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Abstract

Let A be a Noetherian ring. It is shown that any finite A-module M of finite Krull dimension with finite
Cousin complex cohomologies has a uniform local cohomological annihilator. The converse is also true for
a finite module M satisfying (S2) which is over a local ring with Cohen–Macaulay formal fibers.
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1. Introduction

Throughout let A denote a commutative Noetherian ring and M a finite (i.e. finitely generated)
A-module. Recall that an A-module M is called equidimensional (or unmixed) if MinA(M) =
AsshA(M) (i.e. for each minimal prime p of SuppA(M), dimA(M) = dim(A/p)). For an ideal
a of A, write Hi

a(M) for the ith local cohomology module of M with support in V (a) = {p ∈
Spec(A): p ⊇ a}. An element x ∈ A is called a uniform local cohomological annihilator of M if
x ∈ A\⋃

p∈MinA(M) p and for each maximal ideal m of A, xHi
m(M) = 0 for all i < dimAm

(Mm).
The existence of a local cohomological annihilator is studied by Hochster and Huneke [6] and
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proved its importance for the existence of big Cohen–Macaulay algebras and a uniform Artin–
Rees theorem [7].

In [12], Zhou studied rings with a uniform local cohomological annihilator. Hochster and
Huneke, in [5], proved that if A is locally equidimensional (i.e. Am is equidimensional for every
maximal ideal m of A) and is a homomorphic image of a Gorenstein ring of finite dimension,
then A has a strong uniform local cohomological annihilator (i.e. A has an element which is
a uniform local cohomological annihilator of Ap for each p ∈ Spec(A)). In [12], Zhou showed
that if a locally equidimensional ring A of positive dimension is a homomorphic image of a
Cohen–Macaulay ring of finite dimension (or an excellent local ring), then A has a uniform local
cohomological annihilator.

Cousin complexes were introduced by Hartshorne in [4] and have a commutative algebra ana-
logue given by Sharp in [10]. Recently, Cousin complexes have been studied by several authors.
In [2,3] and [8], Dibaei, Tousi, and Kawasaki studied finite Cousin complexes (i.e. the Cousin
complexes with finitely generated cohomologies). In [9, Proposition 9.3.5], Lipman, Nayak, and
Sastry generalized these results to complexes on formal schemes.

In Section 2, it is proved that any finite A-module of finite Krull dimension with finite Cousin
complex cohomologies has a uniform local cohomological annihilator (Theorem 2.7). As a re-
sult it follows that if (A,m) is local, satisfies Serre’s condition (S2), and such that all of its
fibers of A → Â are Cohen–Macaulay, then A has a uniform local cohomological annihilator
(Corollary 2.10). For a finite module M over a local ring (A,m) satisfying (S2) and with Cohen–
Macaulay formal fibers, it is proved that the following conditions are equivalent: (i) M̂ , the
completion of M with respect to m-adic topology, is equidimensional; (ii) CA(M), the Cousin
complex of M is finite; (iii) M has a uniform local cohomological annihilator (Theorem 2.13).

In Section 3, for certain modules M , the relationship between the cohomology modules of the
Cousin complex of M and the local cohomology modules of M with respect to an arbitrary ideal
of A is studied. It is shown that the M-height of a is equal to the infimum of numbers r for which
0 :A Hr

a(M) does not contain the product of all the annihilators of the Cousin cohomologies of M

(Theorem 3.2).

2. Cousin complexes

Let M be an A-module and let H = {Hi : i � 0} be the family of subsets of SuppA(M)

with Hi = {p ∈ SuppA(M): dimAp
(Mp) � i}. The family H is called the M-height filtration of

SuppA(M). Define the Cousin complex of M as the complex

CA(M): 0 d−2−−→ M−1 d−1−−→ M0 d0−→ M1 d1−→ · · · di−1−−−→ Mi di−→ Mi+1 −→ · · · , (∗)

where M−1 = M , Mi = ⊕
p∈Hi\Hi+1

(Cokerdi−2)p for i > −1. The homomorphism di :Mi →
Mi+1 has the following property: for m ∈ Mi and p ∈ Hi \ Hi+1, the component of di(m) in
(Cokerdi−1)p is m/1, where¯:Mi → Cokerdi−1 is the natural map (see [10] for details).

