak{p}$. \Box

We are now in a position to prove that the modules with finite Cousin complexes have uniform local cohomological annihilators. But one can state more.

Proposition 2.6. Assume that M is a finite A-module of finite $\dim_A(M) = n$ and that $C_A(M)$ is finite. Then there exists an element $x \in A \setminus \bigcup_{\mathfrak{p} \in \operatorname{Min}_A(M)} \mathfrak{p}$ such that $x \operatorname{Ext}^i_A(A/\mathfrak{m}^j, M) = 0$ for all $i < \operatorname{ht}_M(\mathfrak{m})$, all $j \ge 0$ and all maximal ideals \mathfrak{m} in $\operatorname{Supp}_A(M)$.

Proof. It follows by Lemma 2.5 and Corollary 2.4. \Box

Theorem 2.7. Assume that M is a finite A-module of finite $\dim_A(M) = n$ and that $C_A(M)$ is finite, then M has a uniform local cohomological annihilator.

Proof. By Proposition 2.6, there is an element $x \in A \setminus \bigcup_{p \in Min_A(M)} p$ such that $x \operatorname{Ext}_A^i(A/\mathfrak{m}^j, M) = 0$ for all $i < ht_M(\mathfrak{m})$, all $j \ge 0$, and all maximal ideals \mathfrak{m} in $\operatorname{Supp}_A(M)$. Choose a maximal ideal \mathfrak{m} in $\operatorname{Supp}_A(M)$ and $i < ht_M(\mathfrak{m})$. As $x \in \operatorname{Ann}_A(\operatorname{Ext}_A^i(A/\mathfrak{m}^j, M))$ for all j, we have $x \in \operatorname{Ann}_A(\varinjlim_i (\operatorname{Ext}_A^i(A/\mathfrak{m}^j, M)))$, i.e. $x \operatorname{H}_{\mathfrak{m}}^i(M) = 0$ for all $i < ht_M(\mathfrak{m})$. \Box

Corollary 2.8. Assume that A has finite dimension and that $C_A(A)$ is finite. Then A has a uniform local cohomological annihilator, and so A is locally equidimensional and is universally catenary.

Proof. It is clear from Theorem 2.6 and [12, Theorem 2.1]. \Box

In [12, Corollary 3.3], Zhou proved that any locally equidimensional Noetherian ring has a uniform local cohomological annihilator provided it is a homomorphic image of a Cohen– Macaulay ring of finite dimension. Here we have the following result:

Corollary 2.9. Assume that (A, \mathfrak{m}) is local with Cohen–Macaulay formal fibers. Let M be a finite A-module such that it satisfies (S_2) and that $\operatorname{Min}_{\widehat{A}}(\widehat{M}) = \operatorname{Assh}_{\widehat{A}}(\widehat{M})$. Then M has a uniform local cohomological annihilator.

Proof. By [2, Theorem 2.1], $C_A(M)$ is finite. Now Theorem 2.7 implies the result. \Box

Corollary 2.10. (Compare with [12, Corollary 3.3(i)].) Assume that (A, \mathfrak{m}) is local and that it satisfies (S_2) and all of its formal fibers are Cohen–Macaulay. Then A has a uniform local cohomological annihilator.

Proof. See [2, Corollary 2.2]. \Box

Proposition 2.11. Let M be a finite A-module such that it has a uniform local cohomological annihilator. Then M is locally equidimensional.

Proof. Let $\mathfrak{m} \in \operatorname{Max} \operatorname{Supp}_A(M)$. We will show that $\dim_{A_\mathfrak{m}}(M_\mathfrak{m}) = \dim_{\mathfrak{m}}/\mathfrak{p}_{A_\mathfrak{m}}$ for all $\mathfrak{p} \in \operatorname{Spec} A$ with $\mathfrak{p} \in \operatorname{Min}_A(M)$ and $\mathfrak{p} \subseteq \mathfrak{m}$. By assumption, there exists an element $x \in A \setminus \bigcup_{\mathfrak{p} \in \operatorname{Min}_A(M)} \mathfrak{p}$ such that $x \operatorname{H}^i_\mathfrak{m}(M) = 0$ for all $i < \dim_{A_\mathfrak{m}}(M_\mathfrak{m})$. As $x \in A_\mathfrak{m} \setminus \bigcup_{\mathfrak{p} A_\mathfrak{m} \in \operatorname{Min}_A(M_\mathfrak{m})} \mathfrak{p}_A$, and $\operatorname{H}^i_\mathfrak{m}(M) \cong \operatorname{H}^i_{\mathfrak{m}A_\mathfrak{m}}(M_\mathfrak{m})$ by using the definition of local cohomology, we may assume that (A, \mathfrak{m}) is local with the maximal ideal \mathfrak{m} and write $d := \dim_A(M)$.

