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We consider abstract forced symmetry breaking problems of the type F(x, *)= y.
It is supposed that for all * the maps F( } , *) are equivariant with respect to the
action of a compact Lie group, that F(x0 , *0)=0 and, hence, that F(x, *0)=0 for
all elements x of the group orbit O(x0) of x0 . We look for solutions x which bifur-
cate from the solution family O(x0) as * and y move away from *0 and zero, respec-
tively. Especially, we describe the number of different solutions x (for fixed control
parameters * and y), their dynamic stability and their asymptotic behavior for y
tending to zero. Further, generalizations are given to problems of the type
F(x, *)= y(x, *). Finally, our results are applied to a forced frequency locking
problem of the type x* (t)= f (x(t), *)& y(t). Here it is supposed that the vector
fields f ( } , *) are S1-equivariant, that the unperturbed equation x* = f (x, *0) has an
orbitally stable modulated wave solution and that the forcing y(t) is a modulated
wave. � 1998 Academic Press

1. INTRODUCTION

In this paper we consider abstract forced symmetry breaking problems of
the type

F(x, *)= y. (1.1)

In (1.1), F is a smooth mapping such that for all * the maps F( } , *) are
equivariant with respect to representations of a given compact Lie group 1,
that F(x0 , *0)=0 and, hence, that F(x, *0)=0 for all elements x of the
group orbit O(x0) of x0 . We look for solutions to (1.1) which bifurcate
from the solution family O(x0) as * and y move away from *0 and zero,
respectively. Thus, x is the ``state parameter'', * is the ``internal, symmetry
preserving control parameter'', and y is the ``external, symmetry breaking
control parameter''.
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The aim of this work is to present an analytic and geometric strategy for
predicting, or engineering, solutions to (1.1) in the case of dim O(x0)=
dim 1>0. The strategy is founded on a Lyapunov�Schmidt reduction, cer-
tain scaling techniques (Hadamard's lemma) and the Implicit Function
Theorem. Our results make it possible to determine the number of different
solutions x near O(x0) to (1.1) (for fixed control parameters * near *0 and
y near zero), their dynamic stability, their asymptotic behavior for y
tending to zero and the structural stability of all these results.

In fact, this work is partially an application and partially a generaliza-
tion of results of Hale and Ta� boas [12, 19, 20, 34], Vanderbauwhede
[35, 37], Dancer [14] and Chillingworth [8, 9] in order to solve certain
forced frequency locking problems for modulated wave solutions of
S1-equivariant evolution equations arising from laser modelling (cf. [27]).

The paper is organized as follows.
Using an approach of Vanderbauwhede [36] and Dancer [14], in

Section 2 we carry out a Lyapunov�Schmidt reduction for (1.1) which
leads to a smooth bifurcation equation (though we do not suppose the Lie
group to act smoothly on the state space).

In Section 3 we describe the solution behavior of (1.1) in the case of
vanishing symmetry breaking control parameter:

F(x, *)=0. (1.2)

We show that, generically, there exists a smooth submanifold M in the
*-space with *0 # M and tangential space T*0

M=[* : �* F(x0 , *0)* #
im �x F(x0 , *0)] such that (1.2) is solvable near O(x0) iff * # M. Here we
use and generalize results of Dancer [13, 14, 15], who considered the case
of codim M=0, i.e., the case that (1.2) is solvable for all * near *0 . We are
mainly interested (because of the applications in Section 6 and [27]) in the
case that codim M=dim O(x0) (that is the largest generically possible
codimension of M).

In Section 4 we describe solution families of (1.1) that are obtained by
a scaling technique. These families are smoothly parametrized by the con-
trol parameter (*, y) belonging to certain open subsets (so-called locking
cones, cf. Definition 4.1) of the (*, y)-space. To be more precise, let 42 be
a topological complement of T*0

M in the *-space, and let *� 2 : T*0
M � 42

be a parametrization of M near *0 , i.e.,

M=[*0+*1+*� 2(*1) : *1 # T*0
M, *1r0].

Then the scaling used in Section 4 is

*=*0+*1+*� 2(*1)+=+, y==z, (1.3)
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where = # R and *1 # T*0
M are small, and + # 42 and z are new scaled con-

trol parameters. Each isolated solution #=#0 to the so-called reduced
bifurcation equation

(I&P� )[�*F(x0 , *0) +0&#&1 } z0]=0 (1.4)

generates a family of solutions to (1.1), and the corresponding locking cone
is the set of all control parameters (*, y) of the type (1.3), where = and *1

vary near zero, + near +0 and z near z0 . In (1.4), P� is a projector onto
im �x F(x0 , *0) that commutes with the action of the isotropy subgroup of
x0 . The reduced bifurcation Eq. (1.4) is the vanishing-condition of the first
order term of the =-expansion of the equation, which is created by inserting
(1.3) (with +=+0 and z=z0) and the ansatz

x=# exp (=a1+=2a2+ } } } ) } (x0+=x1+=2x2+ } } } ),

xj # im �xF(x0 , *0) for j>0,

into (1.1).
There exists a remarkable difference between the solution behavior of

problem (1.1) with y{0 and that of problem (1.2): The parameter *2 is a
``state parameter'' for (1.2), because (1.2) determines *2 to be a function of
the ``control parameter'' *1 (which may vary in an open subset of T*0

M).
But for equation (1.1) with y{0, *2 is a ``control parameter'' like *1 ,
because, for all *=(*1 , *2) belonging to the locking cones, (1.1) is solvable
near O(x0). The reason for this behavior is that y=0 is a singular value of
the map F( } , *), while generic values y{0 are regular one's.

In Section 5 we present a simple criterion that implies linearized stability
(resp. linearized instability) simultaneously for all solutions to (1.1) belong-
ing to the solution family corresponding to a solution #=#0 to (1.4). Essen-
tially, the criterion consists in the question whether all eigenvalues of a
matrix representation of the linearization of (1.4) with respect to # in the
solution #=#0 have negative real parts or not.

We confine us to forced symmetry breaking problems of type (1.1) for
reasons of simplicity only (and because the applications we have in mind
are of this type). There exist straightforward generalizations of our results
to forced symmetry breaking problems of the more general type F(x, *)=
y(x, *). Such generalizations are presented in the Remarks 2.3, 4.11 and 5.3.

In Section 6 we apply our results on abstract forced symmetry breaking to a
forced frequency locking problem for ordinary differential equations of the type

!4 (t)= f (!(t), *)&'(t). (1.5)

In (1.5), f : Rm_Rn � Rm is a smooth parameter-depending vector field,
and we suppose S(ei#) f (!, *)= f (S(ei#) !, *) for all # # R, ! # Rm and
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* # Rn, where S is an S1-representation on Rm. Thus, * is an ``internal, sym-
metry preserving'' control parameter, and '(t) is an ``external'' control
parameter (varying in a certain function space) which breaks the symmetry
and the autonomy of Eq. (1.5). It is supposed that the unperturbed equa-
tion !4 (t)= f (!(t), *0) has an orbitally stable modulated wave solution
!0(t)=S(ei:0t) x0(t) (with x0(t)=x0(t+(2?�;0 )) for all t). We describe the
quasiperiodic frequency locking of this solution to a forcing of modulated
wave type '(t)=S(ei:t) y(t) (with y(t)= y(t+(2?�;))), where y(t) is near
zero, : near :0 and ; near ;0 .

The motivation for our investigations comes from problems in laser
dynamics. At present, self-pulsations (i.e. periodic intensity change in the
output power with frequencies of tenth of gigahertz; for self-pulsations of
multisection DFB semiconductor lasers see, e.g., [25, 33, 40]) and fre-
quency locking of self-pulsations to optically injected modulations (cf. [3,
17, 23, 32, 27]) are topics of intensive experimental and theoretical
research. The mathematical models are equivariant with respect to an
S1-action on the state space. For a description of the physical nature of this
equivariance see [26]. The frequencies : and :0 (resp. ; and ;0) are the so-
called optical frequencies (resp. the power frequencies) of the external light
signal and the self-pulsation, respectively, and the internal, symmetry
preserving control parameter * describes the internal laser parameters
(laser currents, geometric and material parameters, facet reflectivities).

