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Let /I and y be complex numbers and let h(z) be regular in the unit disc U. This 
article studies the Briot-Bouquet differential equation q(z) + zq’(z)/@q(z) + y) = 
h(z). Sufficient conditions are obtained for both the regularity and univalency of the 
solution in CJ. In addition, applications of these results to differential subor- 
dinations, integral operators and univalent functions are given. 0 1985 Academic 

Press, Inc. 

1. 1NTR0DucT10~ 

Let j3 and y be complex numbers and let h(z) be regular in the unit disc U. 
In this article we shall be concerned with determining properties of the 
solutions of the differential equation 

4(z) + W(z) 
/34(z)+ y = h(z)y (1) 

with q(0) = h(O). Differential equations of this form are said to be of Briot- 
Bouquet type [3, p. 4031. 

Several applications of these equations in the theory of univalent functions 
have recently appeared in [lo and 21. In the latter article several results 
involving dominants of differential subordinations are obtained under the 
assumption that the solutions of (1) are regular and univalent in U. In this 
paper we will determine sufficient conditions for both the regularity and 
univalency of these solutions. 
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In the special case p = 0, the differential equation (1) has a regular 
solution given by q(z) = yzPysi h(t) - tY-’ dt. If, in addition, h is a convex 
function and Re y > 0 then q(z) is a univalent function [5, p. 1151. When 
/3 # 0 it is possible to formally obtain a solution of (1). We first consider the 
case q(0) = h(0) = c # 0. If we let 

Q(z) = z exp j: ‘(‘tr- ’ dt 

and 

H(Z) = Z exp 1’ ‘@Lt- ’ dt, 
0 

then 

czQ'(z) 
dz) = QcZ) and h(z) = 

czH'(z) 
H(z) * 

Multiplying (1) by p and using (3) we obtain 

PczQ'(z) + W(z) = PczH'(z) 
Q(z) b?(z) + Y H(z) 

and 

Integrating from 0 to z we obtain 

log (~)@.I,, (@?)+J =log (F)“‘. 

Simplifying and using (3) leads to 

= @?c + y)[H(z)lbC. 

Multiplying by zy- ’ and integrating from 0 to z we obtain 

(2) 

(3) 

(4) 

iQ<z>l bc zy= @ + y) j’ [H(t)15’ tY-’ dt. 
0 
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Using this result with (3) and (4) we obtain the formal solution of (1) given 
by 

q(z) = czQ'(z) -PC + Y H(z) De Y 
Q(z) P - - - ( ) Q(z) P 

-1 
= zY[H(z)]~’ /I j’ [H(t)lbC tY-’ dt - YIP, 

0 

where H(z) is given by (2). 
In the case q(0) = h(0) = 0, let 

Q(z) = z exp f j: y dt 

and 

H(z) = z exp $ j: $.)- dr. 

Using the same technique as above, we obtain the formal solution 

4(2) =$ (s&L 1) 2(!@,‘-; 
-1 

= fIy(z) p j’ W(t) t - ’ dt - YIP. 
0 

(5) 

(6) 

In Section 2 we will determine conditions on /3, y, and h(z) so that the 
formal solutions, given by (5) when q(0) = h(0) = c # 0, and by (7) when 
q(0) = h(0) = 0, are well defined, regular, and univalent. In Section 3 we 
apply these results to Briot-Bouquet differential subordinations. 

We close this section with a lemma that will be used several times in the 
next section. 

LEMMA 1. Let l(z) be a function defined in U with Re A(Z) > 0 for 
z E U. If f (z) is regular in U and 

Re[f(z) + G)zf’(z)l > 0 (8) 
for z E U, then Re f (z) > 0 for z E U. 

ProoJ Let f(0) = a and y(r, s) = r + A(z)s. From (8) we obtain Re a > 0 
and Re w( f (z), zf’(z)) > 0. The conclusion of the lemma follows from 
Theorem 5 of [S] if we can show that Re ty(r,i, SJ < 0 when s, Q 0. But in 
this case we have Re v(r, i, s 1) = [Re A] s I < 0. Hence Re f (z) > 0. 
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2. REGULAR AND UNIVALENT SOLUTIONS 

THEOREM 1. Let /I and y be complex numbers with p # 0, and let h(z) = 
c+h,z+..., be regular in U. If Re[ph(z) + y] > 0 then the solution of 

cl(Z) + z@(z) 
Pq(z) + y = h(z)3 

with q(0) = c, is regular in U. The solution satisfies ReBq(z) + y] > 0 and is 
given by 

q(z) = HY(z) (p I,; HY(t) t - ’ dt) - ’ - y/p 

= ~‘[H(z)]~’ (/3 j; [H(t)]4C tY-’ dt) -’ - y/j3 

if c = 0, 

(10) 
if c # 0, 

where 

H(z) = z exp $1: F dt if c = 0, 

I z 
=z exp 

h(t) -c 
if c # 0. 