Assume, to the contrary, that there exists $\mathfrak{p} \in \operatorname{Min}_A(M)$ with $c := \dim A/\mathfrak{p} < d$. Set $S = \{\mathfrak{q} \in \operatorname{Min}_A(M): \dim A/\mathfrak{q} \leq c\}$ and $T = \operatorname{Ass}_A(M) \setminus S$. There exists a submodule N of M such that $\operatorname{Ass}_A(N) = T$ and $\operatorname{Ass}_A(M/N) = S$. Note that $\dim_A(M/N) = c$ and that $\dim_A(N) = d$. As $\sqrt{0}:_A N = \bigcap_{\mathfrak{q} \in T} \mathfrak{q}$, it follows that there exists an element $y \in 0:_A N \setminus \bigcup_{\mathfrak{q} \in S} \mathfrak{q}$. Thus, trivially, $yH^i_{\mathfrak{m}}(N) = 0$ for all $i \geq 0$. The exact sequence $0 \to N \to M \to M/N \to 0$ implies the exact sequence $H^i_{\mathfrak{m}}(M) \to H^i_{\mathfrak{m}}(M/N) \to H^{i+1}_{\mathfrak{m}}(N)$. As $xH^i_{\mathfrak{m}}(M) = 0$ for all i < d, it follows that $xyH^i_{\mathfrak{m}}(M/N) = 0$ for all i < d. In particular, $xyH^c_{\mathfrak{m}}(M/N) = 0$. Thus $xy \in \bigcap_{\mathfrak{q} \in \operatorname{Assh}_A(M/N)} \mathfrak{q}$ (cf. [1, Proposition 7.2.11 and Theorem 7.3.2]). Therefore $xy \in \mathfrak{p}$ by the choice of \mathfrak{p} . As $\mathfrak{p} \in S \cap \operatorname{Min}_A(M)$, this is a contradiction. \Box

Now we can state the following result which partially extends Corollary 2.8.

Corollary 2.12. Let M be a finite A-module such that its Cousin complex $C_A(M)$ is finite. Then M is locally equidimensional.

Proof. The proof is clear from Theorem 2.7 and Proposition 2.11. \Box

Now it is easy to provide an example of a module whose Cousin complex has at least one non-finite cohomology.

Example. Consider a Noetherian local ring A of dimension d > 2. Choose any pair of prime ideals \mathfrak{p} and \mathfrak{q} of A with conditions dim $A/\mathfrak{p} = 2$, dim $A/\mathfrak{q} = 1$, and $\mathfrak{p} \notin \mathfrak{q}$. Then $Min_A(A/\mathfrak{pq}) = {\mathfrak{p}, \mathfrak{q}}$ and so A/\mathfrak{pq} is not an equidimensional A-module and thus its Cousin complex is not finite.

We are now ready to present the following result which, for a finite module M, shows connections of finiteness of its Cousin complex, existence of a uniform local cohomological annihilator for M, and equidimensionality of \widehat{M} .

Theorem 2.13. Let A be a local ring with Cohen–Macaulay formal fibers. Assume that M is a finite A-module which satisfies the condition (S_2) of Serre. Then the following statements are equivalent.

- (i) $\operatorname{Min}_{\widehat{A}}(\widehat{M}) = \operatorname{Assh}_{\widehat{A}}(\widehat{M}).$
- (ii) The Cousin complex of M is finite.
- (iii) *M* has a uniform local cohomological annihilator.
- **Proof.** (i) \Rightarrow (ii) by [2, Theorem 2.1].

