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a b s t r a c t

A new model of the Log-Normal form for predicting the cumulative probabilistic distribution of strength
in annealed glass panels is presented in this paper. The proposed model, which is supported by experi-
mental evidences, shares certain features that are common with predictions by the Weibull’s model. How-
ever, as the dimension of the panel is above a certain limit, the strength of glass as predicted by the new
model is much less sensitive to any further increase in the panel dimension than strength predicted by
the Weibull’s model. This has important implications to the engineering design and risk assessments of
glass facades in the future. The proposed alternative model was derived from results obtained from
Monte Carlo simulations of non-interacting Griffith flaws based on principles of fracture mechanics. As
interactions between flaws have been neglected in the analyses presented in the paper, the proposed
model is intended to be applicable to glazing panels which contain widely spaced flaws. Results from
physical experimentation in support of the simulation model have been presented in the paper.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Glass Failure Prediction Model (GPFM) which underpins provi-
sions in the ASTM standard (ASTM-E1300, 2007) for determining
the load resistance of annealed glass panels subject to out-of-plane
(mainly wind) pressure is defined by Eq. (1) which provides esti-
mates for the probability of failure (F)

F ¼ 1� exp �k �
Z
½cðx; yÞ � rðq; x; yÞ�m � dA

� �
ð1Þ

where k and m are the dual Weibull parameters, c(x,y) is the biaxial
stress correction factor, and r(q,x,y) is the maximum principal
stress which is expressed as a function of out-of-plane loading on
the glass panel, the load duration and location within the panel.

Eq. (1) is based on the work of Beason (1998) and Beason and
Morgan (1984) in which the Weibull’s probability distribution func-
tion is adapted to the prediction of failure in glass. In the context of
engineering mechanics, Weibull’s model can be used to predict the
strength of materials which are controlled by their weakest link.
The Weibull distribution function has also been applied to many
other facets of science and technology, including forecasts of
extreme events and the quality control of manufactured products.
ll rights reserved.
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Derivation of the Weibull’s distribution relationship can be found in
Weibull (1939) and Jayatilaka and Trustum (1977).

Weibull’s expression for the cumulative probability distribution
function has been simplified into Eq. (2) for conditions of pure uni-
axial tensile stresses applied in one principal direction

FðrÞ ¼ 1� expð�k � rm � Aeff Þ ð2Þ

where r is the failure stress of the specimen, m and k are constants
in the two-parameter version of the Weibull distribution function
and Aeff is the effective area of the glass panel.

A common feature of Eqs. (1) and (2) is the use of the surface
area of glass as a multiplier in the exponent of the Weibull’s expres-
sion to represent the trend of decreasing strength in glass with
increasing surface area. In situations of a panel subject to non-uni-
form stresses, analyses involve dividing the glass panel into ele-
ments. The contribution of each element to the cumulative
probability of failure of the panel is taken into account by weighing
the surface area of each element in accordance with the amount of
stress to which the element is subjected. This functional form has
been found to match experimental results through calibration of
the Weibull’s parameters. However, the influence of the surface
area on the strength of the glass panel was not evident in the study
by Calderone (2000) in which large panels measuring up to 2 m
were tested.

The objectives of this paper are: (i) to examine the validity of
this widely accepted feature in the Weibull’s expressions (Eqs. (1)
and (2)) in comparison with results obtained from both physical
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and simulated experimentation (based on Monte Carlo simulations
of non-interacting Griffith flaws in the panel); (ii) to investigate the
statistical distribution of strength; and (iii) to study the effect of
specimen size on the strength distribution of large glass panels.