Let us introduce some notation.
If X and X� are normed vector spaces, then L(X, X� ) is the vector space

of all linear bounded operators from X into X� . Further, we set L(X ) :=
L(X, X ), and X* :=L(X, R) is the dual space to X. For L # L(X, X� ) we
denote by ker L :=[x : Lx=0] and im L :=[Lx : x # X ] the kernel and the
image of L, respectively.

Partial derivatives will be denoted as usually. For example, if 4 is a
further normed vector space and F : X_4 � X� is a C1-map, then
�x F(x0 , *0) # L(X, X� ) denotes the partial derivative of F with respect to
x # X in the point (x0 , *0).

If 1 is a group working linearly on X, then, for x # X, we denote the
group orbit and the isotropy subgroup of x by O(x) :=[# } x # X : # # 1 ]
and 1x :=[# # 1 : # } x=x], respectively.

2. SETUP AND LIAPUNOV�SCHMIDT REDUCTION

Let X and X� be Banach spaces, 4 a normed vector space, k�2 a natural
number, F : X_4 � X� a Ck-map, and x0 # X and *0 # 4 points such that

F(x0 , *0)=0. (2.1)
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We denote L :=�x F(x0 , *0) and suppose

L is a Fredholm operator from X into X� . (2.2)

Further, let 1 be a compact Lie group which works linearly on X and X� ,
respectively. We suppose

F(# } x, *)=# } F(x, *) for all x # X, * # 4, and # # 1, (2.3)

# # 1 [ (# } x, # } x~ ) # X_X� is continuous for all x # X and x~ # X� . (2.4)

The assumptions (2.1)�(2.4) imply that the map # # 1 [ # } x0 # X is
Ck-smooth (cf. [15]). Hence, the group orbit O(x0) is a Ck-submanifold in
X, the map # # 1 [ # } x # O(x0) is a submersion, and

dim O(x0)=dim 1&dim 1x0 (2.5)

(cf. [36]). Moreover, the tangential space Tx0
O(x0) at O(x0) in x0 is a

subspace of ker L. We assume that this kernel is as small as possible under
(2.3), i.e.,

ker L=Tx0
O(x0). (2.6)

The subspaces ker L and im L are invariant with respect to the subgroup
1x0 . Hence (cf. [36]), there exist projectors P # L(X ) and P� # L(X� ) such
that

ker P=ker L, im P� =im L,
(2.7)

P and P� commute with the actions of 1x0 on X and X� , respectively.

In most of the applications it holds that

X is continuously embedded into X� , X� =ker L� im L, and
the action of 1 on X equals the restriction of the action on X� . (2.8)

In that case the projectors P and P� will be chosen such that, in addition
to (2.7), we have im P=X & im L and ker P� =ker L and, hence, Px=P� x
for all x # X.

Finally, let Y be a normed vector space such that Y is continuously
embedded into X� , # } y # Y for all y # Y, and

(#, y) # 1_Y [ # } y # X� is Ck-smooth. (2.9)

Throughout Sections 2�5 of this paper we suppose (2.1)�(2.4), (2.6),
(2.7), and (2.9) to be satisfied.
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The following proposition is due to Vanderbauwhede (cf. [35, 36, 37]).
It describes a parametrization of an invariant (with respect to 1 ) tubular
neighbourhood of O(x0):

Proposition 2.1. There exist neighbourhoods U�im P of zero and
V�X of O(x0) such that the map

(#, u) # 1_U [ # } (x0+u) # V (2.10)

is surjective. Moreover, for (#j , uj) # 1_U ( j=1, 2) we have #1 } (x0+u1)=
#2 } (x0+u2) if and only if #1 } x0=#2 } x0 and #1 } u1=#2 } u2 .

Let us consider, for x near O(x0), * near *0 and y near zero, the abstract
forced symmetry breaking problem

F(x, *)= y. (2.11)

This equation, written in the new coordinates (2.10), is equivalent to

F(x0+u, *)=#&1 } y. (2.12)

The following lemma proceeds with a Lyapunov-Schmidt reduction for
Eq. (2.12). It is similar to [36, Lemma 8.2.10].

Lemma 2.2. There exist neighbourhoods W�4_Y of (*0 , 0) and
U�im P of zero and a Ck-map û : 1_W � im P such that:

(i) P� [F(x0+u, *)&#&1 } y]=0, u # U, (*, y) # W if and only if
u=û(#, *, y).

(ii) û(#, *0 , 0)=0 for all # # 1.

(iii) û($#, *, y)=û(#, *, $&1 } y) for all #, $ # 1 and (*, y) # W.

(iv) û(#$, *, y)=$&1 } û(#, *, y) for all # # 1, $ # 1x0 and (*, y) # W.

Proof. The partial derivative of P� [F(x0+u, *)&#&1 } y] with respect
to u in u=0, *=*0 , y=0 (and in an arbitrary #) is equal to the restriction
of L on im P. But the assumption 2.2 yields that

L is an isomorphism from im P onto im P� . (2.13)

Therefore, the Implicit Function Theorem (together with the compactness
of 1 ) implies assertions (i) and (ii) of the lemma. Further, from (2.3) and
(2.7) it follows that

P� [F(x0+u, *)&(#$)&1 } y]=$&1 } P� [F(x0+$ } u, *)&#&1 } y]
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for all # # 1, $ # 1x0 and (*, y) # W. Therefore, assertion (iv) follows from
the uniqueness assertion of the Implicit Function Theorem. A similar argu-
ment proves (iii). K

Let us define a map G : 1_W � ker P� by

G(#, *, y) :=(I&P� )[F(x0+û(#, *, y), *)&#&1 } y]. (2.14)

In (2.14), I is the identity in the space X� . For all # # 1 and (*, y) # W we
have

G(#, *0 , 0)=0,

G($#, *, y)=G(#, *, $ } y) for all $ # 1, (2.15)

G(#$, *, y)=$&1 } G(#, *, y) for all $ # 1x0 .

The correspondence between the solutions to (2.11) and those of the
Lyapunov�Schmidt bifurcation equation

G(#, *, y)=0 (2.16)

may be described in the following way: Let (x, *, y) be a solution to (2.11)
such that x is close to O(x0), * is close to *0 , and y is close to zero. Then
there exists a #

*
# 1 such that x=#

*
} (x0+û(#

*
, *, y)) and such that

(#, *, y) is a solution to (2.16) iff #=#
*

$ with $ # 1x0 . And conversely, let
(#, *, y) be a solution to (2.16). Then, for all $ # 1x0 , (#$, *, y) is a solution
to (2.16), too, x :=(#$) } (x0+û(#$, *, y)) does not depend on $, and
(x, *, y) is a solution to (2.11).

Remark 2.3. We do not assume the actions of 1 on X and X� to be
smooth, because in most of the applications they are not smooth. There-
fore, the parametrization (2.10) is not smooth, in general. But Eq. (2.12) is
Ck-smooth already because of assumption (2.9).

If the symmetry breaking parameter does not appear as a right-hand side
in (2.11), such an approach is not possible, in general. Nevertheless, there
exist straightforward generalizations of Lemma 2.2 to equations of the type

F(x, *, y)=0 (2.17)

with F(x0 , *0 , 0)=0 and

F(# } x, *, # } y)=# } F(x, *, y) for all x # X, y # Y, * # 4 and # # 1 (2.18)
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under the assumption that 1 works also on the space Y of the symmetry
breaking parameters y and that the map (x, *, y, #) # X_4_Y_1 [
F(x, *, # } y) # X� is Ck-smooth. In particular, forced symmetry breaking
problems F(x, *)= y(x, *) are of the type (2.17), where Y is a suitable sub-
space of the space of all Ck-maps y : X_4 � X� such that the map

(x, *, y, #) # X_4_Y_1 [ # } y(#&1 } x, *) # X� (2.19)

is Ck-smooth. In this case (2.18) is satisfied if (2.3) holds and if the
1-action on Y is defined by

(# } y)(x, *) :=# } y(#&1 } x, *). (2.20)

Let us indicate a typical example of the situation described above. Let X�
be the space of all continuous 2?-periodic maps x~ : R � Rm, and let X be
the space of all C1-smooth elements of X� (with the usual supremum
norms). Let 1 be the rotation group S1 :=[ei. # C : . # R], and let the
action of 1 on X and X� be defined by (ei. } x)(t) :=x(t+.). Let 4 :=Rn

and [F(x, *)](t) :=x* (t)+ f (x(t), *) with a Ck-smooth map f : Rm_Rn �
Rm. Finally, let Y be the space of all superposition operators y : X � X� of
the type [ y(x)](t) := y~ (t, x(t)) with a Ck-smooth generating map
y~ : R_Rm � Rm such that y~ ( } , x) is 2?-periodic and y~ and all its derivatives
up to the k th one, y~ (k), are bounded. In Y we use the norm
sup[&y~ (l )(t, x)& : t # R, x # Rm, l=0, 1, ..., k], where & }& is a norm in Rm.
From (2.20) it follows that

[(ei. } y)(x)](t)= y~ (t+., x(t)),

and, hence, (2.18) is satisfied. Moreover, the map (2.19) is Ck-smooth,
because the so-called evaluation map (t, x, y) # R_Rm_Y [ y~ (t, x) # R is
Ck-smooth (cf., e.g., [2, Proposition 2.4.17]).