0 ct 

(11) 

Proof. Since H(z)/z # 0, we can define the function f by 

if c= 0, 

if c# 0, 

where all powers are chosen as principal ones. The function f is regular in U 
and satisfies 

H”(t) t - ’ dt if c = 0, 

(12) 
\ I 

1 
1 ’ = zy[H(z)lDc 

[H(t)14’ tY-’ dt if c # 0. 
o 

In both cases f (0) = I/@ + y) and hence Re f (0) > 0. We shall show that 
f(z) # 0 in U by using Lemma 1 to show that Ref (z) > 0 in U. By differen- 
tiating (12) and logarithmically differentiating (11) we obtain 

[BW) + rl f(z) + zf’(z) = 1, 
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for any c. If we let P(z) = /Vz(z) + y, then Re P(z) > 0, Re [ l/P(z)] > 0, and 
we obtain 

f(z) + &) 1 
zf’(z) =-I 

P(z) 

Hence 

zf’(z) 1 > 0, 

and we can apply Lemma 1 to obtain Ref(z) > 0. 
Sincef(z) # 0, the function q given by 

is regular in U and satisfies Re[pq(z) + y] = Re[ l/‘(z)] > 0. Combining 
(ll), (12), and (14) we obtain the function q(z) given in (10). Hence this 
function is regular and, as was shown in Section 1, this function is the 
solution of (9) with q(0) = c. This completes the proof of the theorem. 

As an incidental consequence of Theorem 1 we obtain the following 
corollary. This provides a simple proof of the regularity of an integral 
operator defined on a class of regular functions. 

COROLLARY 1.1. Let p and y be complex numbers with /3 # 0, and let 
f(z)=z+c2z2+ **a, be regular in U. If Re[pzS’(z)/f(z) + y] > 0 in U then 
the function F defined by 

1+4 
dt (15) 

is regular in U, F(z)/z # 0, and Re[/?zF’(z)/F(z) + y] > 0. 

Proof. The condition Repzf’(z)/f(z) + r] > 0, together with f(0) = 0, 
imply thatf(z)/z # 0 for z E U. The function h, defined by h(z) = zf’(z)/f(z), 
is regular in U and satisfies Re@h(z) + y] > 0 and h(0) = 1. If we employ 
this particular h in Theorem 1, with f = H and c = 1, we conclude that the 
function 

q(z)=zyf”(z) (/?~;fb(t)tY-ldt)-l-y/~=l+qlz+..., (16) 

is regular in U and satisfies Repq(z) + y] > 0. If we now define F by 

F(z) = z exp 1’ q(t)t- ’ dt, 
0 

(17) 
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then F(z) is regular in U, F(z)/z # 0, and Re~zF’(z)/F(z) + y] > 0. 
Combining (16) and (17) we obtain (15), which completes the proof of the 
corollary. 

If we let KB,Y= {f]f regular in U, f(0) = 0, f’(0) = 1, and 
Re[pzf’/‘+ y] > 0) and define the operator A(f) = F, where F is given by 
(15), then the corollary implies that A maps K4,y into K4,y. Note that K,,, 
with Re /3 > 0 is the set of spiral-like functions [9, p. 1721. 

We next extend Theorem 1 by determining conditions under which the 
solutions of the Briot-Bouquet differential equation will be univalent. Recall 
that the regular function f(z) with f’(0) # 0, is convex (univalent) in U if 
and only if Re zf”(z)/f’(z) > -1 [9, p. 441. 

THEOREM 2. Let p and y be complex numbers with /3 # 0, and let h(z) be 
regular in U with h’(0) # 0. If we set P(z) =/?h(z) + y and require that 

(i) Re P(z) > 0 for z E U, and 

(ii) Q = log P and R = l/P are convex in U, then the solution of 

4(z) + zq’tz) 
/?q(z) + y = h(z) VW = do)), 

as given by (9), is univalent in U. 

