An international Joumal
computers \&
mathematics
with applications

Positive Solutions of a Nonlinear m-Point Boundary Value Problem

Ruyun Ma
Department of Mathematics, Northwest Normal University
Lanzhou 730070, Gansu, P. R. China
maryonwnu.edu.cn

(Received June 2000; revised and accepted January 2001)

$$
\begin{aligned}
& \text { Abstract-Let } a_{i} \geq 0 \text { for } i=1, \ldots, m-3 \text { and } a_{m-2}>0 \text {. Let } \xi_{i} \text { satisfy } 0<\xi_{1}<\xi_{2}<\cdots< \\
& \xi_{m-2}<1 \text { and } \sum_{i=1}^{m-2} a_{i} \xi_{i}<1 \text {. We study the existence of positive solutions to the boundary-value } \\
& \text { problem } \\
& \qquad u^{\prime \prime}+a(t) f(u)=0, \quad t \in(0,1) \\
& \qquad u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right)
\end{aligned}
$$

where $a \in C([0,1],[0, \infty))$, and $f \in C([0, \infty),[0, \infty))$. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying a fixed-point theorem in cones. (C) 2001 Elsevier Science Ltd. All rights reserved.

Keywords-Second-order multipoint BVP, Positive solution, Cone, Fixed point.

1. INTRODUCTION

The study of multipoint boundary value problems for linear second-order ordinary differential equations was initiated by Il'in and Moiseev [1,2]. Gupta [3] studied three-point boundary value problems for nonlinear ordinary differential equations. Since then, more general nonlinear multipoint boundary value problems have been studied by several authors by using the Leray-Schauder continuation theorem, nonlinear alternatives of Leray-Schauder, coincidence degree theory, and fixed-point theorem in cones. We refer the reader to [4-12], for some recent results of nonlinear multipoint boundary value problems.

In this paper, we consider the existence of positive solutions to the equation

$$
\begin{equation*}
u^{\prime \prime}+a(t) f(u)=0, \quad t \in(0,1) \tag{1.1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \tag{1.2}
\end{equation*}
$$

[^0]0898-1221/01/\$ - see front matter (c) 2001 Elsevier Science Ltd. All rights reserved. Typeset by $\mathcal{A}_{\mathcal{M} S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ PII: S0898-1221(01)00195-X
where $a_{i} \geq 0$ for $i=1, \ldots, m-3$ and $a_{m-2}>0,0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1$ is given. We also assume the following.
(A1) $f \in C([0, \infty),[0, \infty))$ and the limits

$$
f_{0}:=\lim _{u \rightarrow 0^{+}} \frac{f(u)}{u}, \quad f_{\infty}:=\lim _{u \rightarrow \infty} \frac{f(u)}{u}
$$

exist. (We note that $f_{0}=0$ and $f_{\infty}=\infty$ correspond to the superlinear case, and $f_{0}=\infty$ and $f_{\infty}=0$ correspond to the sublinear case.)
(A2) $a \in C([0,1],[0, \infty))$, and there exists $x_{0} \in\left[\xi_{m-2}, 1\right]$ such that $a\left(x_{0}\right)>0$.
(A3) For $i=1, \ldots, m-2, a_{i} \geq 0$, and

$$
\sum_{i=1}^{m-2} a_{i} \xi_{i}<1
$$

By the positive solution of (1.1),(1.2), we understand a function $u(t)$ which is positive on $0<t<1$ and satisfies the differential equation (1.1) and the boundary conditions (1.2).

Very recently, the author [11] showed the existence of positive solutions for the second-order three-point boundary value problem

$$
\begin{align*}
u^{\prime \prime}+a(t) f(u) & =0, \tag{1.3}\\
u(0) & =0, \tag{1.4}
\end{align*} \quad u(1)=(0,1), ~=\alpha u(\eta), ~ l
$$

which is the special case of $(1.1),(1.2)$. The main result in [11] is the following.
Theorem A. Assume (A1) and (A2) hold and $\alpha \eta<1$. Then problem (1.3),(1.4) has at least one positive solution in the case
(i) $f_{0}=0$ and $f_{\infty}=\infty$ (superlinear), or
(ii) $f_{0}=\infty$ and $f_{\infty}=0$ (sublinear).