Analogously, forced symmetry breaking problems for symmetric elliptic
boundary value problems on symmetric domains may be formulated in this
way. Here one has to use known smoothness properties of superposition
operators between Sobolev or Ho� lder spaces.

3. SOLUTIONS IN CASE OF VANISHING SYMMETRY
BREAKING PARAMETER

In this section we describe the solution behavior of the bifurcation
Eq. (2.16) and, hence, of the original Eq. (2.11) in case of vanishing
parameter y:

F(x, *)=0. (3.1)
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Because of (2.15), G(#, *, 0) is independent of #. Hence, it is correct to
define G0(*) :=G(#, *, 0). Here G0 is a Ck-map which is defined for all
* # 4 near *0 and which takes values in ker P� , and (2.14) implies

G0(*)=(I&P� ) F(x0+û(#, *, 0), *). (3.2)

Let

X0 :=[x # X : # } x=x for all # # 1x0],

X� 0 :=[x~ # X� : # } x~ =x~ for all # # 1x0]

be the isotropy subspaces corresponding to the isotropy subgroup 1x0 .
Then, because of (2.3), F( } , *) maps X0 into X� 0 for all *. Hence,

LX0�X� 0 , �*F(x0 , *0) 4�X� 0 . (3.3)

Moreover, (2.13) yields

LX0=X� 0 & LX. (3.4)

Thus, LX0 is a closed subspace of finite codimension in X� 0 , and we denote
this codimension by codimX� 0

LX0 . From (3.4) it follows that

codimX� 0
LX0=dim(X� 0 & ker P� ). (3.5)

The following theorem describes the solution behavior of Eq. (3.1) under
the assumption that the subspaces LX0 and �* F(x0 , *0) 4 are transversal
in X� 0 :

Theorem 3.1. Let 42 be a subspace in 4 such that

dim 42=codimX� 0
LX0 , X� 0=LX0��*F(x0 , *0) 42 . (3.6)

Further, let 41 be a complement of 42 in 4, and let *0=*01+*02 with
*0j # 4j ( j=1, 2).

Then there exist neighbourhoods V�X of O(x0) and Wj�4j of *0j , and
Ck-maps x̂0 : W1 � X0 and *� 2: W1 � 42 with x̂0(*01)=x0 and *� 2(*01)=*02

such that the following is true: It holds that F(x, *1+*2)=0 with x # V and
*j # Wj if and only if *2=*� 2(*1) and x=# } x̂0(*1) for some # # 1.

Proof. Because of (2.15) we have G0(*) # X� 0 & ker P� for all *. We
denote by G$0(*0) # L(4; X� 0 & ker P� ) the derivative of G0 in *0 . Then (3.2)
yields

G$0(*0)=(I&P� ) �*F(x0 , *0). (3.7)
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Let us show that the restriction of G$0(*0) to 42 is injective. Thus, let
G$0(*0)*2=0 with *2 # 42 . Now (3.7) yields that �* F(x0 , *0)*2 # im P� .
Hence, (3.3) and (3.4) imply that �*F(x0 , *0)*2 # LX0 , and from (3.6)
it follows that �*F(x0 , *0)*2=0. However (3.6) further provides that
�* F(x0 , *0) is injective on 42 . Therefore *2=0.

On the other hand, from (3.3), (3.6) and (3.7) it follows that
G$0(*0) 42=X� 0 & ker P� . Hence, the restriction of G$0(*0) to 42 is an
isomorphism from 42 onto X� 0 & ker P� , and the Implicit Function Theorem
solves equation G0(*)=0 for *r*0 in the form of *2=*� 2(*1). Thus, the
theorem is proved with

x̂0(*1) :=x0+û(#, *1+*� 2(*1), 0). (3.8)

Remark that, because of Lemma 2.2, the right-hand side of (3.8) belongs to
X0 and does not depend on #. K

Using a more geometrical language, the conclusion of Theorem 4.1 can
be formulated as follows: There exists a Ck-submanifold M in 4, namely
M :=[*1+*� 2(*1) : *1r*01], with *0 # M and

T*0
M=[* # 4 : �* F(x0 , *0)* # im L],

(3.9)
codim M=codimX� 0

LX0

such that (3.1) is solvable near O(x0) iff * # M.
The following lemma states, under assumption (2.8), a sufficient condi-

tion for a subspace 42 of 4 to satisfy (3.6):

Lemma 3.2. Suppose (2.8), and let 42 be a closed subspace of 4 such
that

dim 42=dim[X0 & Tx0
O(x0)], �*F(x0 , *0) 42=X0 & Tx0

O(x0). (3.10)

Then (3.6) holds.

Proof. Because of (2.8) we have X� 0=[X0 & ker L]�[X� 0 & im L].
Hence, (2.6) and (3.4) yield X� 0=[X0 & Tx0

O(x0)]�LX0 . This proves the
lemma. K

Let us consider two particular situations described by Theorem 3.1.
In the first case the codimension of the submanifold M is as large as

possible under assumption (3.6). Because of (2.5), (3.5), (3.6) and (3.9) this
is the case if

codimX� 0
LX0=dim 1&dim 1x0 . (3.11)
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For example, if 1x0 consists of the unit element only (and, hence, X0=X
and X� 0=X� ) then (3.11) is satisfied. If, in addition to (3.6), condition (2.8)
holds, then (3.11) is equivalent to Tx0

O(x0)�X0 . This condition is fulfilled,
for example, if 1 is Abelian.

In the second case the codimension of M is as small as possible:

codimX� 0
LX0=0. (3.12)

In that case (3.6) is satisfied with 42=[0], and Theorem 4.1 states that for
all *r*0 there exists exactly one orbit of solutions to (3.1). This is the so-
called G-Invariant Implicit Function Theorem of Dancer [13, 14, 15].
Moreover, (3.12) is fulfilled if (2.8) and X0 & Tx0

O(x0)=[0], the so-called
P-property of Dancer, hold.

4. SYMMETRY BREAKING AND LOCKING CONES

Let 41 and 42 be subspaces of 4 such that 4=41 �42 and (3.6) is
satisfied.

We introduce new control parameters = # R, *1 # 41 , + # 42 and z # Y to
the original problem (2.11) and in the corresponding bifurcation Eq. (2.16)
by scaling the old control parameters * # 4 and y # Y in the following way:

*=*1+*� 2(*1)+=+, y==z,
(4.1)

(+, z) # S :=[(*2 , y) # 42_Y : &*2 &+&y&=1].

In (4.1), the symbol & }& is used for the norms in 4 and Y, respectively, and
*� 2 is the map given by Theorem 4.1.

Because of Theorem 3.1, G(#, *1+*� 2(*1)+=+, =z) vanishes for ==0.
Consequently G(#, *1+*� 2(*1)+=+, =z)==H(#, =, *1 , +, z) holds with

H(#, =, *1 , +, z):=|
1

0
[�* G(#, *1+*� 2(*1)+t=+, t=z) +

+�y G(#, *1+*� 2(*1)+t=+, t=z) z] dt. (4.2)

In particular, for ==0 we have (cf. (2.14))

H0(#, +, z) :=H(#, 0, *01 , +, z)=(I&P� )[�*F(x0 , *0) +&#&1 } z]. (4.3)

The solutions with ={0 to the so-called scaled bifurcation equation

H(#, =, *1 , +, z)=0, (4.4)
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correspond, via (4.1), to solutions of (2.16) and, hence, to solutions of
(2.11).

