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Abstract-Let ai > o for i = I,. . . , m - 3 and am--2 > 0. Let & satisfy 0 < cl < 12 < . . . < 
&,,_2 < 1 and ~~=~2a&~ < 1. We study the existence of positive solutions to the boundary-value 
problem 

u” + a(t)f(u) = 0, t E (0, I), 
m-2 

u(0) = 0, u(l) = C aiu (t), 

i=l 

where a E C([O, l], [0, a)), and f E C([O, oo), [0, CO)). We show the existence of at least one positive 
solution if f is either superlinear or sublinear by applying a fixed-point theorem in cones. @ 2001 
Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The study of multipoint boundary value problems for linear second-order ordinary differential 

equations was initiated by Il’in and Moiseev [1,2]. Gupta [3] studied three-point boundary value 
problems for nonlinear ordinary differential equations. Since then, more general nonlinear multi- 
point boundary value problems have been studied by several authors by using the Leray-Schauder 
continuat;ion theorem, nonlinear alternatives of Leray-Schauder, coincidence degree theory, and 
fixed-point theorem in cones. We refer the reader to [4-121, for some recent results of nonlinear 
multipoint boundary value problems. 

In this paper, we consider the existence of positive solutions to the equation 

u” + a(t)f(u) = 0, t E (0, l), (1.1) 

with the boundary condition 

u(0) = 0, 

m-2 

4) = C w (ti) , 
i=l 

(W 
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whereai>Ofori=l,..., m-3anda,-a>0,0.<~~<52<...<~m_2<lisgiven. Wealso 
assume the following. 

(Al) f E C( (0, oo), [0, m)) and the limits 

exist. (We note that fo = 0 and foe = 00 correspond to the superlinear case, and fo = 00 
and foe = 0 correspond to the sublinear case.) 

(A2) a E C([O, 11, [O, ok)), and there exists 20 E [cm-2, l] such that a(zo) > 0. 
(A3) Fori=l,..., m-2,ai>O,and 

m-2 

C a&i < 1. 
i=l 

By the positive solution of (1.1),(1.2), we understand a function u(t) which is positive on 
0 < t < 1 and satisfies the differential equation (1.1) and the boundary conditions (1.2). 

Very recently, the author [ll] showed the existence of positive solutions for the second-order 
three-point boundary value problem 

u” + a(t)f(u) = 0, t E (0, l), (1.3) 

u(0) = 0, u(l) = au(q), (1.4) 

which is the special case of (1.1),(1.2). Th e main result in [ll] is the following. 

THEOREM A. Assume (Al) and (A2) hold and crq < 1. Then problem (1.3),(1.4) has at least 
one positive solution in the case 

(i) fo = 0 and foe = 00 (superlinear), or 
(ii) fo = 00 and foe = 0 (s&linear). 

It is well known that for every solutions u of (1.1),(1.2), there exists ~1, E [&,<m_2] such that 
u is a solution of 

U” + a(t)f(u) = 0, t E (0, l), (1.5) 

u(0) = 0, u(l) = QU(PU), (1.6) 

where (Y = CT=;” ad. So, by using this fact and the maximal principle established for the three- 
point boundary value problem in [ll], we can easily establish the following result for the m-point 
boundary value problem (1.3),(1.4). 

THEOREM B. Let (Al) and (A2) hold, and assume the following. 

(A4) (C~~2ai)L-z < 1. 

Then problem (1.1),(1.2) h as at least one positive solution in the case 

(i) fo = 0 and foe = 03 (superlinear), or 
(ii) fo = oo and foe = 0 (s&linear). 

Clearly, Condition (A3) is weaker than (A4). Our purpose here is to show the existence of 
positive solutions to the m-point boundary value problem (1.1) ,( 1.2) under (A3). The main result 
is the following. 

THEOREM 1. Assume (Al)-(A3) hold. Then problem (1.1),(1.2) h as at least one positive solution 
in the case 

(i) fo = 0 and foe = oo (superlinear), or 
(ii) fo = 00 and foe = 0 (sublinear). 
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Our methods in this paper involve establishing a maximal principle for m-point boundary value 

problems, but do not use the maximal principle established for the three-point boundary value 

problem in [ll]. 
The proof of above theorem is based upon an application of the following well-known Guo- 

Krasnoselskii fixed-point theorem [13]. 

THEOREM 2. Let E be a Banach space, and let K c E be a cone. Assume RI, 0~ are open 
bounded subsets of E with 0 E RI, % C R2, and let 

be a completely continuous operator such that 

(9 II Au. IKII u IL u~KnaS2,and)IAzlIlrllull,u~Knas2,;or 
(ii) I] AU I)>() u I), u E K r-1691 and (( Au )I_<(( u (I, u E K n X22. 
Then A has a fixed point in K n (n2 \ RI). 