It is well known that for every solutions u of (1.1),(1.2), there exists $\mu_{u} \in\left[\xi_{1}, \xi_{m-2}\right]$ such that u is a solution of

$$
\begin{align*}
u^{\prime \prime}+a(t) f(u) & =0, \tag{1.5}\\
u(0) & =0, \tag{1.6}\\
u(1) & =\alpha u\left(\mu_{u}\right)
\end{align*}
$$

where $\alpha=\sum_{i=1}^{m-2} a_{i}$. So, by using this fact and the maximal principle established for the threepoint boundary value problem in [11], we can easily establish the following result for the m-point boundary value problem (1.3),(1.4).

Theorem B. Let (A1) and (A2) hold, and assume the following.
(A4) $\left(\sum_{i=1}^{m-2} a_{i}\right) \xi_{m-2}<1$.
Then problem (1.1),(1.2) has at least one positivc solution in the case
(i) $f_{0}=0$ and $f_{\infty}=\infty$ (superlinear), or
(ii) $f_{0}=\infty$ and $f_{\infty}=0$ (sublinear).

Clearly, Condition (A3) is weaker than (A4). Our purpose here is to show the existence of positive solutions to the m-point boundary value problem (1.1),(1.2) under (A3). The main result is the following.
Theorem 1. Assume (A1)-(A3) hold. Then problem (1.1),(1.2) has at least one positive solution in the case
(i) $f_{0}=0$ and $f_{\infty}=\infty$ (superlinear), or
(ii) $f_{0}=\infty$ and $f_{\infty}=0$ (sublinear).

Our methods in this paper involve establishing a maximal principle for m-point boundary value problems, but do not use the maximal principle established for the three-point boundary value problem in [11].
The proof of above theorem is based upon an application of the following well-known GuoKrasnoselskii fixed-point theorem [13].
Theorem 2. Let E be a Banach space, and let $K \subset E$ be a cone. Assume Ω_{1}, Ω_{2} are open bounded subsets of E with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, and let

$$
A: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \longrightarrow K
$$

be a completely continuous operator such that
(i) $\|A u\| \leq\|u\|, u \in K \cap \partial \Omega_{1}$ and $\|A u\| \geq\|u\|, u \in K \cap \partial \Omega_{2}$; or
(ii) $\|A u\| \geq\|u\|, u \in K \cap \partial \Omega_{1}$ and $\|A u\| \leq\|u\|, u \in K \cap \partial \Omega_{2}$.

Then A has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

2. THE PRELIMINARY LEMMAS

Lemma 1. (See [7].) Let $a_{i} \geq 0$ for $i=1, \ldots, m-2$, and $\sum_{i=1}^{m-2} a_{i} \xi_{i} \neq 1$; then for $y \in C[0,1]$, the problem

$$
\begin{align*}
u^{\prime \prime}+y(t) & =0, & t & \in(0,1) \tag{2.1}\\
u(0) & =0, & u(1) & =\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \tag{2.2}
\end{align*}
$$

has a unique solution

$$
\begin{aligned}
u(t)= & -\int_{0}^{t}(t-s) y(s) d s \\
& -t \frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) y(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}+t \frac{\int_{0}^{1}(1-s) y(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}
\end{aligned}
$$