The aim of this section is to look for solutions to the so-called reduced
bifurcation equation

H0(#0 , +0 , z0)=0, #0 # 1, (+0 , z0) # S (4.5)

such that in these solutions the Implicit Function Theorem works with
respect to #. Such solutions produce families of solutions to (4.4) with
#r#0 , =r0, *1r*01 , +r+0 and zrz0 and, hence, families of solutions to
(2.11) with control parameters (*, y) # 4_Y defined by (4.1) with =r0,
*1r*01 , +r+0 and zrz0 . In order to describe the sets of such control
parameters (*, y), we introduce the following notation:

Definition 4.1. For =0>0, (+0 , z0) # S and for neighborhoods W�
41_S of (*01 , +0 , z0) we call the set

K(=0 , +0 , z0 , W )

:=[(*1+*� 2(*1)+=+, =z) # 4_Y : 0<|=|<=0 , (*1 , +, z) # W]

a locking cone (corresponding to =0 , +0 , z0 , and W ).

Let (#0 , +0 , z0) be a solution to (4.5). The Implicit Function Theorem
works in this solution in order to solve (4.4) with respect to # iff the
operator

�#H0(#0 , +0 , z0)=&(I&P� )
d
d#

[#&1 } z0 ]#=#0
(4.6)

is an isomorphism from the tangential space T#0
1 onto ker P� . Obviously,

for that condition to be fulfilled it is necessary that

dim 1x0=0, (4.7)

because H0(#0 $, +0 , z0)=$&1 } H0(#0 , +0 , z0) holds for all $ # 1x0 (cf.
(2.15)).

Let A be the Lie algebra of the Lie group 1, exp: A � 1 the corre-
sponding exponential map, n :=dim 1 and [a1 , ..., an] a basis in the vector
space A. Assumption (4.7) implies that the vectors

vj :=
d
dt

[exp(taj) } x0 ]t=0 (4.8)

form a basis in Tx0
O(x0)=ker L. Further, let L* # L(X� *, X*) be the adjoint

operator to L. Then (2.5), (2.6) and (4.7) imply that dim ker L*=n. If,
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moreover, (2.8) is satisfied, then there exists a basis [v1* , ..., vn*] in ker L*
such that

(vi , vj*)=$ij and P� x~ =x~ & :
n

j=1

(x~ , vj*) vj for x~ # X� . (4.9)

Here ( } , } ) : X� _X� * � R is the dual pairing, and $ij is the Kronecker
symbol.

The following lemma states two necessary and sufficient conditions for
the operator (4.6) to be an isomorphism:

Lemma 4.2. Suppose (4.7). Then the following is true:

(i) The operator (4.7) is an isomorphism from T#0
1 onto ker P� if and

only if

X� =T#
0
&1 } z

0
O(z0)� im L. (4.10)

(ii) Suppose (2.8). Then the operator (4.6) is an isomorphism from
T#0

1 onto ker P� if and only if the matrix

_� d
dt

[exp(tai) #&1
0 } z0]t=0 , vj*�&

n

i, j=1

(4.11)

has a non-vanishing determinant.

Proof. Because of (4.7) we have dim 1=dim ker P� . Hence, (4.6) is an
isomorphism from T#0

1 onto ker P� iff it is injective.

(i) Suppose (4.6) to be injective. Then dim 1z0=0 and, hence,
dim O(z0)=dim 1=codim im L. Thus, for (4.10) it remains to show that

T#
0
&1 } z

0
O(z0) & im L=[0]. (4.12)

Let x~ be an element of the left-hand side of (4.12). Then there exists a
#� # T#0

1 such that x~ =(d�d#)[#&1 } z0]#=#0
#� , on the one hand, and (4.6)

maps #� into zero, on the other hand. But (4.6) is injective, therefore #� =0.
Now, conversely, suppose (4.10). Then, as above, dim O(z0)= codim im L

=dim 1 and, hence, dim 1z0=0. Therefore, (d�d#)[#&1 } z0]#=#0
is injective,

and (4.10) yields that (4.6) is so, too.

(ii) The map # # 1 [ &(I&P� ) #&1 } z0 # ker P� is a local diffeo-
morphism in #=#0 iff the map

a # A [ &(I&P� ) exp(&a) #&1
0 } z0 # ker P� (4.13)

245FORCED SYMMETRY BREAKING



File: DISTL2 337914 . By:CV . Date:18:03:98 . Time:09:26 LOP8M. V8.B. Page 01:01
Codes: 3445 Signs: 2169 . Length: 45 pic 0 pts, 190 mm

is a local diffeomorphism in a=0. However (4.11) is the matrix representa-
tion with respect to the bases [a1 , ..., an] of A and [v1 , ..., vn] of
ker P� =Tx0

O(x0) of the derivative of (4.13) in a=0. K

The following theorem is the main result of this section. In its formula-
tion we use the maps x̂0 and *� 2 , given by Theorem 3.1.

Theorem 4.3. Suppose (4.7), and let (#0 , +0 , z0) be a solution to (4.5)
with (4.10).

Then there exist =0>0, neighbourhoods V�X of #0 } x0 and W�41_S

of (*01 , +0 , z0), a Ck&1-map #̂ : W � 1 with #̂(*01 , +0 , z0)=#0 and a Ck-map
x̂ : K(=0 , +0 , z0 , W ) � X such that the following is true:

(i) Let x # V and (*, y) # K(=0 , +0 , z0 , W ). Then F(x, *)= y if and
only if x=x̂(*, y).

(ii) Let (*1 , +, z) # W be fixed. Then x̂(*1+*� 2(*1)+=+, =z) tends to
#̂(*1 , +, z) } x̂0(*1) for = � 0.

Proof. The Implicit Function Theorem yields a relation #=#� (=, *1 , +, z)
solving (4.4) near the solution #=#0 , ==0, *1=*01 , +=+0 and z=z0 (in
particular, it holds that #� (0, *01 , +0 , z0)=#0). Hence, (i) follows with

x̂(*1+*� 2(*1)+=+, =z)

:=#� (=, *1 , +, z) } (x0+û(#� (=, *1 , +, z), *1+*� 2(*1)+=+, =z)). (4.14)

In (4.14), û is the map given by Lemma 2.2, and Lemma 2.2(ii) and (3.8)
imply assertion (ii) with #̂(*1 , +, z) :=#� (0, *1 , +, z).

Remark that the map H is only Ck&1-smooth in arguments with ==0,
therefore the map #̂ is only Ck&1-smooth, in general. K

By means of Theorem 4.3, there exists a straightforward procedure to
construct control parameters * and y such that (2.11) is solvable near
O(x0): Just take (+0 , z0) # S such that the orbit O(z0) intersects the affine
subspace �*F(x0 , *0) +0+LX in at least one point transversally. Then
*=*1+*� 2(*1)+=+ and y==z with arbitrary = # R near zero, *1 # 41 near
*01 , + # 42 near +0 and z # Y near z0 are parameters of the type required.

Remark 4.4. Let us consider the uniqueness assertion of Theorem 4.3(i)
in more detail. Let (+0 , z0) # S be fixed, and let #=#0 be a solution to

H0(#, +0 , z0)=0 (4.15)

with (4.10). Then Theorem 4.3 claims that, for (*, y) # K(=0 , +0 , z0 , W ),
there exists exactly one solution x near #0 } x0 to (2.11). Of course, there
may exist other solutions x near O(x0) to (2.11) (with the same control
parameter (*, y)), not close to #0 } x0 . Now, suppose that all solutions # to
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(4.15) satisfy (4.10). Then the number of these solutions is finite (because
1 is compact), each such solution generates a family of solutions to (2.11),
and we have the following ``global'' uniqueness assertion:

If (*, y)r(*0 , 0) belongs to the intersection of the locking cones corres-
ponding to the solutions to (4.15) (this intersection is a locking cone,
again) and if xrO(x0) is a solution to (2.11) with this control parameter
(*, y), then x is a member of one of the families of solutions to (2.11)
corresponding to the solutions to (4.15). In particular, if (4.15) (with fixed
(+0 , z0) # S) is not solvable, then there do not exist any solutions to
F(x, *1+*� 2(*1)+=+)==z with x # X near O(x0), = # R near zero, *1 # 41

near *01 , + # 42 near +0 and z # Y near z0 .