2. THE PRELIMINARY LEMMAS 

LEMMA 1. (See /7j.) Let ai 2 0 for i = 1,. . . , m - 2, and CL;” a& # 1; then for y E C[O, 11, 

the problem 

u” + y(t) = 0, 

u(0) = 0, 

t E (0, I), 
m-2 

41) = C w(G) 

i=l 

W) 

(2.2) 

has a unique solution 

u(t) = - jt - s)y(s) ds 
J 
m-2 _c. 
C ai Jb” (C - s> Y(S) ds 

_ t i=l 

m-2 

+ t sd_ (1 - S>Y(S> ds 

1 - C a& 1 - F” a& 
i=l i=l 

LEMMA 2. Let ai 2 0 for i = 1,. . . , m - 2, and ~~~2 a& < 1. If y E C[O, l] and y > 0, then 
the unique solution u of problem (2.1),(2.2) satisfies 

u 1 0, t E [O, 11. 

PROOF. From the fact that u”(z) = -y(z) 5 0, we know that the graph of u(t) is concave down 

on (OJ). So, if u(1) 2 0, then the concavity of u together with the boundary condition U(O) = 0 

implies that u 2 0 for t E [0, 1). 

If ~(1) < 0, then from the concavity of U, we know that 

u(G) > 41) 
6-1, ‘fOri=l,..,, m-2. 

This implies 
m-2 m-2 

41) = C w(G) L C G&u(l)* 

i=l i=l 

This contradicts the fact that CEy”o& < 1. 

(2.3) 

(2.4) 
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LEMMA 3. Let ai 2 0 for i = 1, . . . , m - 3, am_2 > 0, and ~~~2 a& > 1. 
If y E C[O, l] and y(t) 2 0 for t E (0, l), then (2.1),(2.2) has no positive solution. 

PROOF. Assume that (2.1),(2.2) h as a positive solution U, then u(&) > 0 for i = 1,. . . , m - 2, 

and 
m-2 

41) = C w(h) 

i=l 

m-2 

c 
11 C&i) = 

i=l 
ai& --g- 

(2.5) 
m-2 

G) 
> C a&--=-- 

i=l c 

>U (0 - 
5 

(wherete {cl,..., &_2} satisfies (~(c))/c = min{(z1(&))/& ( i = 1,. . . , m - 2)). This contra- 
dicts the concavity of u. 

If u(1) = 0, then applying am_2 > 0, we know that u(&,+z) = 0. From the concavity of U, it 
is easy to see that u(t) 5 0 for t E [O, 11. 

In the rest of the paper, we assume that ai 2 0 for i = 1,. . . ,m - 3, am_.2 > 0, and 

Czi2 ai& < 1. Moreover, we will work in the Banach space C[O, I], and only the sup norm is 
used. 

LEMMA 4. Let ai 2 0 for i = 1,. . . , m - 2, and CL;” a& < 1. If y E C[O, l] and y 2 0, then 
the unique solution u of problem (2.1),(2.2) satisfies 

where 

I? = min 
{ 

am-2 Cl- lm-2) a _2[ _2 & 
l-am-2&-2 ’ m m ’ 1 

PROOF. We divide the proof into two steps. 

STEP 1. We deal with the case that 
m-2 

c ai < 1. 
i=l 

Set 

u (Q = 114. 

If 5 I cm_2 < 1, then 

,$i_nl ,$Q = 41). 
m , 

From the fact that u(l) = ~~~” aiu(&) 2 am_2u(<,_2), we get 

21 (f) I u(l) + u(1) - TA (em-Z) 
1- Cm-2 

(0 - 1) 

= u(1) - 41) 

1- <m-2 

+ u(tm-2) 

1- Cm-2 

= u(1) 
[ 
l- 

1 1 

1 - [m--2 
+ 

am-2 (I-<m-Z) 1 
= u(1) l- am-25m-2 

am-2 (1 - <m-Z) ’ 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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This, together with (2.8), implies that 

We note that (2.6) implies 
%I-2 (I- 5m-2) > o 

1 - &n-2&n-2 . 

If &__s < 5 < 1, then we claim that 

In fact, if minte[~,n_-2,i] u(t) = 21(&s), then we have that f E [&_s, l] and 

‘1L (Em-2) 2 . . . L If, (E2) 2 u (51). 

This, together with (2.6), implies that 

m-2 m-2 

41) = c W(Ei) I c w(Jm-2) < u(Jm_2) 5 U(l), 
i=l i=l 

a contradiction! Therefore, (2.11) holds. 

From the concavity of u, we know that 

u&-2> > u(f) 
[m_2 _ t ru(f). 