Throughout, for the Cousin complex (∗), we use the following notations:

Ki := Kerdi, Di := Imdi−1, H i := Ki/Di, i = −1,0, . . . .

We call the Cousin complex CA(M) finite if, for each i, the cohomology module Hi is finite.
Recall that for an ideal a of A and an A-module M , the M-height of a is defined by htM(a) :=
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inf{dimMp: p ∈ SuppA(M) ∩ V(a)}. Note that htM(a) � 0 whenever M �= aM . If M is finitely
generated then htM(a) = ht(a+I

I
), where I = AnnA(M).

We begin by the following lemma which for the first part we adopt the argument in [11,
Theorem].

Lemma 2.1. Let M be an A-module. For any integer k with 0 � k < htM(a), the following
statements are true.

(a) Hs
a(Mk) = 0 for all integers s � 0.

(b) ExtsA(A/a,Mk) = 0 for all integers s � 0.

Proof. (a) Set Ck−1 := Cokerdk−2 = Mk−1/Dk−1 so that Mk = ⊕
p∈SuppA(M)

htM(p)=k

(Ck−1)p. For

each k < htM(a) and each p ∈ SuppA(M) with htM(p) = k, there exists an element x ∈ a \ p.
Thus the multiplication map (Ck−1)p

x−→ (Ck−1)p is an automorphism and so the multiplication
map Hs

a((Ck−1)p)
x−→ Hs

a((Ck−1)p) is also an automorphism for all integers s. One may then
conclude that Hs

a((Ck−1)p) = 0. Now, from additivity of local cohomology functors, it follows
that Hs

a(Mk) = 0.
(b) Assume in general that N is an A-module such that Hs

a(N) = 0 for all s � 0. We
show, by induction on i, i � 0, that ExtiA(A/a,N) = 0. For i = 0, one has HomA(A/a,N) =
HomA(A/a,H0

a(N)) which is zero. Assume that i > 0 and the claim is true for any such module
N and all j � i − 1. Choose E to be an injective hull of N and consider the exact sequence
0 → N → E → N ′ → 0, where N ′ = E/N . As H0

a(E) = 0, it follows that Hs
a(N ′) = 0 for all

s � 0. Thus Exti−1
A (A/a,N ′) = 0, by our induction hypothesis. As, by the above exact sequence

Exti−1
A (A/a,N ′) ∼= ExtiA(A/a,N), the result follows. �
The following technical result is important for the rest of the paper.

Proposition 2.2. Let M be an A-module and let a be an ideal of A such that aM �= M . Then, for
each non-negative integer r with r < htM(a),

r∏
i=0

(
0 :A Extr−i

A

(
A/a,H i−1)) ⊆ 0 :A ExtrA(A/a,M).

Here
∏

is used for product of ideals.

Proof. For each j � −1, there are the natural exact sequences

0 −→ Mj−1/Kj−1 −→ Mj −→ Mj/Dj −→ 0, (1)

0 −→ Hj−1 −→ Mj−1/Dj−1 −→ Mj−1/Kj−1 −→ 0. (2)

Let 0 � r < htM(a).
We prove by induction on j , 0 � j � r , that

j∏(
0 :A Extr−i

A

(
A/a,H i−1)) · (0 :A Extr−j

A

(
A/a,Mj−1/Kj−1)) ⊆ 0 :A ExtrA(A/a,M). (3)
i=0
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In case j = 0, the exact sequence (2) implies the exact sequence