Weibull expressions in Eqs. (1) and (2) are based on the assump-
tion that Weibull parameters m and k are constant for specimens
with the same material properties and glass surface conditions.
Limitations of the Weibull’s model are identified in Section 2 in
which values of the Weibull parameters m and k obtained from
physical experimentation are reviewed. An alternative simulation
model for the probabilistic distribution of strength for panels sub-
jected to two-way bending stresses is then developed in Section 3.
The important issue of sample size is addressed in Section 4. The
simulation model employs two main parameters namely flaw den-
sity and maximum flaw size. Both parameters have a direct phys-
ical meaning unlike the Weibull’s parameters. The two parameters
in the simulation model have been calibrated in order that the
cumulative probability distribution (CPD) curves obtained from
simulations corresponded with those derived from physical tes-
tings (Section 5). Given that the simulation model has been cali-
brated with test data, the calibrated parameters in the simulation
model could be used for generating strength data for a wide range
of panel dimensions including those that have not been sampled
for physical experimentation. The simulated results are then used
for modelling the probabilistic distribution of strength (Section 6)
and size effects (Section 7).

2. Strength distribution of annealed glass panels from physical
tests

The validity of Eqs. (1) and (2) which assume that the Weibull
parameters m and k are constant is investigated in this section. To
satisfy the ideal conditions of the Weibull expressions, new glass
panels were used. Seventy-nine large glass panels of variable size
were tested for this purpose. The specimens were divided into six
different sets of dimensions, ranging from 2000 mm � 400 mm �
6 mm to 2000 mm � 2000 mm � 6 mm, as summarised in Table 1.

The specimens were simply supported on four sides and sub-
jected to out-of-plane hydrostatic pressures. The boundary condi-
tions of the panels resulted in two-way bending and biaxial
stress states. The significant effects of the ratio of the principal
stresses on the failure stress in glass have been studied by Bao
and Steinbrech (1997) and Nurhuda et al. (2008). Thus, principal
stresses recorded in the orthogonal directions have been trans-
formed into equivalent uniaxial stress values (Nurhuda et al.,
2008). Pressures were applied at different rates and results pre-
sented herein have been corrected to correspond with conditions
of 3-s load duration based on the transformation relationships pre-
sented in Calderone (2000).

The cumulative probability distributions (CPD) of the corrected
test results were obtained using Eq. (3)

Fi ¼
i� 0:5

N
; i ¼ 1� N ð3Þ

where Fi is the cumulative probability of the ith ranked value in
ascending order, and N is the number of specimens.
Table 1
Specimen size and number of specimens.

Size (mm) Number of specimen

2000 � 400 � 6 15
2000 � 500 � 6 18
2000 � 670 � 6 15
2000 � 1335 � 6 10
2000 � 1600 � 6 11
2000 � 2000 � 6 10
The Weibull parameters were determined by calibration against
the CPD of the ranked test results obtained for each batch of spec-
imens of a given set of dimensions. The Weibull parameter m was
identified by linear regression using Eq. (4) which was transformed
from Eq. (2), by taking logarithms twice on both sides of the
equation

LnfLn½1=ð1� FðrÞÞ�g ¼ m � Ln rþ C ð4Þ

where C is a constant (=Ln(k � Aeff)) and F(r) can be calculated from
the corrected (and ranked) test results based on Eq. (3).

The line of best-fit was constructed using the ‘‘least squares
method” and m is the slope of the line of best-fit. The values of
R2 were calculated using Eq. (5)

R2 ¼ 1�
XN

i¼1

ðd� xÞ2
" #, XN

i¼1

ðd� �dÞ2
" #

ð5Þ

where d is the referenced value (from the sample); �d is the sample
mean, x is estimate by the line of best-fit, and N is sample size
(number of specimens).

The value of parameter m so obtained from the calibration was
used for calculating the effective area (Aeff) of the specimen of a given
dimension using Eqs. (1) and (2). The value of parameter k was then
calculated once the value of C has been found from calibration. This
procedure for determining the value of m, C and k has been repeated
for every batch of panel specimens of given dimensions.