Lemma 2. Let $a_{i} \geq 0$ for $i=1, \ldots, m-2$, and $\sum_{i=1}^{m-2} a_{i} \xi_{i}<1$. If $y \in C[0,1]$ and $y \geq 0$, then the unique solution u of problem (2.1),(2.2) satisfies

$$
u \geq 0, \quad t \in[0,1] .
$$

Proof. From the fact that $u^{\prime \prime}(x)=-y(x) \leq 0$, we know that the graph of $u(t)$ is concave down on (0,1). So, if $u(1) \geq 0$, then the concavity of u together with the boundary condition $u(0)=0$ implies that $u \geq 0$ for $t \in[0,1]$.
If $u(1)<0$, then from the concavity of u, we know that

$$
\begin{equation*}
\frac{u\left(\xi_{i}\right)}{\xi_{i}} \geq \frac{u(1)}{1}, \quad \text { for } i=1, \ldots, m-2 \tag{2.3}
\end{equation*}
$$

This implies

$$
\begin{equation*}
u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \geq \sum_{i=1}^{m-2} a_{i} \xi_{i} u(1) \tag{2.4}
\end{equation*}
$$

This contradicts the fact that $\sum_{i=1}^{m-2} a_{i} \xi_{i}<1$.

Lemma 3. Let $a_{i} \geq 0$ for $i=1, \ldots, m-3, a_{m-2}>0$, and $\sum_{i=1}^{m-2} a_{i} \xi_{i}>1$.
If $y \in C[0,1]$ and $y(t) \geq 0$ for $t \in(0,1)$, then (2.1),(2.2) has no positive solution.
Proof. Assume that (2.1),(2.2) has a positive solution u, then $u\left(\xi_{i}\right)>0$ for $i=1, \ldots, m-2$, and

$$
\begin{align*}
u(1) & =\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \\
& =\sum_{i=1}^{m-2} a_{i} \xi_{i} \frac{u\left(\xi_{i}\right)}{\xi_{i}} \tag{2.5}\\
& \geq \sum_{i=1}^{m-2} a_{i} \xi_{i} \frac{u(\bar{\xi})}{\bar{\xi}} . \\
& >\frac{u(\bar{\xi})}{\bar{\xi}}
\end{align*}
$$

(where $\bar{\xi} \in\left\{\xi_{1}, \ldots, \xi_{m-2}\right\}$ satisfies $(u(\bar{\xi})) / \bar{\xi}=\min \left\{\left(u\left(\xi_{i}\right)\right) / \xi_{i} \mid i=1, \ldots, m-2\right\}$). This contradicts the concavity of u.

If $u(1)=0$, then applying $a_{m-2}>0$, we know that $u\left(\xi_{m-2}\right)=0$. From the concavity of u, it is easy to see that $u(t) \leq 0$ for $t \in[0,1]$.

In the rest of the paper, we assume that $a_{i} \geq 0$ for $i=1, \ldots, m-3, a_{m-2}>0$, and $\sum_{i=1}^{m-2} a_{i} \xi_{i}<1$. Moreover, we will work in the Banach space $C[0,1]$, and only the sup norm is used.
LEMMA 4. Let $a_{i} \geq 0$ for $i=1, \ldots, m-2$, and $\sum_{i=1}^{m-2} a_{i} \xi_{i}<1$. If $y \in C[0,1]$ and $y \geq 0$, then the unique solution u of problem (2.1),(2.2) satisfies

$$
\inf _{t \in\left[\xi_{m-2}, 1\right]} u(t) \geq \Gamma\|u\|
$$

where

$$
\Gamma=\min \left\{\frac{a_{m-2}\left(1-\xi_{m-2}\right)}{1-a_{m-2} \xi_{m-2}}, a_{m-2} \xi_{m-2}, \xi_{1}\right\}
$$

Proof. We divide the proof into two steps.
Step 1. We deal with the case that

$$
\begin{equation*}
\sum_{i=1}^{m-2} a_{i}<1 \tag{2.6}
\end{equation*}
$$

Set

$$
\begin{equation*}
u(\bar{t})=\|u\| . \tag{2.7}
\end{equation*}
$$

If $\bar{t} \leq \xi_{m-2}<1$, then

$$
\begin{equation*}
\min _{t \in\left[\xi_{m-2}, 1\right]} u(t)=u(1) \tag{2,8}
\end{equation*}
$$

