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Abstract—Let a; > 0fori=1,....m—3and am—2 > 0. Let §; satisfy 0 < §; < a2 < --- <
§m—-2 <1 and Zi";_lz a;&; < 1. We study the existence of positive solutions to the boundary-value
problem

u’ + a(t)f(u) =0, te (0,1),

m—2
w0)=0, w(l)= ) awu(&),
i=1

where a € C([0, 1], [0, 00)), and f € C([0, 00), [0, 00)). We show the existence of at least one positive
solution if f is either superlinear or sublinear by applying a fixed-point theorem in cones. (© 2001
Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

The study of multipoint boundary value problems for linear second-order ordinary differential
equations was initiated by IVin and Moiseev [1,2]. Gupta [3] studied three-point boundary value
problems for nonlinear ordinary differential equations. Since then, more general nonlinear multi-
point boundary value problems have been studied by several authors by using the Leray-Schauder
continuation theorem, nonlinear alternatives of Leray-Schauder, coincidence degree theory, and
fixed-point theorem in cones. We refer the reader to [4-12], for some recent results of nonlinear
multipoint boundary value problems.
In this paper, we consider the existence of positive solutions to the equation

v’ +a(t)f(u) =0, te(0,1), (1.1)
with the boundary condition
m~—2
u(0) =0, wu(l)= z aiu (&), (1.2)
=1
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where a; 2 0fori=1,...,m—3and @pn-2>0,0< & <€ <+ <§p_2 <1 is given. We also
assume the following.

(A1) f e C([0,00), [0,00)) and the limits

form tim 1% g m {®

u—0+t U u~—00 U

exist. (We note that fo = 0 and fo, = oo correspond to the superlinear case, and fo = oo
and fo = 0 correspond to the sublinear case.)

(A2) a € C([0,1], [0,00)), and there exists g € [£m-—2, 1] such that a(zo) > 0.

(A3) Fori=1,...,m—2,a; >0, and

m—2

Z a,-{i < 1

t=1

By the positive solution of (1.1),(1.2), we understand a function u(t) which is positive on
0 < t < 1 and satisfies the differential equation (1.1) and the boundary conditions (1.2).

Very recently, the author [11] showed the existence of positive solutions for the second-order
three-point boundary value problem

w + a(t)f(u) =0, te(o,1), (1.3)
C w(0)=0, u(l)=aufn), (1.4)

which is the special case of (1.1),(1.2). The main result in [11] is the following.
THEOREM A. Assume (A1)} and (A2) hold and o < 1. Then problem (1.3),(1.4) has at least
one positive solution in the case
(i) fo =0 and fo = oo (superlinear), or
(ii) fo = o0 and fo = 0 (sublinear).
It is well known that for every solutions u of (1.1),(1.2), there exists u,, € [€1,£,—2] such that
u is a solution of

v’ + a(t)f(u) =0, t € (0,1), (1.5)
u(0) =0, u(1) = au(p), (1.6)

where o = E:’:lz a;. So, by using this fact and the maximal principle established for the three-
point boundary value problem in [11], we can easily establish the following result for the m-point
boundary value problem (1.3),(1.4).

THEOREM B Let (A1) and (A2) hold, and assume the following.
(A4) i 20:)€m-2 < 1.
Then problem (1.1),(1.2) has at least one positive solution in the case
(i) fo =0 and fo, = oo (superlinear), or
(ii) fo = o0 and foo = 0 (sublinear).

Clearly, Condition (A3) is weaker than (A4). Our purpose here'is to show the existence of
positive solutions to the m-point boundary value problem (1.1),(1.2) under (A3). The main result
is the following.

THEOREM 1. Assume (A1)—(A3) hold. Then problem (1.1),(1.2) has at least one positive solution
in the case

(i) fo =0 and fo = oo (superlinear), or

(ii) fo = o0 and foo = 0 (sublinear).
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Our methods in this paper involve establishing a maximal principle for m-point boundary value
problems, but do not use the maximal principle established for the three-point boundary value
problem in [11].

The proof of above theorem is based upon an application of the following well-known Guo-
Krasnoselskii fixed-point theorem [13].

THEOREM 2. Let E be a Banach space, and let K C E be a cone. Assume ;, §}y are open
bounded subsets of E with 0 € €y, Q1 C 9, and let
AZKﬁ(ﬁg\Ql) — K

be a completely continuous operator such that

(i) | Au <) ul, v € KN and || Au 2] u ||, u € K NOQy; or
(ii) || Au [>] w ]|, u € K N89; and || Au <[ u |, u € K N80,

Then A has a fixed point in K N (Qy \ Q).