Proof. We will show that the functionf(z) of (12) is a (close-to-convex) 
univalent function (see [9, p. 5 1 I). This combined with (14) will prove that 
4(z) is univalent. Note that R’(0) = -Q/(0)/P(O) and Q’(0) = 
/3h’(O)/@h(O) + y) # 0. Since Q and -Q are convex we can prove thatf(z) is 
(close-to-convex) univalent by showing that Re f’(z)/[-Q’(z)] > 0 for 
z E U. From (13) we have f(z) + zf’(z)/P(z) = l/P(z). Differentiating this 
equation and setting p(z) = -f’(z)/Q’(z) we obtain 

ZR “(z) 
P(z)+l+- 

R’(z) 1 p(z) + zp’(z) = 1. (18) 

If we let P,(z) = P(z) + 1 +, zR”(z)/R’(z), then from (i) and (ii) we obtain 
Re PI(z) > 0, and we can rewrite (18) as 

P(Z) + & 
1 

1 
zp’(z) = p10’ 

Since Re[ l/P,(z)] > 0 we have 

[ 

1 
Re p(z) + p1(z> - zp’(z) > 0, 

1 
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which, by applying Lemma 1, implies that Rep(z) > 0. Hence f(z) is 
univalent, as is q(z), and this completes the proof of the theorem. 

3. APPLICATIONS TO BRIOT-BOUQUET DIFFERENTIAL SUBORDINATIONS 

Letf(z) and F(z) be regular in U. The functionf(z) is subordinate to F(z), 
written f(z) < F(z), if F( z ) is univalent, f(0) = F(0) and f(U) c F(U). 

In [ 21 the Briot-Bouquet differential subordination 

P(Z) + p.yj y -c h(z) (P(O) = h(0) = c) 

was investigated. If the univalent function q(z) has the property that 
p(z) < q(z) for all p(z) satisfying (19) then it is called a dominant of (19). If 
q(z) is a dominant and g(z) < q( z ) f or all dominants q(z) of (19) then g(z) is 
said to be the best dominant of the differential subordination. The existence 
of a best dominant is provided by the following lemma. 

LEMMA 2 [2, Theorem 21. Let /3 and y be complex numbers and let h(z) 
be convex (univalent) in IJ with Re[ph(z) + r] > 0. Let p(z) be regular in U 
and satisfy (19). If the difSerentia1 equation 

cl(Z) + z@(z) 
Pq(z) + y = h(z) (q(O) = h(O)) 

has Q univalent solution q(z), then p(z) < q(z) < h(z), and q(z) is the best 
dominant of (19). 

Lemma 2 requires that P(z) = /3h(z) + y be convex, while Theorem 2 
requires that l/P and log P be convex. Both results require that Re P(z) > 0. 
If Re P(z) > 0 then a simple computation shows that P and l/P convex 
implies that log P is also convex. Because of this we can combine Lemma 2 
and Theorem 2 and obtain the following more definitive result. 

THEOREM 3. Let p and y be complex numbers with p # 0, and let P(z) = 
M(z) + Y. V 

(i) Re P(z) > Ofir z E U, and 

(ii) P and l/P are convex in U, 

then the solution of (20) is univalent and is the best dominant of (19). 

The functions P(z) = eaZ, with ]A( Q 1, and P(z) = (1 + Az)/(l + Bz), with 
-1 < B < A < 1, are examples of functions satisfying these conditions. 
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COROLLARY 3.1. Suppose r(z) and s(z) are regular in U with r(0) = 
s(O) = 0, r’(0) = s’(0) = 1, and 

zr’(z) zs’(z) 
-<-. 

44 s(z) 

If h(z) = zs’(z)/s(z) satisfies the conditions of Theorem 3 and if R = Z(r), 
S = I(s), where I is the operator deJined in (15), then 

zR’(z) zS’(z) zs’(z) - - 
R(z) ’ S(z) <s(z). 

The left subordination result is sharp. 

Proof: If we set p(z) = zR’(z)/R(z) and q(z) = zS’(z)/S(z) then p(z) + 
z~‘(z)/@‘~(z) t Y) = zr’(z)/r(z) and q(z) + zq’(z)/Vq(z) + Y) = zs’(z)/s(z) = 
h(z). Applying Theorems 2 and 3 we obtain the desired result p(z) < 
q(z) < h(z), Since q is the best dominant, zR’(z)/R(z) < zS’(z)/S(z) is 
sharp. 