Remark 4.5. This is a remark concerning assertion (ii) of Theorem 4.3.
If the control parameter (*, y) # K(=0 , +0 , z0 , W ) tends to (*1+*� 2(*1), 0)

(with fixed (*1 , +0 , z0) # W ), but not along a straight line [(*1+*� 2(*1)+
=+, =z) : = # R], the solution x̂(*, y) does not converge, in general (because
the right-hand side of (4.14) with ==0 depends on + and z, in general). In
other words, in general it is not possible to continue the family (*, y) #
K(=0 , +0 , z0 , W ) [ x̂(*, y) # X of solutions to (2.11) continuously onto the
closure of K(=0 , +0 , z0 , W ), for example. This phenomenon is well-known
in the theory of damping and forcing of second order ordinary differential
equations (cf. [20, 34]).

Remark 4.6. Theorem 4.3 describes families of solutions to (2.11) that
are smoothly parametrized by control parameters (*, y) belonging to lock-
ing cones K(=0 , +0 , z0 , W ). But Theorem 4.3 does not state any assertion
about the questions whether these families have a unique smooth continua-
tion outside of K(=0 , +0 , z0 , W ) or not (with the exception of the assertion
on the impossibility of a continuous continuation into the points (*, y)=
(*1+*� 2(*1), 0), cf. Remark 4.5), whether there exists a maximal domain of
definition of such a continuation or not and how the solution x behaves if
(*, y) tends to the boundary of such a maximal domain of continuation.

Remark 4.7. Let (*, y) # K(=0 , +0 , z0 , W ). Then, because of Theorem
4.3(i), # } x̂(*, y)=x̂(*, # } y) for all # near the unit element. Hence, the map
# # 1 [ # } x̂(*, y) # X is Ck-smooth (cf. assumption (2.9)). This is a kind of
``abstract solution regularity'' result for (2.11): The group 1 does not act
smoothly on each element x # X, in general, but it does so on solutions to
(2.11).

Remark 4.8. If assumption (4.7) is not satisfied, then, at a first glance,
the parametrization (2.10) seems to be inappropriate for solving (2.11)
because we have

H(#$, =, *1 , +, z)=$&1 } H(#, =, *1 , +, z) for all $ # 1x0 .
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Hence, the solutions # # 1 of the scaled bifurcation Eq. (4.4) (with fixed
control parameters =, *1 , + and z) are not isolated, but appear as
1x0-orbits. On the other hand, because of the uniqueness assertion of
Proposition 2.1, each such 1x0-orbit of solutions # # 1 to (4.4) corresponds
to an isolated solution x # X of (2.11) (with control parameters (*, y) #
4_Y determined by (4.1)). Therefore, it should be possible to apply our
results of Section 3 (especially a second Lyapunov�Schmidt reduction) in
order to obtain families of 1x0-orbits of solutions to (4.4) and, hence,
families of isolated solutions to (2.11). These families would be parametrized
by the control parameters of the corresponding equations, which have to
belong to certain submanifolds in the control parameter spaces of codimen-
sion less than or equal to dim 1x0 . This is a topic of future research.

Remark 4.9. We have H($#, =, *1 , +, z)=H(#, =, *1 , +, z) for all $ # 1z.
Therefore, the solutions # # 1 to the scaled bifurcation equation (4.4) (with
fixed control parameters =, *1 , + and z) appear as 1z-orbits, and, hence, are
not isolated if dim 1z>0. In contrast to the situation, considered in
Remark 4.8, such a 1z-orbit of solutions to (4.4) corresponds to a 1z-orbit
of, in general, non-isolated solutions x # X to (2.11) (with fixed control
parameters * and y, determined by (4.1)).

Now, suppose H0(#0 , +0 , z0)=0 and dim 1z0>0. Then (4.6) is not an
isomorphism, and Theorem 4.3 is not applicable. But (2.11) with zrz0 is
a forced symmetry breaking problem, again (the parameter z&z0 breaks
the 1z0-symmetry). Therefore, on principle one can apply the results of this
section to (4.4) with zrz0 (especially a second Lyapunov�Schmidt reduc-
tion and a second scaling in order to obtain a ``scaled bifurcation equation
for the scaled bifurcation equation''). Then Theorem 4.3 yields families of
isolated solutions to (2.11) that are parametrized by control parameters
(*, y) belonging to certain ``locking cones of second kind''.

Remark 4.10. Theorem 4.3 has the advantage that the reduced bifurca-
tion Eq. (4.5) does not depend on the implicitly given map û (cf. (4.3)).
Moreover, if (3.12) holds then the reduced bifurcation equation reads
&(I&P� ) #&1 } z=0. Hence, it depends on the map F (the left hand side of
the original problem (2.11)) via the projector P� , only. Finally, in certain
cases the reduced bifurcation equation does not depend on F at all: For
example, if X=X� are Hilbert spaces, if 1 works unitarily and if F( } , *) is
a gradient map for each *, then (3.12) is satisfied, and I&P� is the
orthogonal projector onto Tx0

O(x0), which does not depend on F but only
on the action of the group 1 on x0 . Chillingworth, Marsden and Wan used
this property in their study of the dead load traction problem in three-
dimensional elastostatics [10, 39, 8].
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Remark 4.11. The generalization of Theorem 4.3 to problems of the
type (2.17) with (2.18) (cf. Remark 2.3) is straightforward. In this case one
has to use the following more general form of the reduced bifurcation equa-
tion

(I&P� )(�* F(x0 , *0 , 0) +0+�yF(x0 , *0 , 0) #&1 } z0)=0, (4.16)

and the matrix (4.11) has to be replaced by the matrix

&_��y F(x0 , *0 , 0)
d
dt

[exp(tai) #&1
0 } z0]t=0 , vj*�&

n

i, j=1

. (4.17)

5. STABILITY

Theorem 4.3 states that regular solutions to the reduced bifurcation
Eq. (4.5) generate families of solutions to the original Eq. (2.11). In this sec-
tion we show that, moreover, the matrix representation (4.11) of the
linearization of (4.5) in such a solution determines the linearized stability
of all the corresponding solutions to (2.11). For related results concerning
bifurcations from isolated solutions see [16, 24, 29, 38].

In this section we assume (2.8) and (4.9) to be satisfied.
As usually, we denote by spec L the set of all complex numbers \ such

that the operator L&\J is not an isomorphism of the complexification of
X onto the complexification of X� . Here J # L(X; X� ) is the embedding
operator. Because of (2.13) we have

c :=inf [ |\| : \ # spec L, \{0]>0.

Let (#0 , +0 , z0) be a solution to (4.5) such that the determinant of (4.11)
does not vanish. Then (4.14) implies that, for all (*, y) # K(=0 , +0 , z0 , W ),
�x F(x̂(*, y), *) is close to #0 } L#&1

0 in the sense of the operator norm in
L(X, X� ). Therefore, perturbation results for isolated normal eigenvalues of
linear operators (cf., e.g., [12, Chapter 14]) yield the following:

Let =0 and W be sufficiently small. Then, for all (*, y) # K(=0 , +0 , z0 , W ),
the set

_0(*, y) :={\ # spec �x F(x̂(*, y), *) : |\|<
c
2=

is finite. It consists of eigenvalues only, and the sum of the algebraic multi-
plicities of all these eigenvalues is equal to dim 1. The following theorem
shows how to verify whether all these eigenvalues have negative real parts
or not:
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Theorem 5.1. Suppose (2.8), and let (#0 , +0 , z0) be a solution to (4.5)
such that the determinant of (4.11) does not vanish.

Then the following is true for all (*, y) # K(=0 , +0 , z0 , W ): If all eigen-
values of the matrix (4.11) have negative real parts (resp. one such eigenvalue
has a positive real part), then max[Re \ : \ # _0(*, y)] is negative (resp.
positive).