The calculated Weibull parameters m and k are tabulated in
Table 2 and compared with those from ASTM provision (ASTM-
E1300, 2007) which stipulates constant values of k and m. The
comparison shows very different values of the Weibull parameters
m and k that have been obtained from calibrating with experimen-
tal test results involving panels of different dimensions. The dis-
played variability in the value of m and k (for glass panels
obtained from the same source and manufacturing processes) con-
tradicts with the notion of taking a single m value to represent
‘‘average conditions” as reported in the literature (ASTM-E1300,
2007; Hoshide et al., 1998). This observation reaffirms previous
findings (Afferante et al., 2006; Kotrechko, 2003; Zwaag, 1989) that
the Weibull parameter m is not a material constant.

Variability in the values of the m and k parameters obtained
from calibration represents significant shortcomings in the use of
the Weibull’s model for generalising the probabilistic strength dis-
tribution behaviour of glass of variable dimensions. A more robust
and reliable simulation model is presented in the rest of this paper.
Development of the proposed model involved Monte Carlo simula-
tions of individual flaws and bending stresses in the panel.

3. Simulation model

Brittle fracture in annealed glazing panels is always initiated
from a Griffith flaw when the panel is subject to out-of-plane load-
ing causing flexural tensile stresses on the glass surface. Usually,
more than one flaw can be found in a panel. These flaws are
Weibull parameters from calibration with test results in comparison with ASTM
provision.

Panel size Tests ASTM

m k (N�7 m12) m k (N�7 m12)

2000 mm � 400 mm 4.7 4.77 � 10�51 7.0 2.86 � 10�53

2000 mm � 500 mm 4.9 1.88 � 10�51 7.0 2.86 � 10�53

2000 mm � 670 mm 5.9 6.73 � 10�53 7.0 2.86 � 10�53

2000 mm � 1335 mm 8.5 3.51 � 10�57 7.0 2.86 � 10�53

2000 mm � 1600 mm 5.5 4.15 � 10�52 7.0 2.86 � 10�53

2000 mm � 2000 mm 3.3 8.39 � 10�49 7.0 2.86 � 10�53
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randomly disposed within the panel and are of variable size but
there is only one critical flaw that would potentially initiate frac-
ture under ultimate load conditions. The larger flaws tend to have
a higher probability of being the critical flaw. However, stress con-
ditions surrounding the Griffith flaw can be a controlling factor as
well. The initiation of fracture at a Griffith flaw is controlled by
the Stress Intensity which can be used as the basis of accurately
identifying the critical flaw in a panel for a given stress state (Grif-
fith, 1920; Lawn, 1993).

The larger the size of the panel, the larger the number of flaws
and the greater the chance of the panel having a larger flaw on its
surface. Thus, the magnitude of tensile stress required to initiate
facture is expected to decrease with increasing panel size. The
objective of this section is to develop a simulation model based
on the distribution of flaws for analysing the strength of glass.
Whilst the simulation model presented herein is based on two-
way bending, the model can be adapted to conditions of one-way
bending or uniform bending.

3.1. The number and size of flaws and its distribution

The number of flaws in a specimen is dependent on the flaw
density and surface area of the specimen. The probability that a
specimen has n number of flaws can be defined in accordance with
the Poisson distribution relationship of Eq. (6) (Gilvarry, 1961;
Lemon, 1974).

f ðnÞ ¼ ½ q � Að Þn=n!� � ½exp �q � Að Þ� ð6Þ

where q is the flaw density, n is the number of flaws, and A is the
surface area.

According to fracture mechanics theory, a Griffith flaw can be
characterised by two physical parameters: flaw shape and flaw
size. Previous studies revealed that critical flaws found in broken
glass plate specimens have the shape of a half-penny crack. The
length of crack is identified as 2a and depth of crack as a (Krohn,
2002; Porter and Houlsby, 2001). Whilst the half-penny crack was
adopted in the development of the proposed simulation model,
the presented simulation techniques can be applied to any flaw
shape by changing the value of the shape factor (Y) in the analysis.