(ii) \Rightarrow (iii). This is Theorem 2.7.

(iii) \Rightarrow (i). There exists an element $x \in A \setminus \bigcup_{\mathfrak{p} \in \operatorname{Min}_A(M)} \mathfrak{p}$ such that $xH_{\mathfrak{m}}^i(M) = 0$ for all $i < \dim_A(M)$, and, by artinianness of local cohomology modules, $xH_{\mathfrak{m}}^i(\widehat{M}) = 0$ for all $i < \dim_{\widehat{A}}(\widehat{M})$. Assume that \mathcal{Q} is an element of $\operatorname{Min}_{\widehat{A}}(\widehat{M})$. Note that $0:_A M \subseteq \mathcal{Q} \cap A$ and, by Going Down Theorem, $\mathcal{Q} \cap A \in \operatorname{Min}_A(M)$. Hence $x \notin \mathcal{Q}$. Therefore \widehat{M} has a uniform local cohomological annihilator. Now, Proposition 2.11 implies that $\operatorname{Min}_{\widehat{A}}(\widehat{M}) = \operatorname{Assh}_{\widehat{A}}(\widehat{M})$. \Box

We end this section by showing that any finite A-module M which has a uniform local cohomological annihilator is universally catenary, that is the ring $A/(0:_A M)$ is universally catenary.

Theorem 2.14. Let M be a finite A-module that has a uniform local cohomological annihilator. Then $A/(0:_A M)$ has a uniform local cohomological annihilator and so $A/(0:_A M)$ is universally catenary.

Proof. By Proposition 2.11, $A/(0:_A M)$ is locally equidimensional. By [12, Theorem 3.2], it is enough to show that $\frac{A}{0:_A M} / \frac{\mathfrak{p}}{0:_A M} \cong A/\mathfrak{p}$ has a uniform local cohomological annihilator for each minimal prime ideal \mathfrak{p} of M. We prove it by using the ideas given in the proof of [12, Theorem 3.2].

Assume that $\mathfrak{p} \in \operatorname{Min}_A(M)$ and that \mathfrak{m} is a maximal ideal containing \mathfrak{p} . As $M_\mathfrak{p}$ is an $A_\mathfrak{p}$ -module of finite length we set $t := l_{A_\mathfrak{p}}(M_\mathfrak{p})$. Then there exists a chain of submodules $0 \subset N_1 \subset N_2 \subset \cdots \subset N_t \subseteq M$ such that the following sequences are exact.

$$\begin{array}{l} 0 \longrightarrow A/\mathfrak{p} \longrightarrow M \longrightarrow M/N_0 \longrightarrow 0, \\ 0 \longrightarrow A/\mathfrak{p} \longrightarrow M/N_0 \longrightarrow M/N_1 \longrightarrow 0, \\ \vdots \\ 0 \longrightarrow A/\mathfrak{p} \longrightarrow M/N_{t-2} \longrightarrow M/N_{t-1} \longrightarrow 0, \\ 0 \longrightarrow A/\mathfrak{p} \longrightarrow M/N_{t-1} \longrightarrow M/N_t \longrightarrow 0. \end{array}$$

Since $M_{\mathfrak{m}}$ is equidimensional, $\operatorname{ht}_{M}(\mathfrak{m}/\mathfrak{p}) = \operatorname{ht}_{M}(\mathfrak{m})$. As, by definition of $t, \mathfrak{p} \notin \operatorname{Ass}_{A}(M/N_{t})$, it follows that $0:_{A}(M/N_{t}) \notin \mathfrak{p}$. Localizing the above exact sequences at \mathfrak{m} implies the following exact sequences.