ExtrA
(
A/a,H−1) −→ ExtrA(A/a,M) −→ ExtrA

(
A/a,M−1/K−1)

so that

(
0 :A ExtrA

(
A/a,H−1)) · (0 :A ExtrA

(
A/a,M−1/K−1)) ⊆ 0 :A ExtrA(A/a,M)

and thus the case j = 0 is justified.
Assume that 0 � j < r and formula (3) is settled for j . Therefore, by Lemma 2.1(b), for-

mula (1) implies that

Extr−j
A

(
A/a,Mj−1/Kj−1) ∼= Extr−j−1

A

(
A/a,Mj/Dj

)
. (4)

On the other hand the exact sequence (2) implies the exact sequence

Extr−j−1
A

(
A/a,Hj

) −→ Extr−j−1
A

(
A/a,Mj/Dj

) −→ Extr−j−1
A

(
A/a,Mj/Kj

)
,

from which it follows that

(
0 :A Extr−j−1

A

(
A/a,Hj

)) ·
(

0 :A Extr−j−1
A

(
A/a,

Mj

Kj

))
⊆ 0 :A Extr−j−1

A

(
A/a,

Mj

Dj

)
. (5)

Now (4) and (5) imply that

(
0 :A Extr−j−1

A

(
A/a,Hj

)) ·
(

0 :A Extr−j−1
A

(
A/a,

Mj

Kj

))
⊆ 0 :A Extr−j

A

(
A/a,

Mj−1

Kj−1

)
. (6)

From (6), it follows that

j+1∏
i=0

(
0 :A Extr−i

A

(
A

a
,H i−1

))
·
(

0 :A Extr−j−1
A

(
A

a
,
Mj

Kj

))

=
∏j

i=0

(
0 :A Extr−i

A

(
A

a
,H i−1

))
·
(

0 :A Extr−j−1
A

(
A

a
,Hj

))

·
(

0 :A Extr−j−1
A

(
A

a
,
Mj

Kj

))

⊆
j∏

i=0

(
0 :A Extr−i

A

(
A

a
,H i−1

))
·
(

0 :A Extr−j
A

(
A

a
,Mj−1/Kj−1

))
,

and, by the induction hypothesis (3), it follows that

j+1∏(
0 :A Extr−i

A

(
A/a,H i−1)) · (0 :A Extr−j−1

A

(
A/a,Mj/Kj

)) ⊆ 0 :A ExtrA(A/a,M).
i=0
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This is the end of the induction argument. Putting j = r in (3) gives the result, be-
cause Ext0A(A/a,Mr) = 0 by Lemma 2.1(b) and, as by (1) for j = r there is an embedding
Ext0A(A/a,Mr−1/Kr−1) ↪→ Ext0A(A/a,Mr), it follows that Ext0A(A/a,Mr−1/Kr−1) = 0. �

An immediate corollary to the above result is the following.

Corollary 2.3. Assume that M is a finite A-module and that a is an ideal of A such that aM �= M .
Then, for each integer r with 0 � r < htM(a),

r−1∏
i=−1

(
0 :A Hi

) ⊆
r⋂

i=0

(
0 :A ExtiA(A/a,M)

)
.

Proof. It follows by Proposition 2.2 and the fact that the extension functors are linear. �
Corollary 2.4. Let M be a finite A-module of dimension n and let a be an ideal of A such that
aM �= M . Assume that x is an element of A such that xHi = 0 for all i. Then xn annihilates all
the modules ExtrA(A/a,M), r = 0,1, . . . ,htM(a) − 1 for all ideals a of A.

Proof. It follows clearly from Corollary 2.3 �
The following lemma states an easy but essential property of annihilators of Cousin coho-

mologies.

Lemma 2.5. Assume that M is a finite A-module of finite dimA(M) = n and that CA(M) is finite,
then

⋂
i�−1(0 :A Hi) �

⋃
p∈MinA(M) p.

Proof. By [10, (2.7), vii], V(0 :A Hi) = SuppA(H i) ⊆ {p ∈ SuppA(M): dimAp
(Mp) � i + 2}

for all i � −1. Hence (0 :A Hi) �
⋃

p∈MinA(M) p. Now Prime Avoidance Theorem implies that⋂
i�−1(0 :A Hi) �

⋃
p∈MinA(M) p. �

We are now in a position to prove that the modules with finite Cousin complexes have uniform
local cohomological annihilators. But one can state more.