One important step in the simulation is to determine the distri-
bution of flaw size in the specimen as this would control the distri-
Fig. 1. Probability density functions for flaw size: (a) Uniform distribution; (b)
bution of failure stress (Danzer, 2006; Danzer et al., 2001; Todinov,
2007). However, the distribution of flaw size in the specimen is dif-
ficult to measure by physical observations. Thus, the distribution of
flaw size is normally derived from the distribution of fracture loads
(Warren, 1995). Warren (1995) used this method to investigate the
distribution of flaw size from specimens subjected to 3-point bend-
ing. Results show that the distribution of flaw size was right-
skewed. However, Warren’s method was based on the assumption
that the cumulative probability distribution of strength followed
the weakest link concept of Weibull.

This section examines different probability distribution func-
tions for modelling the distribution of flaw size. This study differs
from previous investigations in that the probabilistic distribution
function of strength is not pre-determined. Instead, four different
probabilistic distribution models have been used for simulating
the size of individual flaws in the specimen as illustrated in
Fig. 1(a)–(d): (i) Uniform, (ii) Normal (symmetrical) (iii) Log-Normal
(right-skewed) and Weibull (left-skewed). The abscissa of the prob-
ability distribution functions (Fig. 1) is the normalised flaw size (rj).
With rj = 1, the size of the flaw (aj ) is equal to the assumed maxi-
mum possible flaw size (amax). This assumption of a maximum lim-
it with the size of the critical flaw is reasonable for common
manufacturing and installation processes of glass panels.

Each of the distribution functions considered herein has param-
eters characterising the shape of the distribution. Detailed descrip-
tions of the considered distribution functions can be found in
Ayyub and McCuen (1997). Since the normalised flaw size (rj)
was bounded in between the limits of 0 and 1, the statistical
parameters of the functions were taken such that the cumulative
probability at rj = 1 was close to unity for every probabilistic distri-
bution functions considered in this study. Parameters of the distri-
bution functions used in the simulation has been summarised in
Table 3.

3.2. Simulation techniques

Central to the simulation model is the identification of the crit-
ical flaw at which a crack could potentially initiate. There are six
steps in the simulation procedure: (i) simulation of the number
of Griffith flaw in a specimen, (ii) simulation of the size of each Grif-
fith flaw, (iii) simulation of the disposition of each Griffith flaw
Normal distribution; (c) Log-Normal distribution; (d) Weibull distribution.



Table 3
Statistical parameters for normalised flaw size (r) distribution.

Uniform Normal Log-Normal Weibull

Max r: 1 Mean r: 0.5 Mean Ln(r): �3.14 m: 7
Min r: 0 Std. Dev. r: 0.16 Std. Dev. Ln(r): 1 k: 12.14
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within the panel and identifying the level of stress at the simulated
position, (iv) combining parameters determined in the previous
steps for calculation of the strength ratio of each simulated flaw,
(v) identifying the critical flaw which has the lowest calculated
strength ratio, and (vi) calculation of the failure stress based on
the critical flaw size. This six-step procedure is repeated for every
simulated experiment. The strength values so obtained are ranked
and the CPD values are determined using Eq. (3).

Probabilistic distribution of the number of Griffith flaws (n) in a
specimen is defined by the Poisson relationship of Eq. (6). The
number of Griffith flaws in each specimen was simulated in accor-
dance with this relationship based on a random seed value which
ranges between 0 and 1 (step i). After the number of flaws has been
determined, the size of each individual flaw was determined in
accordance with a chosen distribution function (Fig. 1) and a ran-
dom seed value (step ii). Meanwhile, the x–y coordinates which de-
fine the position of each flaw in the panel are simulated. The kj

parameter is then used to represent the level of stress, rj, at each
simulated flaw position based on the stress contours (step iii).
For example, consider a rectangular panel which is of size
2000 mm by 400 mm and 6 mm in thickness. The panel is simply
supported on four sides (i.e., spanning two-ways) and is subject
to uniform out-of-plane pressure (Calderone, 2000). Stresses in
the glass panel were calculated using finite element analysis based
on the elastic material properties. To reduce computational time,
analyses were conducted on a quarter of the panel making use of
symmetry about the orthogonal axes. The maximum principal
stress contours identified for the quarter panels are shown in
Fig. 2. The value of kj = 1 represents the relative level of stress for
flaw no. j located at mid-span of the specimen (see Fig. 2). The
strength ratio, Sj, of the simulated flaw is then calculated using
the relationships of Eqs. (7a)–(7d) (step iv)