2. THE PRELIMINARY LEMMAS

LEMMA 1. (See [7].) Let a; > 0 fori=1,...,m — 2, and Z;’:lzaifi # 1; then for y € C[0,1],
the problem

u” +y(t) =0, t€(0,1), (2.1)
m-2

w(0)=0, wu(l)= ) au(é), (2.2)
: i=1

has a unique solution

¢
u(t) = —/0 (t—s)y(s)ds
N a5 (- 5)u(s) ds

1
e +thl :ns_),f(s) ds
1- 3 a:é 1- % ai&

i=1 i=1

LEMMA 2. Leta; >0 fori=1,...,m—2, and Zm"Za,{,- <1 IfyeC[0,1] and y > 0, then

i=1

the unique solution u of problem (2.1),(2.2) satisfies
u>0, te(0,1].

PROOF. From the fact that u”(z) = —y(z) < 0, we know that the graph of u(t) is concave down
on (0,1). So, if u(1) > 0, then the concavity of u together with the boundary condition u(0) = 0
implies that « > 0 for ¢ € [0, 1].

If u(1) < 0, then from the concavity of u, we know that

2@23‘—(}2, “fori=1,...,m -2 (2.3)
§i 1
This implies .
m—2 m~2
u(l) = Y aw(&) > Y abu(l). (2.4)
i=1 i=1

This contradicts the fact that Zm'2 ;& < 1.

i=1
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LEMMA 3. Let a; >0 fori=1,...,m—3, am-2 >0, and 3772 a;¢; > 1.
If y € C[0,1] and y(t) > 0 for t € (0,1), then (2.1),(2.2) has no positive solution.

PROOF. Assume that (2.1),(2.2) has a positive solution u, then u(&) >0fori=1,...,m — 2,
and

m—2

u(l) = au ()
i=1
m—2
u
= Z a:&; §
i=1

m-~2 u E
> ai&i—:
i=1
Ju(§)

(2.5)

£
(where £ € {£1,...,&n—2} satisfies (u(£))/€ = min{(u(&))/& | i =1,...,m — 2}). This contra-
dicts the concavity of u.

If u(1) = 0, then applying am—2 > 0, we know that u(§,,—2) = 0. From the concavity of u, it
is easy to see that u(t) <0 for ¢t € [0,1].

In the rest of the paper, we assume that a; > 0 for i = 1,. -3, am-2 > 0, and
Z;’l‘l a;& < 1. Moreover, we will work in the Banach space C[0, 1] and only the sup norm is
used.

LEMMA 4. Let a; >0 fori=1,...,m —2, and Y% a:¢ < 1. Ify € C[0,1] and y > 0, then
the unique solution u of problem ( 2.1),(2.2) satisfies

inf ult) 2 Tlul,

tE(Em -2,

where

I' = min {gm_—2_(_1___"‘£_'rl—_2)_’ am—2€m—27 €1} .

1—am—2&m—2

PRrROOF. We divide the proof into two steps.
STEP 1. We deal with the case that

m—2
dai<l (2.6)
i=1
Set
u(t) = |ull. (27
Ift < &pe2 <1, then
te[?,}‘l_ng,uu(t) = u(1). (2.8)

From the fact that u(1) = Em; a;u(&) = am—2u(€m—2), we get

u(l ) U (Em—2)
e O
u(l) U (é‘m——Z)

i AR e pa

1 1
= (1) [1 1265 T e - gm-z)]

— Am—26m—2
U(l)am 2 (1 = &m— 2)

u(t) <wu(l)+

(2.9)
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This, together with (2.8), implies that

u(t) 2 fluf =

min
tE[Em—2,1] - am-—2£m—-2

We note that (2.6) implies
Qm—2 (1 - §m—2) > 0.
1-am-2&m-2
If £,,_2 < < 1, then we claim that

i t) = .
te[ﬂlﬂ,l]“( ) =u(l)

In fact, if mingee,,_, 1) u(t) = u(§m—2), then we have that € [;,—_2,1] and

U (Em-2) = > u(&) >u(t).