From the fact that $u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \geq a_{m-2} u\left(\xi_{m-2}\right)$, we get

$$
\begin{align*}
u(\bar{t}) & \leq u(1)+\frac{u(1)-u\left(\xi_{m-2}\right)}{1-\xi_{m-2}}(0-1) \\
& =u(1)-\frac{u(1)}{1-\xi_{m-2}}+\frac{u\left(\xi_{m-2}\right)}{1-\xi_{m-2}} \\
& =u(1)\left[1-\frac{1}{1-\xi_{m-2}}+\frac{1}{a_{m-2}\left(1-\xi_{m-2}\right)}\right] \tag{2.9}\\
& =u(1) \frac{1-a_{m-2} \xi_{m-2}}{a_{m-2}\left(1-\xi_{m-2}\right)}
\end{align*}
$$

This, together with (2.8), implies that

$$
\begin{equation*}
\min _{t \in\left[\xi_{m-2}, 1\right]} u(t) \geq\|u\| \frac{a_{m-2}\left(1-\xi_{m-2}\right)}{1-a_{m-2} \xi_{m-2}} . \tag{2.10}
\end{equation*}
$$

We note that (2.6) implies

$$
\frac{a_{m-2}\left(1-\xi_{m-2}\right)}{1-a_{m-2} \xi_{m-2}}>0
$$

If $\xi_{m-2}<\bar{t}<1$, then we claim that

$$
\begin{equation*}
\min _{t \in\left[\xi_{m} \quad 2,1\right]} u(t)=u(1) \tag{2.11}
\end{equation*}
$$

In fact, if $\min _{t \in\left[\xi_{m-2}, 1\right]} u(t)=u\left(\xi_{m-2}\right)$, then we have that $\bar{t} \in\left[\xi_{m-2}, 1\right]$ and

$$
u\left(\xi_{m-2}\right) \geq \cdots \geq u\left(\xi_{2}\right) \geq u\left(\xi_{1}\right)
$$

This, together with (2.6), implies that

$$
u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \leq \sum_{i=1}^{m-2} a_{i} u\left(\xi_{m-2}\right)<u\left(\xi_{m-2}\right) \leq u(1)
$$

a contradiction! Therefore, (2.11) holds.
From the concavity of u, we know that

$$
\begin{equation*}
\frac{u\left(\xi_{m-2}\right)}{\xi_{m-2}} \geq \frac{u(\bar{t})}{\bar{t}} \geq u(\bar{t}) \tag{2.12}
\end{equation*}
$$

Combining (2.12) with the fact that $u(1) \geq a_{m-2} u\left(\xi_{m-2}\right)$, we conclude that

$$
\frac{u(1)}{a_{m-2} \xi_{m-2}} \geq u(t) .
$$

This, together with (2.11), implies that

$$
\begin{equation*}
\min _{t \in\left[\xi_{m-2}, 1\right]} u(t) \geq a_{m-2} \xi_{m-2}\|u\| . \tag{2.13}
\end{equation*}
$$

Step 2. We deal with the case that

$$
\begin{equation*}
\sum_{i=1}^{m-2} a_{i} \geq 1 \tag{2.14}
\end{equation*}
$$

Set

$$
\begin{equation*}
u(\bar{t})=\|u\| . \tag{2.15}
\end{equation*}
$$

If $u\left(\xi_{m-2}\right) \leq u(1)$, then

$$
\begin{equation*}
\min _{t \in\left[\xi_{m-2}, 1\right]} u(t)=u\left(\xi_{m-2}\right) . \tag{2.16}
\end{equation*}
$$

It is easy to see from the concavity of u that

$$
\begin{equation*}
\bar{t} \in\left[\xi_{m-2}, 1\right] . \tag{2.17}
\end{equation*}
$$