Proof. Let û be the map determined by Lemma 2.2, x̂0 and *� 2 the maps
determined by Theorem 3.1 and x̂, (resp. #� ) the maps determined by (resp.
in the proof of) Theorem 4.3. From 2.3 and (4.14) we conclude

#� (=, *1 , +, z)&1 } �x F(x̂(*1+*� 2(*1)+=+, =z), *1+*� 2(*1)+=+) #� (=, *2 , +, z)

=�xF(x0+û(#� (=, *1 , +, z)), *1+*� 2(*1)+=+, =z), *1+*� 2(*1)+=+).

(5.1)

An application of the Implicit Function Theorem (cf. [29, 38]) yields
that there exist operators A(=, *1 , +, z) # L(ker P), B(=, *1 , +, z) #
L(im P; im P� ), C(=, *1 , +, z) # L(X ) and C� (=, *1 , +, z) # L(X� ), that
depend Ck&1-smoothly on = # R near zero, *1 # 41 near *01 , + # 42 near +0

and z # Y near z0 , such that

A(0, *01 , +0 , z0)=0,

B(0, *01 , +0 , z0)=L on im P, (5.2)

C� (0, *01 , +0 , z0)=I;

and that, for all suitable =, *1 , + and z, we have C(=, *1 , +, z)=
C� (=, *1 , +, z) on X and

�x F(x0+û(#� (=, *1 , +, z), *1+*� 2(*1)+=+, =z), *1+*� 2(*1)+=+)

=C� (=, *1 , +, z)[A(=, *1 , +, z)�B(=, *1 , +, z)]C(=, *1 , +, z)&1. (5.3)

In (5.3), A�B # L(X; X� ) is the ``diagonal'' operator, which is defined by
(A�B)(a+b) :=Aa+Bb for a # ker P and b # im P.

From (4.7) it follows that the dimension of the kernel of �xF(x̂0(*1),
*1+*� (*1)) (which is the limit for = � 0 of the left-hand side of (5.3)) is
equal to dim 1. On the other hand, (2.13) and (5.3) imply that
B(=, *1 , +, z) is an isomorphism from im P onto im P� for =r0, *1r*01 ,
+r+0 and zrz0 . Hence, dim ker A(0, *1 , +, z)=dim 1 for such *1 , + and
z. But dim 1 is the dimension of the space where A(0, *1 , +, z) is defined.
Therefore, A(0, *1 , +, z) is the zero operator, and we have

A(=, *1 , +, z)==A� (=, *1 , +, z), (5.4)
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where A� (=, *1 , +, z) # L(ker P) depends Ck&2-smoothly on =, *1 , + and z.
Moreover, (5.2)�(5.4) imply

A� (0, *01 , +0 , z0) vj

=(I&P� )
d
d=

[�x F(x0+û(#� (=, *01 , +0 , z0), *0+=+0 , =z0), *0+=+0) vj ]==0

(5.5)

for all j=1, ..., n. Let us denote

#(=) :=#� (=, *01 , +0 , z0), u(=) :=û(#(=), *0+=+0 , =z0). (5.6)

Theorem 4.3 and (4.14) imply that F(#(=) } (x0+u(=)), *0+=+0)==z0 for all
small = # R. Hence

F(exp(taj) } (x0+u(=)), *0+=+0)== exp(taj) #(=)&1 } z0 (5.7)

for all small = # R and j=1, ..., n. We differentiate the identity (5.7) with
respect to t and = in t=0 and ==0 and obtain, using (4.8), (5.5) and (5.6),

A� (0, *0 , +0 , z0) vj=(I&P� )
d
dt

[exp(taj) #&1
0 } z0 ]t=0.

Hence, the matrix (4.11) is the matrix representation of the operator
A� (0, *01 , +0 , z0) with respect to the basis [v1 , ..., vn].

Let us summarize. Denote by M the matrix (4.11). Then the spectrum of
M is equal to the spectrum of A� (0, *01 , +0 , z0). Hence, (5.4) yields to

sgn max[Re \ : \ # spec M]=sgn max[Re \ : \ # spec A(=, *1 , +, z)] (5.8)

for all small =>0, *1 # 41 near *01 , + # 42 near *02 and z # Y near z0 .
Further, (5.2) and the upper-semicontinuity of spectra (cf. [12, Chapter
14]) provide

inf[ |\| : \ # spec B(=, *1 , +, z)]>
c
2

(5.9)

for all small =>0, *1 # 41 near *01 , + # 42 near *02 and z # Y near z0 . Now,
(5.1), (5.3), (5.8) and (5.9) imply the desired result. K

Remark 5.2. Suppose, for the sake of simplicity, that X=X� =Rm.
Moreover, assume

max[Re \ : \ # spec L, \{0]<0. (5.10)

251FORCED SYMMETRY BREAKING



File: DISTL2 337920 . By:CV . Date:18:03:98 . Time:09:26 LOP8M. V8.B. Page 01:01
Codes: 2789 Signs: 1917 . Length: 45 pic 0 pts, 190 mm

Then the stationary solution x=x0 of the 1-equivariant ordinary differen-
tial equation

x* =F(x, *0) (5.11)

is usually called linearly orbitally stable. This property implies the so-called
asymptotic orbital stability with asymptotic phase, i.e., each solution x(t)
to (5.11) with x(0)rx0 exists and stays near O(x0) for all times t�0, and
there exists a #0 # 1 such that x(t) � #0 } x0 for t � � (cf. [4, 18]).

Now, let (#0 , +0 , z0) be a solution to (4.5) such that the determinant of
(4.11) does not vanish. Then (5.10) yields

Re \<0 for all \ # spec �xF(x̂(*, y), *) with |\|>
c
2

(5.12)

and all (*, y) # K(=0 , +0 , z0 , W ). Hence, Theorem 5.1 implies the following:
If all eigenvalues of the matrix (4.11) have negative real parts (resp. one
such eigenvalue has a positive real part), then the stationary solution
x=x̂(*, y) of x* =F(x, *)& y is asymptotically stable (resp. unstable).

In case of dim X=dim X� =�, the situation is more difficult, of course.
In particular, in this case spec L is not bounded, in general. Consequently,
the property sup[Re \ : \ # spec L, \{0]<0 does not imply (5.12), in
general.

Remark 5.3. The generalization of Theorem 5.1 to problems of the type
(2.17) with (2.18) (cf. Remarks 2.3 and 4.11) is straightforward. In this case
the eigenvalues of the matrix (4.17) determine the linearized stability of the
solution families to (2.17) corresponding to solutions to the reduced bifur-
cation Eq. (4.16).

6. FORCED FREQUENCY LOCKING OF MODULATED
WAVE SOLUTIONS

In this section k�2, m�2 and n are natural numbers, ( } , } ) is the
Euclidean scalar product in Rm, and A is a non-zero real m_m-matrix
such that AT=&A and e2?A=I. Further, f : Rm_Rn � Rm is a C k-map,
and we assume

f (e#A!, *)=e#Af (!, *) for all # # R, ! # Rm and * # Rn.

In other words, the vector fields f ( } , *) are equivariant with respect to the
unitary S1-representation ei# [ e#A on Rm. The symbol & }& will be used for
the Euclidean norms in Rm and Rn, respectively. By C2? resp. C l

2? (for
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l # N) we denote the Banach spaces of all 2?�periodic maps x : R � Rm that
are continuous resp. Cl-smooth, equipped with the usual maximum norms.

In this section we consider the differential equation

!4 ({)= f (!({), *)&e:{Ay(;{). (6.1)

In (6.1), y # C k
2? is assumed to be small, : and ; are real, and we regard

(6.1) as an autonomous parameter depending S1-equivariant differential
equation with small quasiperiodic perturbation e:{Ay(;{), which breaks
autonomy and equivariance.

Let us introduce new variables

t :=;{, x(t) :=e&(:�;) tA! \ t
;+=e&:{A!({). (6.2)

Then we obtain (6.1) in the equivalent form

;x* (t)= f (x(t), *)&:Ax(t)& y(t). (6.3)

The aim of this section is to apply the results of the Sections 2�5 to
Eq. (6.3) and, after that, to translate the results via (6.2) into results for
(6.1).