$$\begin{array}{l} 0 \longrightarrow (A/\mathfrak{p})_{\mathfrak{m}} \longrightarrow M_{\mathfrak{m}} \longrightarrow (M/N_{0})_{\mathfrak{m}} \longrightarrow 0, \\ 0 \longrightarrow (A/\mathfrak{p})_{\mathfrak{m}} \longrightarrow (M/N_{0})_{\mathfrak{m}} \longrightarrow (M/N_{1})_{\mathfrak{m}} \longrightarrow 0, \\ \vdots \\ 0 \longrightarrow (A/\mathfrak{p})_{\mathfrak{m}} \longrightarrow (M/N_{t-2})_{\mathfrak{m}} \longrightarrow (M/N_{t-1})_{\mathfrak{m}} \longrightarrow 0, \\ 0 \longrightarrow (A/\mathfrak{p})_{\mathfrak{m}} \longrightarrow (M/N_{t-1})_{\mathfrak{m}} \longrightarrow (M/N_{t})_{\mathfrak{m}} \longrightarrow 0. \end{array}$$

Choose an element $y \in 0$: $_A(M/N_l) \setminus \mathfrak{p}$. By assumption, there is an element $x \in A \setminus \bigcup_{\mathfrak{q} \in Min_A(M)} \mathfrak{q}$ such that $xH^i_{\mathfrak{m}A_\mathfrak{m}}(M_\mathfrak{m}) = 0$ for all $i < ht_M(\mathfrak{m})$. Now, with a similar technique as in the proof of [12, Lemma 3.1(i)] one can deduce that $(xy)^l H^i_\mathfrak{m}(A/\mathfrak{p})_\mathfrak{m} = 0$ for all $i < ht_M(\mathfrak{m})$ and for some integer l > 0. \Box

Corollary 2.15. Let M be a finite A-module of finite dimension such its Cousin complex $C_A(M)$ is finite. Then the ring $A/0:_A M$ is universally catenary.

Proof. By Theorem 2.7, *M* has a uniform local cohomological annihilator. Now, the result follows by Theorem 2.14. \Box

3. Height of an ideal

As mentioned in Corollary 2.3 and in the proof of Theorem 2.7, we may write the following corollary.

Corollary 3.1. For any finite A-module M and any ideal \mathfrak{a} of A with $\mathfrak{a}M \neq M$,

$$\prod_{-1 \leqslant i} \left(0 :_A H^i \right) \subseteq 0 :_A H^{\operatorname{ht}_M(\mathfrak{a}) - 1}_{\mathfrak{a}}(M).$$

We now raise the question that whether it is possible to improve the upper bound restriction.

Question. Does the inequality

$$\prod_{-1 \leqslant i} \left(0 :_A H^i \right) \subseteq 0 :_A \mathrm{H}^{\mathrm{ht}_M(\mathfrak{a})}_{\mathfrak{a}}(M)$$

hold?

It will be proved that the answer is negative for the class of finite A-modules M with finite Cousin cohomologies. More precisely,

Theorem 3.2. Assume that M is a finite A-module of finite dimension and that its Cousin complex $C_A(M)$ is finite. Then

$$\operatorname{ht}_{M}(\mathfrak{a}) = \inf \left\{ r \colon \prod_{-1 \leqslant i} \left(0 :_{A} H^{i} \right) \nsubseteq 0 :_{A} H^{r}_{\mathfrak{a}}(M) \right\},\$$

for all ideals \mathfrak{a} with $\mathfrak{a}M \neq M$.

Proof. By Corollary 2.3, $\prod_{i \ge -1} (0:_A H^i) \subseteq 0:_A \operatorname{Ext}_A^r(A/\mathfrak{a}^n, M)$ for all $r, 0 \le r < \operatorname{ht}_M(\mathfrak{a})$ and all $n \ge 0$. Passing to the direct limit, as in the proof of Theorem 2.7, one has $\prod_{i \ge -1} (0:_A H^i) \subseteq 0:_A \operatorname{H}_{\mathfrak{a}}^r(M)$ for all $r < \operatorname{ht}_M(\mathfrak{a})$. Hence we have

$$\operatorname{ht}_{M}(\mathfrak{a}) \leq \inf \left\{ r \colon \prod_{-1 \leq i} \left(0 :_{A} H^{i} \right) \nsubseteq 0 :_{A} \operatorname{H}^{r}_{\mathfrak{a}}(M) \right\}.$$