This implies that

$$
\frac{u\left(\xi_{m-2}\right)}{\xi_{m-2}} \geq \frac{u(\bar{t})}{\bar{t}} \geq u(\bar{t})
$$

Thus,

$$
\begin{equation*}
\min _{t \in\left[\xi_{m-2}, 1\right]} u(t) \geq \xi_{m-2}\|u\| . \tag{2.18}
\end{equation*}
$$

If

$$
\begin{equation*}
u\left(\xi_{m-2}\right)>u(1) \tag{2.19}
\end{equation*}
$$

then

$$
\begin{equation*}
\min _{t \in\left[\xi_{m-2}, 1\right]} u(t)=u(1) \tag{2.20}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\bar{t} \in\left[\xi_{1}, 1\right] \tag{2.21}
\end{equation*}
$$

In fact, assume to the contrary that $\bar{t} \in\left[0, \xi_{1}\right)$, then

$$
u\left(\xi_{1}\right) \geq u\left(\xi_{2}\right) \geq \cdots \geq u\left(\xi_{m-2}\right)>u(1)
$$

This implies

$$
u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \geq \sum_{i=1}^{m-2} a_{i} u\left(\xi_{m L-2}\right)>u(1) \sum_{i=1}^{m-2} a_{i} \geq u(1)
$$

a contradiction! So (2.21) holds.
Since $\sum_{i=1}^{m-2} a_{i} \geq 1$, we know that there exists $\tilde{\xi} \in\left\{\xi_{1}, \ldots, \xi_{m-2}\right\}$ such that

$$
\begin{equation*}
u(\tilde{\xi}) \leq u(1) \tag{2.22}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
u\left(\xi_{1}\right) \leq\left(\xi_{2}\right) \leq \cdots \leq u(\tilde{\xi}) \leq u(1) \tag{2.23}
\end{equation*}
$$

Combining (2.23) and (2.21) with the concavity of u, we can conclude that

$$
\begin{equation*}
\frac{u(1)}{\xi_{1}} \geq \frac{u\left(\xi_{1}\right)}{\xi_{1}} \geq \frac{u(\bar{t})}{\bar{t}} \geq u(\bar{t}) \tag{2.24}
\end{equation*}
$$

This together with (2.20) implies that

$$
\begin{equation*}
\min _{t \in\left[\xi_{m-2}, 1\right]} u(t) \geq \xi_{1}\|u\| \tag{2.25}
\end{equation*}
$$

From (2.10), (2.13), (2.18), and (2.25), we know that

$$
\inf _{t \in\left[\xi_{m-2}, 1\right]} u(t) \geq \Gamma\|u\|
$$

where

$$
\begin{aligned}
\Gamma & =\min \left\{\frac{a_{m-2}\left(1-\xi_{m-2}\right)}{1-a_{m-2} \xi_{m-2}}, a_{m-2} \xi_{m-2}, \xi_{m-2}, \xi_{1}\right\} \\
& =\min \left\{\frac{a_{m-2}\left(1-\xi_{m-2}\right)}{1-a_{m-2} \xi_{m-2}}, a_{m-2} \xi_{m-2}, \xi_{1}\right\}
\end{aligned}
$$

3. PROOF OF MAIN THEOREM

Proof of Theorem 1. Superlinear Case. Suppose then that $f_{0}=0$ and $f_{\infty}=\infty$. We wish to show the existence of a positive solution of (1.1),(1.2). Now (1.1),(1.2) has a solution $y=y(t)$ if and only if y solves the operator equation

$$
\begin{align*}
y(t)= & -\int_{0}^{t}(t-s) a(s) f(y(s)) d s \\
& -t \frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}+t \frac{\int_{0}^{1}(1-s) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \tag{3.1}
\end{align*}
$$

$$
: \stackrel{\text { def }}{=} A y(t)
$$

Denote

$$
\begin{equation*}
K=\left\{y \mid y \in C[0,1], y \geq 0, \min _{\xi_{m-2} \leq t \leq 1} y(t) \geq \Gamma\|y\|\right\} \tag{3.2}
\end{equation*}
$$

where Γ is defined in Lemma 4. It is obvious that K is a cone in $C[0,1]$. Moreover, by Lemma 4, $A K \subset K$. It is also easy to check that $A: K \rightarrow K$ is completely continuous.