This, together with (2.6), implies that

m-—2

m-—2
u(l) =Y au(&) < D e (Em-2) < u(Em-2) < u(l),
i=1

i=1
a contradiction! Therefore, (2.11) holds.
From the concavity of u, we know that

gm—2 t

Combining (2.12) with the fact that u(1) > a,—2u(€y,-2), we conclude that

This, together with (2.11), implies that

min  u(t) > a,,- _ .
tlEms1] (t) > am—2&m 2/jul]

STEP 2. We deal with the case that

Z a; > 1
i=1
Set
u(t) = [lull.
If u(€m—2) < u(1), then
D U0 = (Emma).

It is easy to see from the concavity of u that

te [gm_g, 1] .

This implies that

U(fm-2) _ u(t) -
Em—2 - E ZU(t)

-2(1 ~&m-2)

759

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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Thus,
wein | u(®) 2 Emalul-
If
U {€m—2) > u(1),
then

. gxin 1}u(t) = u(1).

[ T2y

Furthermore, we have
{ € [gla 1] .

In fact, assume to the contrary that ¢ € [0,&;), then
u(€r) 2 u(be) > = u(Em-z) > u(l).

This implies
m~—2

m—2 m—2
u(1) = Y e (&) 2 Y ait(Eme2) > u(l) Y ai > (1),
=1 faml ' ga=]

a contradiction! So (2.21) holds.
Since Z:’:f a; > 1, we know that there exists é € {&1,...,&m—2} such that

% (.f) < ufl).

This implies that
u() <)< <u (5) < u(1).

Combining (2.23) and (2.21) with the concavity of u, we can conclude that

u(l) Ju(éy) _ ulf) -
& 2 & Z 7% 2u(t).

This together with (2.20) implies that

min  u(t) > &ul|

(€m—2y

From (2.10), (2.13), (2.18), and (2.25), we know that

inf I}U(t) 2 Dlfull,

te{&m—2 3
where

Gm—2 (1 - fm—2)
m’am-2§m—2,€m_z,§l}

= min {21"—_2—(1—:—?7"—-—2-)-, Gm2€mi2, 51} .

1 —am-2m—2

I‘=min{

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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3. PROOF OF MAIN THEOREM

PROOF OF THEOREM 1. SUPERLINEAR CASE. Suppose then that fo =0 and fo = cc. We wish
to show the existence of a positive solution of (1.1),(1.2). Now (1.1),(1.2) has a solution y = y(t)
if and only if y solves the operator equation

Y =- /0 (t — s)a(s) F(u(s)) ds

m—2 .
; a; foz (gi - 3) a,(s)f(y(s))ds fl( )a(s)f( (S)) ds

_ga=l __ t 2 (3.1)
1~ 21 a;&; 21 a;&;
L Ay(e).
Denote
K={vlvectalyz0,  min_v02Thl]}, (5.2)

where I' is defined in Lemma 4. It is obvious that K is a cone in CI0, 1]. Moreover, by Lemma 4,
AK C K. It is also easy to check that A: K — K is completely continuous.
Now since fy = 0, we may choose H; > 0 so that f(y) < ey, for 0 < y < H;, where € > 0

satisfies L
efy (1 ;f’ga(s) ds <1 (3.3)
1- 3 ai&i
i=1
Thus, if y € K and ll¥ll = Hi, then from (3.1) and (3.3), we get
syl < Hall= 091N ds
1- Z a:&;
i=1
tfo (1 — s)a(s)ey(s) ds
1- mzz a;&;
=1 (34)
’ fo (1 — s)a(s)eds||yll
1- "iz a:&;
fe=l
fo (1 — s)a(s)e dsH1
1- mi a’z&z
i=1
Now if we let
={y € C[0,1] | |lyll < H1}, (3.5)

then (3.4) shows that ||Ay|| < ﬁy{{ for y € KN o,.
Further, since f,, = 00, there exists H2 > 0 such that f(u) > pu, for u > H,, where p>0is
chosen so that

ol Z a,/ &1(1 — s)a(s)ds > 1. (3.6)
1- E a;€; =1 Em—2
i=1
Let Hy = max{2H,,(H2/T)} and Q; = {y € C[0,1] | ||ly|l < Ha}, then y € K and |jy|| = H>
implies

> >
o min_ y(t) > Tllyll > &,
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and so
©pb
Ay (&) = — /0 (& — 5) a(s)f(y(s)) ds

n ,Z ai [ (& - s)af s)f(y(s))ds fo (1~ s)a(s)f(y(s)) ds

m2

1- mz ai&; 1- % ai&

i=1 i=1

This implies

m—2
u(l) = Z a;u (&)