Several cases of this result, for special values of /3 and y, have been used to 
determine the order of starlikeness of classes of univalent functions. An 
example of this technique in determining the order of spiral-likeness is given 
in Example 2. 

In the rest of this section we restrict our analysis to the case when h(z) = 
(1 + Az)/(l + Bz). This function is convex for A, B E C with A #B and 
IBI < 1. The dominants arising from the differential subordination 
corresponding to this particular h(z) have several applications to univalent 
functions. 

COROLLARY 3.2. Let A, B, /I, y E C with p # 0, JB I< 1 and A #B, and 
suppose that these constants satisfy 

Re[B(l-A)(l-B)ty(l-Bj*]>O (21) 

Re[p(l-A)(1-B)ty~1-BB(2]~Re[~(ltA)(1+~)t+~ltB]2] 

- [Im[/3(B-A)+y(B-B)]]2>0, 

or 

Re[/3(1 +A)(1 t~)++ll +Bl’]>O (22) 

and 

Rep(l -A)(1 -B)+y]l -B]*]=Im[P(B-A)+@-B)]=O. 
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Then the difSerentia1 equation 

4(z) + 
zq’(z) 1 +Az =- 

Ps(z)+y 1 +Bz 

has a univalent solution given by 

q(z) = p ( 

zi)+ Y( 1 + Bz)B”A --B)/B) 
Y 

‘0 tB+ Y- ‘( 1 + Bt)B((A -B)/B) dt - j 
ly B#O 

z4+yeBAz 
Y 

=Ps 
;tb+y-leDAt&-jj 

(23) 

if B = 0. 

If p(z) is regular in U and satisfies 

P(Z) + 
ZP’(Z) 1 +Az 

Pp(z)+y ’ 1 +Bz 

then p(z) < q(z) < (1 + Az)/( 1 + Bz) and q(z) is the best dominant. 

Proof: If we set h(z) = (1 + Az)/( 1 + Bz) and P(z) = ph(z) + y then 

p(z)=P+~+IoA+~Bk 
l+Bz ’ (24) 

and P is convex since IB I< 1. We prove this corollary by showing that P 
satisfies conditions (i) and (ii) of Theorem 3. We first show that Re P(z) > 0 
for z E U if and only if conditions (21) or (22) hold. This follows by 
considering Re P(z) when ) z) = 1. If we set z = (1 + it)/( 1 - it) with 
f E (-a, co) then a simple calculation shows that Re P(z) > 0 if and only if 

{Re[~(1-A)(1-~)+y~1-B(2]}t2+{Im[P(~-A)+y(~-B)]}t 

+Rep(l +A)(1 +B)++y)l +Bl’]>O. (25) 

The quadratic Mt2 + Nt + k > 0 for all t if and only if A4 > 0 and 
N2 - 4Mk < 0, or if k > 0 and M= N=O. These are precisely the 
conditions given in (21) and (22) for the quadratic in (25). Hence 
Re P(z) > 0 for z E U and condition (i) of Theorem 3 is satisfied. Using this 
result together with the fact that P is a linear transformation mapping onto a 
convex domain we conclude that l/P also maps onto a convex domain. 
Hence by Theorem 3, q(z) is univalent and is the best dominant of the 
differential subordination. The formula for q(z) as given in (23) is easily 
obtained from (10) and (11) with c = 1, and this completes the proof of the 
corollary. 
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We next discuss several examples of this corollary and in the process 
indicate several applications in the theory of univalent functions. 

EXAMPLE 1. Let p>O, y=O and -l<A, B< 1 with AZB. In this 
case (21) and (22) are satisfied, and hence 

-w’(z) l+Az 
q(z) + - = - 

Pq(z> 1 + Bz 
G?(O) = 1) (26) 

has the univalent solution q(z) given by (23), with y = 0. If, in addition, p(z) 
is regular and satisfies 

zp’(z) 
P(Z) + - 

1 +Az 
Dp(z) -sxz+ 

then p(z) < q(z) < (1 + Az)/(l + Bz) and q(z) is the best dominant of (27). 
This result improves the result of Jakubowski and Kaminski [4] which 
showed that (27) implies p(z) < (1 + Az)/(l + Bz). 