Combining (2.12) with the fact that u(1) 2 om_s~(5,_2), we conclude that 

41) 
h-2&-2 

2 u (f) . 

This, together with (2.11), implies that 

STEP 2. We deal with the case that 

Set 

m-2 

c 
ai > 1. 

i=l 

u (0 = Ibll. 

If 21(&s) 5 u(l), then 

$in2 ,]N = ‘LL (Cm-2). 
m 7 

It is easy to see from the concavity of u that 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

This implies that 
UGn-2) > u(f) 

Jm_2 _ F Zu(f). 
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(2.18) 

If 

then 

&ll$ $(Q = u(l)* 
wa , 

Furthermore, we have 

fez h 11 * 

In fact, assume to the contrary that F E [0, <I), then 

u (51) 2 u @2) > . . . > u (&n-2) > u(l). 

This implies 
m-2 m-2 

41) = c am (5i) 2 t: WJ (&n-2) > u(l) mccx$ 2 u(l), 
i=l hl i=l 

a contradiction! So (2.21) holds. 

Since CEy2 ai L 1, we know that there exists { E {{I, . . . , &_2) such that 

This implies that 

u (Sl) 5 (J2) 5 * . * h u $ 
0 

5 u( 1). 

Combining (2.23) and (2.21) with the concavity of U, we can conclude that 

41) _> Uccl) > u(f) --_ 

b E;l - t 
>u(f). 

This together with (2.20) implies that 

From (2.10), (‘2.13), (2.18), and (2.25), we know that 

where 

l? = min 
{ 

Gn-2 (1 -L-2) 

1 - am-2&2 
, am-2tm-2, L-2, El 

1 

= min 
{ 

h-2 (1 - Em-d 

1- am-2L2 
, am-2&L2r Ei } . 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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3. PROOF OF MAIN THEOREM 

PROOF OF THEOREM 1. SUP&LINEAR CASE. Suppose then that f. = 0 and fa, = 00. We wish 

to show the existence of a positive solution of (l.l),(l.Z). Now (1.1),(1.2) has a solution y = y(t) 

if and only if y solves the operator equation 

y(t) = - J’(t - s)o(s)f(y(s)) ds 
0 

Denote 

m-2 

c ai s,“i tti - s) 4sv(Y(s)) ds 
- t i=l 

+ t sd(l - sMs)f(Y(s>> ds (3.1) 
m-2 m-2 

1 - c %C 1 - c &i 
i=l i=l 

:gf Ay(t) . 

(3.2) 

where I’ is defined in Lemma 4. It is obvious that K is a cone in C[O, 11. Moreover, by Lemma 4, 
AK c K. It is also easy to check that A : K + K is completely continuous. 

Now since fs = 0, we may choose Hi > 0 so that f(y) I EY, for 0 < y < Hr, where 6 > 0 

satisfies 
K&)% - s)u( s) ds 

m-2 
2 1. (3.3) 

I - c ai& 
i=l 

Thus, if y E K and llyll = Hr, then from (3.1) and (3.3), we get 

Ay(t) < t s:(l - s)o(s)f(y(s)) ds 
m-2 

1 - c %Sc 
i=l 

< t J; Cl- sb(sMs) ds 
- m-2 

1 - c w5 
i=l 

< sd_Cl - slna_(zs)Wyll 

1 - c w5 
i=l 

(3.4) 

Now if we let 

Ql = {Y E C[O, II I IIYII < Hl), (3.5) 

then (3.4) shows that //Ay/ 5 ljyll, for y E K CI X21. 

Further, since foe = 00, there exists Hs > 0 such that f(u) > pzl, for u 2 Hz, where p > 0 is 
chosen so that 

1 
m-2 

Pr m-2 
CJ 

ai <‘_ &(l - s)a(s)ds 2 1. (3.6) 
I - c a& kl m 2 

i=l 

Let Hz = max{2Hi,(Hz/I’)) and s/2 = {y E C[O, l] 1 llgll < HZ}, then y E K and Ilyll = HZ 
imnlies 
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and so 

Ay 6) = - J” (& - s) a(s)f(y(s)) ds 
0 

m-2 

C ai J$ (Si - s) 4s)fCyCs)) ds 
_ ,ci i=l 

m-2 
+ E, ./;Cl - sMs)f(y(s)) ds 

% m-2 

1 - C ait 1 - C ai& 
i=l i=l 

This implies ’ 

m-2 

41) = c aiu (<ii) 
i=l 

m-2 

ES 
5i 

=- ai (6 - s> 4s)f(~(s)) ds 
i=l 0 

m-2 

m-2 C ai .f (6 - s> a(s)f(y(s)) ds 
- c && i=l 

m-2 
i=l 1 - c Gi 

i=l 

+ mg a&i s,‘o - s)a(s)f(y(s)) ds 
m-2 

i=l 1 - C ai6 
i=l 

m-2 ci 
= 

ES 
ai 65 - s) 4s).f(y(s)) ds i: 