-2

—Za,/ (& — s) a(s) f(y(s)) ds

=1

m—2 Z a: i (& — ) a(s)f(y(s)) ds
- ek = o

i=1 1- 3 ai&
i=1
. Z 1&fo (1-s mf)f(y(S))
=1 1- E ai;
m—2 i
e / . — 5)a(s) F(y(s)) ds—
i=1 1- Z a;é;
i=1
3 g oL )0 W) ds
=1 1- 3 ai&i
i=1

s (3.7)
= m1 2 Z G [ / &ia(s)f(y(s)) ds + / sa(s)f(y(s)) ds
1-— E azél =1

i=1

+ /0 ' a(s) F(y(s)) ds - / leisa<s)f<y(s)>dsm]

Z__éz_;z [ sotortonas-s [ satosoten s

g=1
(we have used, in fact, that 1 > &;)

S W / (1 - s)a()f(y(s)) ds

1-— E a;€&; =1
i=1
SO S < / &1(1 - 8)a(s) F(y(s)) ds
1- E a;§; =1
=1

-2
5. / 1(1 = s)a(s)F(y(s)) ds.
1 - Z a:&; =1

i=1
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Hence, for y € K N 8Q;,

m—2 1
Iyl 2 ()] 2 P —— Yo [ &1 - oals)dslll > ol
: 1- Y e =t TEm2
i=1

Therefore, by the first part of the fixed-point theorem, it follows that A has a fixed point in
K N (€3 \ Q), such that Hy < ||uf| < H. This completes the superlinear part of the theorem.

SUBLINEAR CASE. Suppose next that fo = 0o and foo = 0. We first choose H3 > 0 such that
fly) > My for 0 < y < Hs, where

1 m—2 1 . ‘
Mr———— Y, / £1(1 - s)a(s)ds > 1. (3.8)
1- 2 a;€; =1 =3 :

For y € K and ||y|| = Hs, by using the method to get (3.7), we can get that

me2

Ay(1) = Y aidy (&)
i=1
m—2 1
= —"“m—l—'z_"" a / &i(1 - s)a(s)f(y(s)) ds
1~ Z a,'fi =1 £
i=1
m—2
> —'—,;;1:2—_“ Z a; fl &1 - s)a(s)My(s)ds (3.9)
- Z aié‘i i=1 Em—2
i=1

1 m—2 1
>—S—Ya [  &(-9uoMTdsyl
1- 3 g =t o2

i=1

> Hj.
Thus, we may let Q3 = {y € C[0,1] | ||yl < Hs}, so that
4yl > liyll, y€ KnoQs.

Now, since fo = 0, there exists Hy > 0 so that f (y) LAy fory > Hj, where ) > 0 satisfies

Afra - d
S mi?a(S) S o1

1- 3 ai

g==l

(3.10)

‘We consider two cases.

CASE (i). Suppose f is bounded, say f(y) < N for all y € [0, 00). In this case, choose

Nfol(l — s)a(s)ds
m—2 ’

1- 3 as

d==1

H4 = max 2H3,
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so that, for y € K with |ly|| = Hy, we have

Ay(®) = - [ - a1 w() ds
_, ; a; fo (G- s)a(s)f(y(s))ds j‘o a(s)f(y(s)) ds
1- m§32 aiéi 1- Z a’LE’L
i=1 i=1

< [ 1= 9)a(s)f(y(s)) ds

1 mE—Z ai&

i=1
< f01(1 -—i)—az(s)N ds
1- Z aé;
i=1

S H47

and therefore, |Ay|| < ||y}

Case (ii). If f is unbounded, then we know from (A1) that there is Hy

H4} such that
f(y) < f(Hy),

(We are able to do this, since f is unbounded.) Then for y € K and ||y||

for 0 < y < Hy.

:Hy > max{2H3,(1/I‘)

= H4, we have

aale) = - [ (6= (o)1 (u(s) ds
Z o (6 - e WN D 1 syags)sy(s)) ds
1- 7:5; a:éi 1- Tg ai&i
< Jo 1= 9alb) () ds
1- i; a:&;
fO (1 —s)a(s ) (Hyq)ds
=% s
< Ja1 = 9)a(9)AHsds
1- % et
< H,. -

Therefore, in either case, we may put

Q={yeCO,1]|llyl < Ha},

and for y € K N 984, we may have ||Ay|| < |ly||. By the second part of the fixed-point theorem,
it follows that BVP (1.1),(1.2) has a positive solution. Therefore, we have completed the proof
of Theorem 1.
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