Let x0 # C 1
2? , *0 # Rm, :0>0 and ;0>0 be fixed such that

!0({) :=e:0{Ax0(;0{) (6.4)

is a solution to equation !4 = f (!, *0). Obviously this is equivalent to

;0x* 0(t)= f (x0(t), *0)&:0Ax0(t). (6.5)

Vector functions of the type (6.4) are usually called modulated waves.
Together with the modulated wave solution !0 its ``temporal'' phase shifts
!0( } +$) and its ``spatial'' phase shifts e#A!0( } ) are modulated wave solu-
tions to equation !4 = f (!, *0), too. Hence, we will describe the perturbation
behavior of a two-parameter family of modulated wave solutions under a
forcing of modulated wave type.

This problem appears in the mathematical modeling of the locking
behavior of self-pulsating lasers to periodically modulated optical signals,
see [3, 17, 23, 27]. In these applications e:{Ay(;{) describes the external
injected light with optical frequency : and (2?�;)-periodic intensity, the
modulated wave solution !0 is a so-called self-pulsation of the laser with
optical frequency :0 and (2?�;0 )-periodic intensity, and * describes the
internal laser parameters. For a description of a possible ``origin'' of self-
pulsations in ring lasers (Hopf bifurcation from rotating waves) see, e.g.,
[31].
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In the following we will apply the Theorems 4.3 and 5.1 to Eq. (6.3).
Hence, we introduce an appropriate setting. We set

X=C 1
2? , X� =C2? , Y=C k

2? ,

41=Rn (the *-space), 42=R2 (the (:,;)-space),

F(x, *, :, ;)(t)=&;x* (t)+ f (x(t), *)&:Ax(t).

Obviously, F( } , *, :, ;) is equivariant with respect to the T2-action

(ei#, ei$) } x :=e#Ax( } +$).

Hence, (2.3) and (2.8) are satisfied. Remark that this action of T2 on the
space C2? (as well as on C 1

2? or C k
2?) is not C 1-smooth, but it satisfies (2.4)

and (2.9).
The ordinary differential operator

�x F(x0 , *0 , :0 , ;0)=&;0

d
dt

+�x f (x0 , *0)&:0 A (6.6)

is a Fredholm operator from C 1
2? into C2? , therefore (2.2) is satisfied. We

assume that

ker �xF(x0 , *0 , :0 , ;0)=span[v1 , v2] with v1 :=Ax0 , v2 :=x* 0 (6.7)

and that there exist vector functions v1* , v2* # C 1
2? such that

&;0 v* j*=�x f (x0 , *0)T vj*+:0Avj* , |
2?

0
(vi (t), vj*(t)) dt=$ij . (6.8)

In other words, we suppose that zero is a semi-simple eigenvalue of (6.6)
of multiplicity two. Hence, (2.6), (2.7), (4.7) and (4.9) are fulfilled (with *0

replaced by (*0 , :0 , ;0)). Here we identify the functions vj* # C 1
2? with func-

tionals x [ �2?
0 (x(t), vj*(t)) dt, i.e. with elements of the dual space to C2? .

Finally, (3.10) is satisfied because of

�: F(x0 , *0 , :0 , ;0)=&Ax0 , �;F(x0 , *0 , :0 , ;0)=&x* 0 . (6.9)

Remark that the assumptions (6.7) and (6.8) imply that the invariant (with
respect to the flow of !4 = f (!, *0)) manifold

T :=[e.Ax0(�) : ., � # R]

is diffeomorphic to a two-dimensional torus.
Our last assumption reads

sup[Re \ : \ # spec �xF(x0 , *0 , :0 , ;0), \ � 2?Z]<0, (6.10)
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i.e., the Floquet multiplicator one of the 2?-periodic solution x0 to equa-
tion ;0x* = f (x, *0)&:0Ax is semi-simple with multiplicity two and the
absolute values of all other Floquet multiplicators are smaller than one.
This implies that the solution !0 to equation !4 = f (!, *0) is asymptotically
orbitally stable with asymptotic phases in the following sense (cf. [30]):
For each =>0 there exists a $>0 such that for all solutions !({) with
&!(0)&!0(0)&<$ we have that !({) is defined for all {�0, inf[&!({)&
e.A!0({+�)& : ., � # R]<= for all {�0, and that there exist real .0 and
�0 such that &!({)&e.0A!0({+�0)& � 0 for { � �. Hence, the purpose of
this chapter is to describe the behavior of an asymptotically orbitally stable
modulated wave solution of an autonomous S1-equivariant differential
equation under a small perturbation of modulated wave type. Especially,
we look for synchronized modulated wave solutions to (6.1), i.e. for solu-
tions of the type

!({)=e:{Ax(;{) with x # C 1
2? and x({)rT for all {. (6.11)

An application of Theorem 3.1 provides the following result on the per-
sistence of the modulated wave solution !0 under symmetry and autonomy
preserving perturbations:

Theorem 6.1. There exist a neighbourhood W/Rn of *0 and Ck-maps
û : W � C 1

2? , :̂ : W � R and ;� : W � R with û(*0)=0, :̂(*0)=:0 , and
;� (*0)=;0 such that, for all * # W,

!*({) :=e:̂(*) {A(x0(;� (*) {)+[û(*)](;� (*){)) (6.12)

is an asymptotically orbitally stable modulated wave solution with asymptotic
phases to equation !4 = f (!, *), and �2?

0 ([û(*)](t), vj*(t)) dt=0 for j=1, 2.

Remark 6.2. It is easy to verify that the map * # Rn [ (:̂(*), ;� (*)) # R2

is a submersion in *=*0 if the linear map

* # Rn [ _|
2?

0
(�* f (x0(t), *0) *, vj*(t)) dt& j=1, 2

# R2 (6.13)

is surjective. Hence, in this generic case there occurs no locking between
the frequencies :̂(*) and ;� (*). This is a well-known situation for modulated
wave solutions of equivariant autonomous differential equations, cf., e.g.,
[30, 28, 21, 11].

Let us introduce the locking cones

K(=0 , +0 , &0 , z0 , W )

:=[(*, :̂(*)+=+, ;� (*)+=&, =z) # Rn+2_C k
2? : 0<|=|<=0 , (*, +, &, z) # W]
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for =0>0, (+0 , &0 , z0) # S and neighbourhoods W/Rn_S of (*0 , +0 , &0 , z0).
Here S :=[(+, &, z) # R_R_C k

2? : |+|+|&|+&z&k=1] is the unit sphere
in R_R_C k

2? , and & }&k is the norm in C k
2? .

Let us write the reduced bifurcation Eq. (4.5) in coordinates correspond-
ing to the basis [v1 , v2]. Because of (6.7)�(6.9), it is of the form

&+0&|
2?

0
(e&#0Az0(t&$0), v1*(t)) dt=0,

(6.14)
&&0&|

2?

0
(e&#0Az0(t&$0), v2*(t)) dt=0

for (#0 , $0) # R2 and (+0 , &0 , z0) # S.
In order to apply Theorem 5.1, we remark the following: If

F(x, *, :, ;)= y, then spec �xF(x, *, :, ;)=[\+2l?i : \ # spec M, l # Z],
where M is the monodromy matrix of the solution x. Thus, assumption
(6.10) implies that the real parts of all elements of spec �xF(x, *, :, ;) are
negative iff this is the case for all elements of spec �x F(x, *, :, ;) that are
close to zero.

From the Theorems 4.3 and 5.1 we obtain the following theorem, that
describes families of synchronized modulated wave solutions to (6.1) near
T. It is the main result of this section.

Theorem 6.3. Let (#0 , $0) be a solution to (6.14) with parameters
(+0 , &0 , z0) # S, and suppose that the determinant of the matrix

_|
2?

0
(Ae&#0Az0(t&$0), v1*(t)) dt

|
2?

0
(Ae&#0Az0(t&$0), v2*(t)) dt

|
2?

0
(e&#0Az* 0(t&$0), v1*(t)) dt

|
2?