i=l 0 
1 - C ai& 

i=l 

m-2 
+ C ai& 

J;(l - 444fM4) ds 
m-2 

i=l 1 - C ai& 
i=l 

(3.7) 
= Cia(s)f(y(s)) ds + I’i s4s)f(ds)) ds 

i=l 

+ Jd’ &‘ia(s)f(y(s)) ds - ~'&4s)f(~(s))ds~ 
1 

1 
m-2 

2 m-2 c ai [J’ &4s)fb(s>) ds - ti II s4s)fkds)) ds] 

1 _ c & i=l ‘5 * 

i==l 

(we have used, in fact, that 1 > &) 

1 
m-2 

= 
m-2 ES 

ai 

1 - c ai& i=l 

,; si(l - sb(sLfb(s)) ds 

’ 

i=l 

1 
m-2 1 

r m-2 cs 
ai EIP - sMs)f(~(s)) ds 

1 - c ai& i=l E* 

i=l 

1 
m-2 

’ 2 m-2 ES 
ai rl(l - sb(sV(ds)) ds. 

1 _ c &Ei i=l &+-a 

i=l 
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Hence, for y E K n %2z, 

Therefore, by the first part of the tied-point theorem, it follows that A has a fixed point in 
K n (%J \ Sz,), such that HI I /luJ/ 5 Hz. This completes the superlinear part of the theorem. 

SUBLINEAR CASE. Suppose next that fo = co and fa, = 0. We first choose Hs > 0 such that 
f(y) 2 My for 0 < y < Hs, where 

Ml7 l 

m-2 1 

m-2 
ES 

ai <I (1 - s)o(s) ds > 1. 
1 - c a& (xl L-2 

i=l 

(3.8) 

For y E K and /fyi/ = H3, by using the method to get (3.7), we can get that 

m-2 

A~(11 = c 4~ (C) 

1 
m-2 I 

2 
ES 

(3.9) 

1 _Tg2*& i=l 
ai &(I - sb(s)My(s) cJ.9 

h-a 

1 m-2 1 

_> m-2 1 _ sz aili i=l ai f”*_-Z &(l- sb(sPfrds”y” CJ 

Thus, we may let 52s = {y E C[O, 1) 1 JJylj < Hs}, so that 

Now, since fm = 0, there exists & > 0 so that f(y) 5 Xy for 9 2 &, where X > 0 satisfies 

k&v - sb(s)ds < l  

1 - me2aa& - 
(3.10) 

4=1 

We consider two c&ses. 

CASE (i). Suppose f is bounded, say f(y) I N for all y f [0, 00). In this case, choose 

N $ (1 - s)a(s) ds 

’ 
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so that, for y E K with jlyll = Ha, we have 

Ay(t) = - 
s 

t(t - s)a(s)f(y(s))ds 
0 
m-2 

_ t tgl ai g Ki - s) a(sLfb(s>) ds 

m-2 
+ t sd_ Cl- sMs)f(~ (s)) ds 

m-2 

1 - C a&i 1 - C ai& 
i=l i=l 

ll sas 
I Jo ( - );_)2fWl ds 

1 - C QEi 
i=l 

I sd (1 -;y+ ds 

1 - C ai& 
i=l 

I H4, 

and therefore, IlAy < Ilyll. 

Case (ii). If f is unbounded, then we know from (Al) that there is H4 : H4 > max{2Hs, (l/I?) 

fi4} such that 

f(y) 5 f(H4L for 0 < y 5 H4. 

(We are able to do this, since f is unbounded.) Then for y E K and llyll = H4, we have 

AY@) = - 1 (t - sb(s)f(~(s)) ds 
0 
m-2 

_ t %gl ai Jii (6 - s> 4s)fMs)) ds 

m-2 
+ t s,‘P - sMs)fMs)) ds 

m-2 

1 - C ai& I- C ai& 
i=l i=l 

I t .f; Cl- sb(s).f(y(s)) ds 
m-2 

1 - C ai& 
i=l 

5 so.3 I SO ( - H2)f(H4P 

1 - C ai5i 
i=l 

5 sas I JJ ( - pH4ds 

1 - C %Ei 
i=l 

L H4. 

Therefore, in either case, we may put 

Q4 = iv E C[O, 11 I IIYII < H4), 

and for y E K n 6Q4, we may have IlAy 5 IIyIl. By the second part of the fixed-point theorem, 
it follows that BVP (1.1),(1.2) h as a positive solution. Therefore, we have completed the proof 

of Theorem 1. 
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