Thus it is sufficient to show that $\prod_{-1 \leq i} (0:_A H^i) \notin 0:_A H_{\mathfrak{a}}^{\mathfrak{ht}_M(\mathfrak{a})}(M)$. By Independence Theorem of local cohomology (cf. [1, Theorem 4.2.1]), $H_{\mathfrak{a}}^{\mathfrak{ht}_M(\mathfrak{a})}(M) = H_{\mathfrak{b}}^{\mathfrak{ht}_M(\mathfrak{b})}(M)$ as $\overline{A} = A/(0:_A M)$ -module, where $\mathfrak{b} = \mathfrak{a} + 0:_A M/0:_A M$. Note that $\mathfrak{ht}_M(\mathfrak{a}) = \mathfrak{ht}_M(\mathfrak{b})$ and that $\mathcal{C}_A(M) \cong \mathcal{C}_{\overline{A}}(M)$ (see [2, Lemma 1.2]).

Hence we may assume that $0:_A M = 0$. Set $h := ht_M(\mathfrak{a})$. Let $x \in 0:_A H^h_\mathfrak{a}(M)$. As $\mathfrak{a}M \neq M$, there exists a minimal prime \mathfrak{q} over \mathfrak{a} in $\operatorname{Supp}_A(M)$ such that $\dim(A_\mathfrak{q}) = ht_M(\mathfrak{a})$. Hence $x/1 \in 0:_{A_\mathfrak{q}} H^h_{\mathfrak{q}A_\mathfrak{q}}(M_\mathfrak{q})$. Thus, by any choice of $\mathfrak{p}A_\mathfrak{q} \in \operatorname{Assh}_{A_\mathfrak{q}}(M_\mathfrak{q})$ we have $x/1 \in \mathfrak{p}A_\mathfrak{q}$ (see [1, Proposition 7.2.11(ii) and Theorem 7.3.2]) and so $x \in \mathfrak{p}$. Therefore, one has $0:_A H^h_\mathfrak{a}(M) \subseteq \bigcup_{\mathfrak{p}\in\operatorname{Min}_A(M)} \mathfrak{p}$. On the other hand, by Lemma 2.5, $\prod_{i \geq -1} (0:_A H^i) \not\subseteq \bigcup_{\mathfrak{p}\in\operatorname{Min}_A(M)} \mathfrak{p}$, from which it follows that

$$\prod_{i \ge -1} \left(0 :_A H^i \right) \nsubseteq 0 :_A \operatorname{H}^h_{\mathfrak{a}}(M). \qquad \sqsubset$$

Acknowledgment

The authors are grateful to the referee for helpful comments.

References

- M.P. Brodmann, R.Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Stud. Adv. Math., vol. 60, Cambridge University Press, Cambridge, 1998.
- [2] M.T. Dibaei, A study of Cousin complexes through the dualizing complexes, Comm. Algebra 33 (2005) 119–132.
- [3] M.T. Dibaei, M. Tousi, The structure of dualizing complex for a ring which is (S₂), J. Math. Kyoto Univ. 38 (1998) 503–516.
- [4] R. Hartshorne, Residues and Duality, Lecture Notes in Math., vol. 20, Springer, Berlin, 1966.
- [5] M. Hochster, C. Huneke, Tight closure, invariant theory, and the Briancon–Skoda theorem, J. Amer. Math. Soc. 3 (1990) 31–116.
- [6] M. Hochster, C. Huneke, Infinite integral extensions and big Cohen–Macaulay algebras, Ann. of Math. 3 (1992) 53–89.
- [7] C. Huneke, Uniform bounds in Noetherian rings, Invent. Math. 107 (1992) 203-223.
- [8] T. Kawasaki, Finiteness of Cousin cohomologies, Trans. Amer. Math. Soc., in press.

- [9] J. Lipman, S. Nayak, P. Sastry, Pseudofunctorial behavior of Cousin complexes on formal schemes, in: Contemp. Math., vol. 375, 2005, pp. 3–133.
- [10] R.Y. Sharp, The Cousin complex for a module over a commutative Noetherian ring, Math. Z. 112 (1969) 340-356.
- [11] R.Y. Sharp, Local cohomology and the Cousin complex for a commutative Noetherian ring, Math. Z. 153 (1977) 19–22.
- [12] C. Zhou, Uniform annihilators of local cohomology, J. Algebra 305 (2006) 585-602.