0
(e&#0Az* 0(t&$0), v2*(t)) dt& (6.15)

does not vanish.
Then there exist =0>0, a neighborhood W/Rn_S of (*0 , +0 , &0 , z0),

Ck&1-maps #̂ : W � R and $� : W � R with #̂(*0 , +0 , &0 , z0)=#0 and
$� (*0 , +0 , &0 , z0)=$0 and a Ck-map x̂ : K(=0 , +0 , &0 , z0 , W ) � C 1

2? such that
the following holds:

(i) Let (*, :, ;, y) # K(=0 , +0 &0 , z0 , W ). Then !� ({, *, :, ;, y) :=
e:{Ax̂(*, :, ;, y)(;{) is a solution to (6.1). It is asymptotically stable (resp.
unstable) if all eigenvalues of (6.15) have negative real parts (resp. if one
such eigenvalue has a positive real part).

(ii) Let (*, +, &, z) # W be fixed. Then, !� ({, *, :̂(*)+=+, ;� (*)+=&, =z)
tends to e(:̂(*) {+ #̂(*, +, &, z)) A[x0+û(*)](;� (*)({+$� (*, +, &, z))) for = � 0.
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By means of Theorem 6.3, there exists a straightforward procedure to
construct control parameters *, :, ; and y such that (6.1) has a syn-
chronized modulated wave solution near T: First, take z0 # C k

2? . Second,
take a regular value (+0 , &0) of the map

(#, $) [ _&|
2?

0
(e&#Az0(t&$), vj*(t)) dt& j=1, 2

Then :=:0+:̂(*)+=+, ;=;0+;� (*)+=& and y==z with arbitrary = # R
near zero, * # Rn near *0 , + # R near +0 , & # R near &0 and z # C k

2? near z0

are parameters of the type demanded.
In applications, however, one often has to answer more specific ques-

tions about the synchronization behaviour of (6.1). For example, the
following question is natural: Given any : near :0 , ; near ;0 and y near
zero, do there exist parameters * near zero such that (6.1) has a syn-
chronized modulated wave solution near T? In other words: Is it possible
to adjust * near *0 such that the modulated wave solution !0 to the unfor-
ced equation locks in with respect to any given small forcing modulated
wave, the frequencies of which are close to the corresponding frequencies
of !0?

The following corollary gives an answer. Speaking in the language of the
applications to laser dynamics, it shows that, for ``almost any'' external
light signal of modulated wave type with frequencies which are close to the
corresponding frequencies of the self-pulsation, it is possible to adjust the
internal laser parameters (at least two of them) such that synchronization
takes place.

Corollary 6.4. Suppose the map (6.13) to be surjective. Then, for any
: near :0 , ; near ;0 and y # C k

2? near zero such that the map

(#, $) # R2 [ _&|
2?

0
(e&#Ay(t&$), vj*(t)) dt& j=1, 2

# R2 (6.16)

has regular values, there exist parameters * near *0 such that (6.1) has a
synchronized modulated wave solution of the type (6.11) (cf. Fig. 1).

Proof. Take y # C k
2? sufficiently small, and let (+, &) be a regular value

of the map (6.16). Then |+|+|&|+&y&k is small, and, because of Theorem
6.3, (6.1) has a synchronized modulated wave solution of the type (6.11) for
parameters :=:0+:̂(*)++ and ;=;0+;� (*)+& with arbitrary * near *0 .
But * [ (:̂(*), ;� (*)) is a submersion in *0 (cf. Remark 6.2), therefore the
corollary is proved. K

Remark 6.5. Theorem 6.3(ii) says that, for control parameters :=:0+=+,
;=;0+=& and y(t)==z(t), there exists a modulated wave solution to (6.1)
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Fig. 1. Crossing of the locking cone by variation of the internal control parameters.

which tends, for = � 0 (and *, +, &, and z fixed), to e#A!*( } +$), where !*

is defined in (6.12). The phase shifts # and $ are determined by the reduced
bifurcation Eq. (6.14). In particular, they depend on *, +, & and z, in
general. Hence, the frequency locking phenomena considered here do not
have the so-called phase locking property. On the contrary, it is possible to
control the phases of the locked solutions by changing the control para-
meters (for questions concerning ``phase locking'' and ``phase regulation''
see, e.g., [1]).

Remark 6.6. Let us briefly describe how to obtain results on forced
subharmonic frequency locking of a modulated wave solution with
modulation frequency ;0 under a forcing of an external modulated wave
with modulation frequency ;r( p�q) ;0 (with p # Z, q # N, and p and q
relatively prime) into modulated wave solutions with modulation frequency
(;�q). Hence, let us look for 2?q-periodic solutions x to Eq. (6.3) for given
control parameters *r*0 , :r:0 , ;r( p�q) ;0 and y # C k

2? near zero.
We define a 2?q-periodic vector function xpq by xpq(t) :=x0(( p�q) t).

Then, because of assumption (6.5),

p
q

;0x* pq= f (xpq , *0)&Axpq .

Hence, everything that has been done in this section may be repeated with
;0 and x0 replaced by ( p�q) ;0 and xpq , respectively, and by working in
spaces of 2?q-periodic vector functions. Especially, all integrals from 0 to
2? have to be replaced by integrals from 0 to 2?q, and, therefore, v1*(t) and
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v1*(t) have to be replaced by (1�p) v1*(( p�q) t) and (1�q) v2*(( p�q) t), respec-
tively (cf. (6.8)). The reduced bifurcation Eq. (6.14) takes the form

+=&
1
p |

2?q

0 �e&#Az(t&$), v1* \p
q

t+� dt,

(6.17)

&=&
1
q |

2?q

0 �e&#Az(t&$), v2*\p
q

t+� dt,

and one has to look for solutions # # [0, 2?) and $ # [0, 2?q).
Of course, the results, obtained in the way described above are by no

means uniform with respect to p and q. On the contrary, for (6.17) (with
fixed p, q and z0) to be solvable, the parameter (+, &) has to belong to the
image of the map

(#, $) [ \&
1
p |

2?q

0 �e&#Az(t&$), v1* \p
q

t+� dt,

&
1
q |

2?q

0 �e&#Az(t&$), v2* \p
q

t+� dt+ .

Let us show that this image has a diameter of order ( pq)&k&1 for large
p and q (and, hence, that the corresponding locking cone is ``thin''). Indeed, if

z(t)=
a0(z)

2
+ :

�

j=1

(aj (z) cos jt+bj (z) sin jt),

vi*(t)=
a0(vi*)

2
+ :

�

j=1

(aj (vi*) cos jt+bj (vi*) sin jt),

then the Fourier coefficients aj (z), bj (z), aj (vi*) and bj (vi*) are of order
j &k&1 for j � � (because the vector functions z and vi* are Ck-smooth).
Therefore, the right-hand side of the first equation in (6.17), for example, is
of the form

&
1
p |

2?q

0 �e&#Az(t&$), v1* \p
q

t+� dt

=&
q
2p _(e&#Aa0(z), a0(v1*))+ :

�

j=1

(Aj (#) cos jp$+Bj (#) sin jp$)&
with

Aj (#) :=(e&#Aajp(z), ajq(v1*))&(e&#Abjp(z), bjq(v1*)) ,

Bj (#) :=(e&#Aajp(z), bjq(v1*))&(e&#Abjp(z), ajq(v1*)) ,
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and the coefficients Aj (#) and Bj (#) are of order ( j 2pq)&k&1 for large p
and q.

For results concerning the uniformity with respect to p and q of the
Lyapunov�Schmidt reduction, see [5].

Remark 6.7. There are many similarities of the methods used in this sec-
tion (Lyapunov�Schmidt reduction in a space of periodic vector functions
near a family of periodic solutions to the unforced equation, scaling, applica-
tion of the Implicit Function Theorem) to the generalization of Melnikov's
method used by C. Chicone (Lyapunov�Schmidt reduction in the phase
space near a submanifold of periodic orbits to the unforced equation, scaling,
application of the Implicit Function Theorem) for solving frequency entrain-
ment problems in [6] and [7]. It seems that the information about the lock-
ing (number, stability and phase of the locking solutions, location of the
locking cones) can be determined by means of Chicone's ``reduced bifurca-
tion function'' as well as by our ``reduced bifurcation equation'', although the
algorithms seem to be completely different.
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