KIC ¼ rjY
pðpajÞ ¼ kjrmaxY

pðpajÞ ð7aÞ

where KIC is fracture toughness, Y is shape factor, kj is the norma-
lised stress in the specimen at the position of the flaw, aj is the size
of the flaw, and rmaxis the maximum stress.

For the worst case of a flaw of assumed maximum possible size
(i.e. rj = 1; aj = amax) occurring at the maximum stress position (i.e.
kj = 1; rj=rmax), Eq. (7a) is re-written into Eq. (7b) in which the
bending stress at mid-span is identified as the minimum stress
rmin required to cause failure

KIC ¼ rminY
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pamax
p

ð7bÞ

where amax is the assumed maximum possible size of flaw.
Combining Eq. (7a) with (7b) gives Eqs. (7c) and (7d), the latter

of which provides predictions for the strength ratio, Sj, for flaw no. j
Fig. 2. Maximum principal stress in a sp
kjrmaxY
pðpajÞ ¼ rminY

pðpamaxÞ ð7cÞ
1
Sj
¼ rmin

rmax
¼ kj �

ffiffiffiffiffiffiffiffiffi
an

amax

r
¼ kj �

ffiffiffiffi
rj

p
ð7dÞ

where Sj is the calculated strength ratio which varies between 1 and
infinity for flaw no. j, rj is the normalised size of the flaw.

The critical flaw is then obtained by sorting the 1/Sj values for
identifying the most critical value (step v).

In a simplified procedure for obtaining a conservative estimate
of the notional failure strength of glass, the critical flaw is assumed
to be at the location of maximum stresses. Thus, the notional fail-
ure strength of glass (r) can be calculated using Eq. (8)

r ¼ KIC

Y � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip � rj � amax
p ð8Þ

where KIC is fracture toughness = 0.78 MPa m1/2, Y is shape fac-
tor = 0.713 for half-penny shaped flaws (Fischer-Crips and Collins,
1995; Warren, 1995), rj is the normalised size of the critical flaw,
and amaxis the assumed maximum possible flaw size.

Eqs. (7)–(8) are based on the assumption that there is no inter-
action between flaws. In reality, however, two or more flaws that
are very close to each other would alter the stress intensity at
the crack tip (Afferante et al., 2006; Carpinteri et al., 2004; Jones
et al., 1995). As a result, the strength of the glass pane could be
lower than is estimated. To incorporate this phenomenon, the sim-
ulation model would need to be extended to include parameters
defining distances between the simulated flaws. This is beyond
the scope of the simulation model presented herein.

4. Effect of sample size (N)

A simulation technique for determining the strength distribu-
tion of glass has been presented in the previous section. However,
the technique presented assumes that sample size (N) is suffi-
ciently large to represent the actual distribution of strength in
the entire population of glass materials. Thus, further investiga-
tions are required for studying the effects of sample size (N) on
strength distribution, and in particular variability in strength with-
in the sample. The aim is to find the required (minimum) value of N
in a simulated experiment to achieve statistical significance. To
achieve these objectives the CPD of failure stress from specimens
of size 350 mm � 280 mm were simulated. The specimens were
simply supported on all sides and subjected to out-of-plane dis-
tributed loading.

Simulations were based on a constant flaw density (q) of
10 flaws/m2 and a maximum possible flaw size (amax) of 278 lm.
In each simulation the notional failure strength of the panel (ri)
was calculated using Eq. (8) based on simulated values of rj. With
each sample, N number of simulations were undertaken and the
simulated/calculated failure strengths were sorted and ranked in
ascending order using Eq. (3) to determine the CPD curve for the
sample.