If we take p = 1 in (26), then this differential equation has the univalent 
solution 

AZ 
‘(‘)= (1 + Bz)[l - (1 + Bz)-“‘“1 

A # 0, B # 0, 

Bz 
=(l +Bz)ln(l +Bz) 

A = 0, B # 0, (28) 

AzeA’ 
== 

If in addition p(z) is regular with p(0) = 1 then 

A#O,B=O. 

P(Z) + - 
q’(z) < 1 + AZ 
P(Z) 

1 *p(z) -c q(z), (29) 

where q(z) is given by (28). If we set p(z) = zF’(z)/F(z) in (29) we obtain 

1 + IF”(Z) < 1 + AZ 
1+ 

zF’(z) 

F’(z) 
F(z) -=c 4(z)- (30) 

By further specializing A and B in (30) we can obtain several results 
about the convex differential operator 1 + zF”/F’, If we take A = 2a - 1, 
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0 < a < 1, and B = 1 in (30) we obtain the following result of MacGregor 
[ 61 for convex functions of order a: Re( 1 + zF”/F’) > a implies 

zF’(x) 
F(r)+?(z)= 

(2a - 1)z 
(1 + z)[ 1 - (1 + z)i-*q a# 4, 

= (1 +z)L(l +z) 
a = +. 

If we take B = -A in (30) we obtain 

zF”(z) 1 +Az 
’ + F’(z) ‘-- 1 -AZ 

zF’(z) < 1 

F(z) l-Az’ 

where IA I< 1. This is a generalization of results of Marx [7] and 
Strohhlcker [ 111 who proved this result for A = 1. 

If we take B = 0 in (30) we obtain 

l+$ 
zF’(z) AzeAZ - ~ ‘1+Az* f’(z) ‘eh-l’ 

where IA I< 1 and A # 0. If 0 < A < 1 we also have 

F”(z) I I < A ~ zF’(z) AzeAZ 

F’(z) F(z) ‘eA;- 

If we take A = 0 in (30) we obtain 

1 + zF”(z) 1 zF’(z) Bz 
F’(z) ‘-- 1 +Bz F(z) ’ (1 + Bz) ln(1 + Bz)’ 

EXAMPLE 2. Let /?=ei”, -42 <a < 742, yEC, B= 1, and 
A = p(2p cos a - B>, where p satisfies 

-Re y 
-<p< 1. 
cos a 

Note that (3 1) implies that Re [/I + JJ] > 0 and that p may assume negative 
values. In addition, (31) implies that (22) is satisfied. Hence, by Corollary 
3.1 we obtain 

P(Z) + e’“X;:otyw4= 
1 + [eVia(2p cos a - e-“)]z 

1+z 

with 
*p(z) -=c q(z) -c h(z), (32) 

q(z) = e-‘” I 
Zd~+y(l + z)-2(1-p)~~~u 

s 
‘0 ter=+y-l(l + f)-2(1-P)cosu dt - y * 

I 
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We can use (32) to improve a result of Bajpai [ 1, Theorem 1 ] concerning 
Libera-Bernardi transforms of spiral-like functions. Let f(z) be an a-spiral- 
like function of order p, that is,f(z) is regular in U,f(O) =f’(O) - 1 = 0, and 

Re (ei- $$) >p cosa, 

where -42 < a < x/2 and 0 < p < 1. Bajpai shows that if 0 < p < 1 and 
-Re y/cos a < p, then the function F defined by 

F(z)= 

is also a-spiral-like of order p. Hence 

Re (eiQ $$) >p cosa=-Re (eia 9) >p cosa, 

or equivalently 

&a ‘f’(‘) f(z) < e’“h(z) 2 eia 
zF’(z) 

I < e’“h(z), 

where h(z) is given in (32). If we let p(z) = zF’(z)/F(z) and use (33) then 
this last result can be written in the form 

e ja 
( 
p(z) + 

ZP’(Z) 
e%(z) + y 1 

< e’*h(z) * e’“p(z) < e’“h(z). 

From (32) we see that we can improve the conclusion of this result to 
e’“p(z) < e’“q(z), that is, 

Re (ei-$$) >p cosa*eia $$- 

&‘Y(l + Z)-2(1-P)cosa 

<( z. ; f’ +y-l(l + f)-2(1-mxn & 

_ y 

’ 

and this result is the best possible. This result depends only on (31) and not 
on 0 < p < 1, although univalency off and F may be lost for negative p. 
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