Proposition 2.6. Assume that M is a finite A-module of finite dimA(M) = n and that CA(M) is
finite. Then there exists an element x ∈ A \ ⋃

p∈MinA(M) p such that x ExtiA(A/mj ,M) = 0 for
all i < htM(m), all j � 0 and all maximal ideals m in SuppA(M).

Proof. It follows by Lemma 2.5 and Corollary 2.4. �
Theorem 2.7. Assume that M is a finite A-module of finite dimA(M) = n and that CA(M) is
finite, then M has a uniform local cohomological annihilator.

Proof. By Proposition 2.6, there is an element x ∈ A \ ⋃
p∈MinA(M) p such that x ExtiA(A/mj ,

M) = 0 for all i < htM(m), all j � 0, and all maximal ideals m in SuppA(M). Choose a maximal
ideal m in SuppA(M) and i < htM(m). As x ∈ AnnA(ExtiA(A/mj ,M)) for all j , we have x ∈
AnnA(lim (Exti (A/mj ,M))), i.e. xHi (M) = 0 for all i < htM(m). �
−→j A m
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Corollary 2.8. Assume that A has finite dimension and that CA(A) is finite. Then A has a uniform
local cohomological annihilator, and so A is locally equidimensional and is universally catenary.

Proof. It is clear from Theorem 2.6 and [12, Theorem 2.1]. �
In [12, Corollary 3.3], Zhou proved that any locally equidimensional Noetherian ring has

a uniform local cohomological annihilator provided it is a homomorphic image of a Cohen–
Macaulay ring of finite dimension. Here we have the following result:

Corollary 2.9. Assume that (A,m) is local with Cohen–Macaulay formal fibers. Let M be a finite
A-module such that it satisfies (S2) and that MinÂ(M̂) = AsshÂ(M̂). Then M has a uniform local
cohomological annihilator.

Proof. By [2, Theorem 2.1], CA(M) is finite. Now Theorem 2.7 implies the result. �
Corollary 2.10. (Compare with [12, Corollary 3.3(i)].) Assume that (A,m) is local and that
it satisfies (S2) and all of its formal fibers are Cohen–Macaulay. Then A has a uniform local
cohomological annihilator.

Proof. See [2, Corollary 2.2]. �
Proposition 2.11. Let M be a finite A-module such that it has a uniform local cohomological
annihilator. Then M is locally equidimensional.

Proof. Let m ∈ Max SuppA(M). We will show that dimAm
(Mm) = dimAm/pAm for all p ∈

SpecA with p ∈ MinA(M) and p ⊆ m. By assumption, there exists an element
x ∈ A \ ⋃

p∈MinA(M) p such that xHi
m(M) = 0 for all i < dimAm

(Mm). As x ∈ Am \⋃
pAm∈MinAm (Mm) pAm, and Hi

m(M) ∼= Hi
mAm

(Mm) by using the definition of local cohomol-
ogy, we may assume that (A,m) is local with the maximal ideal m and write d := dimA(M).

Assume, to the contrary, that there exists p ∈ MinA(M) with c := dimA/p < d . Set S = {q ∈
MinA(M): dimA/q � c} and T = AssA(M) \ S. There exists a submodule N of M such that
AssA(N) = T and AssA(M/N) = S. Note that dimA(M/N) = c and that dimA(N) = d . As√

0 :A N = ⋂
q∈T q, it follows that there exists an element y ∈ 0 :A N \ ⋃

q∈S q. Thus, trivially,

yHi
m(N) = 0 for all i � 0. The exact sequence 0 → N → M → M/N → 0 implies the exact

sequence Hi
m(M) → Hi

m(M/N) → Hi+1
m (N). As xHi

m(M) = 0 for all i < d , it follows that
xyHi

m(M/N) = 0 for all i < d . In particular, xyHc
m(M/N) = 0. Thus xy ∈ ⋂

q∈AsshA(M/N) q

(cf. [1, Proposition 7.2.11 and Theorem 7.3.2]). Therefore xy ∈ p by the choice of p. As p ∈
S ∩ MinA(M), this is a contradiction. �

Now we can state the following result which partially extends Corollary 2.8.