CPD curves were constructed using this procedure for sample
size of N = 15, 100, and 500. It is noted that the strength behaviour
ecimen of size 2000 mm � 400 mm.
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might vary significantly in between samples even if the panel
dimension, source of manufacturing, age and conditions of han-
dling and exposures have been kept the same. Recognising this, in-
ter-sample variability was studied by repeating the sample
simulations 25 times. The CPD curves obtained from each sample
for N = 15 and 500 are plotted in Fig. 3(a) and (b) respectively. Each
individual curve shown in Fig. 3(a)–(b) is the CPD representing a
single sample of simulated specimens. Clearly, very high inter-
sample variability is shown for samples of size N = 15. Thus, the
simulated results for a single sample of this size in isolation do
not have any statistical significance and hence the presented CPD
could be misleading. More reliable estimates of the CPD can be ob-
tained by increasing the value of N (i.e. number of specimens) of
the sample as illustrated in Fig. 3(b) in comparison with Fig. 3(a).

Fig. 3(c) shows the clustering of the sample CPD curves about
the ‘‘true” population CPD for N values of 15, 100 and 500. It ap-
pears that the mean of 25 samples is reasonably consistent with
the ‘‘true CPD” irrespective of the sample size N as shown in
Fig. 3(c). It is shown further in Fig. 3(d) that the two CPD curves
representing the sample mean for N = 100 and 500 respectively
are almost identical.
5. Verification of simulation model

In this section, the simulation model introduced in Section 3 is
verified by calibrating the parameters of the model against results
obtained from physical experimentation.

Three simulation parameters, namely the distribution function
of flaw size f(r), flaw density (q), and maximum critical flaw size
(amax) were calibrated. The calibrations were conducted in order
that the simulated CPD curves matched with those obtained from
physical experimentation.
Fig. 3. CPD of notional failure strengths from simulated samples: (a) samples of N = 15
specimens; (d) sample mean for N = 100 and 500 specimens.
The distribution of flaw size was investigated by analysing CPD
curves that were derived from the four distribution models of flaw
size: Uniform, Normal, Log-Normal, and Weibull distribution. Each of
this models has the same maximum possible flaw size (amax). The
value of the flaw density was calibrated in order that the simulated
CPD curves of strength best-fit the CPD curves obtained from phys-
ical experimentation. The calibrated flaw density values for each of
the considered flaw size distribution functions are listed in Table 4.

Fig. 4(a) and (b) shows examples of CPD curves obtained from
simulations and from physical experimentation of glass specimens
of two different dimensions. The CPD curves for strength simulated
in accordance with the right-skewed Log-Normal distribution of
flaw size generally matched better with test results than the other
considered distribution models (when amax = 278 lm was speci-
fied). This is shown in Table 5 in which the values of R2 character-
ising the goodness of fit are listed for each of the considered
models for flaw size distribution. The Weibull distribution of flaw
size is clearly not realistic given that the simulated CPD curves
for strength based on this model were much more constrained
than results obtained from physical experimentation. The same
can be said of the Normal and Uniform distribution relationships
for flaw size.

The distribution relationship for the normalised flaw size (rj) is
hence represented as follows:

f ðrÞ ¼ 1= r
ffiffiffiffiffiffiffi
2p
p� �h i

exp½�0:5ðLn r þ pÞ2� ð9Þ

where r is the normalised flaw size.
Table 5 shows that five out of the six CPD curves obtained from

simulations with the Log-Normal distribution of flaw size corre-
lated better with physical test results than the other considered
distribution functions (with values of R2 exceeding 0.8). However,
much lower values of R2 have been observed with the larger glass
panes for all the considered distribution functions. The reason for
specimens; (b) samples of N = 500 specimens; (c) samples of N = 15, 100, and 500



Table 4
Flaw parameters (flaw density in flaws/m2, and maximum flaw size (amax) in lm).

Uniform Normal Log-Normal Weibull

Flaw density: 2.5 Flaw density: 1.0 Flaw density: 10 Flaw density: 0.5
amax: 278 amax: 278 amax: 278 amax: 278

Table 5
Coefficient of determination (R2) showing goodness of fit with experimental tests
results for different flaw size distribution functions used in simulations.

Panel size Uniform Normal Log-Normal Weibull

2000 mm � 400 mm 0.55 0.55 0.88 0.04
2000 mm � 500 mm 0.14 0.40 0.91 �0.31
2000 mm � 670 mm 0.24 0.39 0.93 �0.01
2000 mm � 1335 mm �2.36 0.23 0.81 �0.23
2000 mm � 1600 mm �0.33 0.57 0.81 0.71
2000 mm � 2000 mm �0.55 0.18 0.30 0.21
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this is inconclusive in view of the limited data which is available.
The authors do not rule out possible anomalies with flaw size dis-
tributions in large glass panes.

It has been shown in Section 4 that a small N value would result
in highly variable CPD curves. Even better matches can be achieved
by reducing the number of specimens in the simulated sample in
order that the value of N for both the simulated and physical test
samples are consistent (i.e. N = 10–18). However, inter-sample var-
iability would be an issue for small N values.
Fig. 5. Typical normalised maximum principal stress contour in specimens of size
800 mm � 1000 mm; 1200 mm � 1500 mm; 1600 mm � 2000 mm; and
2400 mm � 3000 mm.
6. Simulated strength of glass of variable dimensions

Experimental test programs have been conducted to investigate
the probabilistic strength distribution behaviour of glass (Basu
et al., 2009; Danzer et al., 2007; Doremus, 1983; Lu et al., 2002;
Todinov, 2009). The investigations typically used specimens of lim-
ited dimensions. Given that large amount of data was required to
provide a statistically meaningful estimate of the notional strength
of glass, it would not be economical, nor practical, to conduct
repetitive physical experimentation involving panels of the same
dimensions as used in the building. Thus, the design of glass panels
are often based on models that have been developed from the test-
ing of specimens of much smaller dimensions. This extrapolation
approach is shown herein to be heavily flawed.

The advantage of employing simulations is that the cost of
experimental testings can be significantly reduced, especially
when a wide range of specimen sizes are to be studied. However,
physical experimentation would still be required for calibration
and verification purposes. The specimens investigated in this sec-
tion were assumed to have the same material properties and flaw
conditions as those in the previous section. Thus, the calibrated
Log-Normal distribution function as shown in Eq. (9) was used
for modelling the distribution of flaw size.

Four different specimen dimensions ranging from 800 mm �
1000 mm to 2400 mm � 3000 mm were covered by the investiga-
tion. All specimens had the same aspect ratio of 1.25, simply
supported on four sides, and subjected to out-of-plane uniform
pressure. Such configuration of the glass panels results in almost
Fig. 4. Matching of simulated and calibrated CPD curves with experimental c
identical stress contours as shown in Fig. 5. The strength distribution
for each specimen size was analysed for N = 1000. Three statistical
distribution functions: Weibull, Normal, and Log-Normal, were used
for matching the CPD curves developed from the simulation model
(Fig. 6).

The goodness of fit as shown by the value of the coefficient of
determination (R2) as defined by Eq. (5) are summarised in Table 6
which shows that the Log-Normal distribution function corresponds
with the simulated strength data better than the Normal or Weibull
distribution functions and particularly so at low probability of
occurrences. This finding confirms earlier findings by the authors
based on comparison with physical test results (Nurhuda et al.,
2008).
urves: (a) 2000 mm � 670 mm panels; (b) 2000 mm � 1335 mm panels.



Fig. 6. Comparisons of CPD from simulated data and statistical functions: (a) 800 mm � 1000 mm panels; (b) 1200 mm � 1500 mm panels; (c) 1600 mm � 2000 mm panels;
(d) 2400 mm � 3000 mm panels.

Table 6
Coefficient of determination (R2) showing goodness of fit of different strength
distribution functions with simulated test results.