Corollary 2.12. Let M be a finite A-module such that its Cousin complex CA(M) is finite. Then
M is locally equidimensional.

Proof. The proof is clear from Theorem 2.7 and Proposition 2.11. �



M.T. Dibaei, R. Jafari / Journal of Algebra 319 (2008) 3291–3300 3297
Now it is easy to provide an example of a module whose Cousin complex has at least one
non-finite cohomology.

Example. Consider a Noetherian local ring A of dimension d > 2. Choose any pair of prime
ideals p and q of A with conditions dimA/p = 2, dimA/q = 1, and p � q. Then MinA(A/pq) =
{p,q} and so A/pq is not an equidimensional A-module and thus its Cousin complex is not finite.

We are now ready to present the following result which, for a finite module M , shows connec-
tions of finiteness of its Cousin complex, existence of a uniform local cohomological annihilator
for M , and equidimensionality of M̂ .

Theorem 2.13. Let A be a local ring with Cohen–Macaulay formal fibers. Assume that M is a
finite A-module which satisfies the condition (S2) of Serre. Then the following statements are
equivalent.

(i) MinÂ(M̂) = AsshÂ(M̂).
(ii) The Cousin complex of M is finite.

(iii) M has a uniform local cohomological annihilator.

Proof. (i) ⇒ (ii) by [2, Theorem 2.1].
(ii) ⇒ (iii). This is Theorem 2.7.
(iii) ⇒ (i). There exists an element x ∈ A \ ⋃

p∈MinA(M) p such that xHi
m(M) = 0 for

all i < dimA(M), and, by artinianness of local cohomology modules, xHi
m̂

(M̂) = 0 for all
i < dimÂ(M̂). Assume that Q is an element of MinÂ(M̂). Note that 0 :A M ⊆ Q ∩ A and, by
Going Down Theorem, Q ∩ A ∈ MinA(M). Hence x /∈ Q. Therefore M̂ has a uniform local
cohomological annihilator. Now, Proposition 2.11 implies that MinÂ(M̂) = AsshÂ(M̂). �

We end this section by showing that any finite A-module M which has a uniform local coho-
mological annihilator is universally catenary, that is the ring A/(0 :A M) is universally catenary.

Theorem 2.14. Let M be a finite A-module that has a uniform local cohomological annihilator.
Then A/(0 :A M) has a uniform local cohomological annihilator and so A/(0 :A M) is univer-
sally catenary.

Proof. By Proposition 2.11, A/(0 :A M) is locally equidimensional. By [12, Theorem 3.2], it
is enough to show that A

0:AM
/

p

0:AM
∼= A/p has a uniform local cohomological annihilator for

each minimal prime ideal p of M . We prove it by using the ideas given in the proof of [12,
Theorem 3.2].

Assume that p ∈ MinA(M) and that m is a maximal ideal containing p. As Mp is an Ap-
module of finite length we set t := lAp

(Mp). Then there exists a chain of submodules 0 ⊂ N1 ⊂
N2 ⊂ · · · ⊂ Nt ⊆ M such that the following sequences are exact.

0 −→ A/p −→ M −→ M/N0 −→ 0,

0 −→ A/p −→ M/N0 −→ M/N1 −→ 0,
...

0 −→ A/p −→ M/Nt−2 −→ M/Nt−1 −→ 0,

0 −→ A/p −→ M/N −→ M/N −→ 0.
t−1 t
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Since Mm is equidimensional, htM(m/p) = htM(m). As, by definition of t , p /∈ AssA(M/Nt), it
follows that 0 :A (M/Nt) � p. Localizing the above exact sequences at m implies the following
exact sequences.