Specimen size (mm) Normal Log-Normal Weibull

1000 � 800 0.89 0.98 0.89
1500 � 1200 0.94 0.99 0.92
2000 � 1600 0.98 0.98 0.97
3000 � 2400 0.97 0.99 0.96
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7. A proposed simplified representation of the size effects

The effect of size on the strength of glass was investigated
numerically from glass panels of different sizes subjected to out-
of-plane pressure. Four panel types of different dimensions have
been analysed (Section 6). The aspect ratio of the specimens was
kept at 1.25. The number of specimens for each panel size was ta-
ken to be 1000 in order that the sample CPD is a good approxima-
tion to the true population CPD.

The simulated CPD curves were matched by theoretical func-
tions of the Log-Normal form (which had been found to match with
the simulated data better than other considered theoretical func-
tions as illustrated in Section 6). The Log-Normal probability distri-
bution of strength (f(r)) is represented by Eq. (10). The effect of
specimen size on strength distribution behaviour is modelled by
correlating the value of the Log-Normal parameters M and D with
the physical surface area of the specimen as shown in Fig. 7

f ðrÞ ¼ 1= r � D �
ffiffiffiffiffiffiffi
2p
p� �h i

� exp½�ðLn r�MÞ2=ð2 � D2Þ� ð10Þ

where D is the standard deviation of the natural logarithm of
strengths and M is the mean of the natural logarithm of strengths.

It can be seen from Fig. 7 that the Log-Normal parameters M and
D decrease as the surface area of the specimen increases. However,
the rate of decrease in the value of M and D is clearly reduced with
increasing panel size. The correlation of the Log-Normal parameters
M and D with the panel surface area is represented by Eq. (11). In
theory, the Log-Normal parameters M and D converge to the limit of
4.18 and 0.31 respectively for ‘‘infinitely large” glass panels

M ¼ 4:18 expð0:08A�1:1Þ ð11aÞ
D ¼ 0:31 expð0:15A�1:1Þ ð11bÞ

where A is the surface area of the specimen.
Eq. (11) is presented herein as the outcome of this study for pro-

viding a convenient and reliable means of estimating the strength
of glass panels including those of large dimensions. Note that Eq.
(11) would only be strictly valid for glass specimens with the same
aspect ratio, load conditions, and minimum panel size as those
considered in this study.



Fig. 7. Variation of Log-Normal parameters against actual area of specimen: (a) variation of the Log-Normal parameter M; (b) variation of the Log-Normal parameter D.
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8. Conclusions

1. The calibrated values of the Weibull parameters are highly var-
iable and unpredictable, and are dependent on many factors
including panel dimensions, boundary and loading conditions,
manufacturing and handling processes and age of exposure.
Thus, the Weibull parameters m and k cannot be material
constants.

2. The proposed (Monte Carlo) simulation model, which is based
originally on principles of fracture mechanics and concept of
Griffith flaws, is parameterised by flaw density and distribution
of flaw size. Both of which has a direct physical meaning unlike
the Weibull parameters. A flaw size distribution model of the
Log-Normal form (Table 4 and Eq. (9)) has been found to trans-
late into a CPD of strength that corresponds reasonably well
with experimental results considered in the study.

3. With sample size of N = 500, inter-sample variability in the CPD
of strength was effectively constrained and the sample CPD
could be taken as the ‘‘true” (population) CPD. The mean of
25 samples of size N = 100 has also been shown to provide rea-
sonable representation of the true CPD.

4. The CPD of strengths based on taking the sample mean of sim-
ulated results is best matched by theoretical relationships of the
Log-Normal form. The behavioural trend of the CPD based on the
simulated data has been studied.

5. A simplified Log-Normal representation of the size effects (Eqs.
(10) and (11)) features a reduced rate in the decrease in the
mean and standard deviation of Ln(r) with increasing panel
size. The Log-Normal parameters characterising the probabilis-
tic distribution of strengths converge as the dimension of the
panel tends to ‘‘infinity”.
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