0 −→ (A/p)m −→ Mm −→ (M/N0)m −→ 0,

0 −→ (A/p)m −→ (M/N0)m −→ (M/N1)m −→ 0,
...

0 −→ (A/p)m −→ (M/Nt−2)m −→ (M/Nt−1)m −→ 0,

0 −→ (A/p)m −→ (M/Nt−1)m −→ (M/Nt)m −→ 0.

Choose an element y ∈ 0 :A (M/Nt) \ p. By assumption, there is an element x ∈ A \⋃
q∈MinA(M) q such that xHi

mAm
(Mm) = 0 for all i < htM(m). Now, with a similar technique as

in the proof of [12, Lemma 3.1(i)] one can deduce that (xy)lHi
m(A/p)m = 0 for all i < htM(m)

and for some integer l > 0. �
Corollary 2.15. Let M be a finite A-module of finite dimension such its Cousin complex CA(M)

is finite. Then the ring A/0 :A M is universally catenary.

Proof. By Theorem 2.7, M has a uniform local cohomological annihilator. Now, the result fol-
lows by Theorem 2.14. �
3. Height of an ideal

As mentioned in Corollary 2.3 and in the proof of Theorem 2.7, we may write the following
corollary.

Corollary 3.1. For any finite A-module M and any ideal a of A with aM �= M ,

∏
−1�i

(
0 :A Hi

) ⊆ 0 :A HhtM(a)−1
a (M).

We now raise the question that whether it is possible to improve the upper bound restriction.

Question. Does the inequality

∏
−1�i

(
0 :A Hi

) ⊆ 0 :A HhtM(a)
a (M)

hold?

It will be proved that the answer is negative for the class of finite A-modules M with finite
Cousin cohomologies. More precisely,
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Theorem 3.2. Assume that M is a finite A-module of finite dimension and that its Cousin complex
CA(M) is finite. Then

htM(a) = inf

{
r:

∏
−1�i

(
0 :A Hi

)
� 0 :A Hr

a(M)

}
,

for all ideals a with aM �= M .

Proof. By Corollary 2.3,
∏

i�−1(0 :A Hi) ⊆ 0 :A ExtrA(A/an,M) for all r,0 � r < htM(a) and

all n � 0. Passing to the direct limit, as in the proof of Theorem 2.7, one has
∏

i�−1(0 :A Hi) ⊆
0 :A Hr

a(M) for all r < htM(a). Hence we have

htM(a) � inf

{
r:

∏
−1�i

(
0 :A Hi

)
� 0 :A Hr

a(M)

}
.

Thus it is sufficient to show that
∏

−1�i (0 :A Hi) � 0 :A HhtM(a)
a (M). By Independence Theorem

of local cohomology (cf. [1, Theorem 4.2.1]), HhtM(a)
a (M) = HhtM(b)

b
(M) as A = A/(0 :A M)-

module, where b = a + 0 :A M/0 :A M . Note that htM(a) = htM(b) and that CA(M) ∼= CA(M)

(see [2, Lemma 1.2]).
Hence we may assume that 0 :A M = 0. Set h := htM(a). Let x ∈ 0 :A Hh

a(M). As aM �= M ,
there exists a minimal prime q over a in SuppA(M) such that dim(Aq) = htM(a). Hence
x/1 ∈ 0 :Aq

Hh
qAq

(Mq). Thus, by any choice of pAq ∈ AsshAq
(Mq) we have x/1 ∈ pAq (see

[1, Proposition 7.2.11(ii) and Theorem 7.3.2]) and so x ∈ p. Therefore, one has 0 :A Hh
a(M) ⊆⋃

p∈MinA(M) p. On the other hand, by Lemma 2.5,
∏

i�−1(0 :A Hi) �
⋃

p∈MinA(M) p, from which
it follows that ∏

i�−1

(
0 :A Hi

)
� 0 :A Hh

a(M). �
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