Now since $f_{0}=0$, we may choose $H_{1}>0$ so that $f(y) \leq \epsilon y$, for $0<y<H_{1}$, where $\epsilon>0$ satisfies

$$
\begin{equation*}
\frac{\epsilon \int_{0}^{1}(1-s) a(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \leq 1 . \tag{3.3}
\end{equation*}
$$

Thus, if $y \in K$ and $\|y\|=H_{1}$, then from (3.1) and (3.3), we get

$$
\begin{align*}
A y(t) & \leq \frac{t \int_{0}^{1}(1-s) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
& \leq \frac{t \int_{0}^{1}(1-s) a(s) \epsilon y(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
& \leq \frac{\int_{0}^{1}(1-s) a(s) \epsilon d s\|y\|}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \tag{3.4}\\
& \leq \frac{\int_{0}^{1}(1-s) a(s) \epsilon d s H_{1}}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} .
\end{align*}
$$

Now if we let

$$
\begin{equation*}
\Omega_{1}=\left\{y \in C[0,1] \mid\|y\|<H_{1}\right\}, \tag{3.5}
\end{equation*}
$$

then (3.4) shows that $\|A y\| \leq\|y\|$, for $y \in K \cap \partial \Omega_{1}$.
Further, since $f_{\infty}=\infty$, there exists $\hat{H}_{2}>0$ such that $f(u) \geq \rho u$, for $u \geq \hat{H}_{2}$, where $\rho>0$ is chosen so that

$$
\begin{equation*}
\rho \Gamma \frac{1}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \sum_{i=1}^{m-2} a_{i} \int_{\xi_{m-2}}^{1} \xi_{1}(1-s) a(s) d s \geq 1 . \tag{3.6}
\end{equation*}
$$

Let $H_{2}=\max \left\{2 H_{1},\left(\hat{H}_{2} / \Gamma\right)\right\}$ and $\Omega_{2}=\left\{y \in C[0,1] \mid\|y\|<H_{2}\right\}$, then $y \in K$ and $\|y\|=H_{2}$ implies

$$
\min _{\xi_{m-2} \leq t \leq 1} y(t) \geq \Gamma\|y\| \geq \hat{H}_{2},
$$

and so

$$
\begin{aligned}
& A y\left(\xi_{i}\right)=-\int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a(s) f(y(s)) d s \\
&-\xi_{i} \frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}+\xi_{i} \frac{\int_{0}^{1}(1-s) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}
\end{aligned}
$$

This implies

$$
\begin{align*}
& u(1)= \sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \\
&=-\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a(s) f(y(s)) d s \\
&-\sum_{i=1}^{m-2} a_{i} \xi_{i} \frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
&+\sum_{i=1}^{m-2} a_{i} \xi_{i} \frac{\int_{0}^{1}(1-s) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
&= \sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a(s) f(y(s)) d s \frac{-1}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
&+\sum_{i=1}^{m-2} a_{i} \xi_{i} \frac{\int_{0}^{1}(1-s) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
&= \frac{1}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \sum_{i=1}^{m-2} a_{i}\left[-\int_{0}^{\xi_{i}} \xi_{i} a(s) f(y(s)) d s+\int_{0}^{\xi_{i}} s a(s) f(y(s)) d s\right. \tag{3.7}\\
&\left.+\int_{0}^{1} \xi_{i} a(s) f(y(s)) d s-\int_{0}^{1} \xi_{i} s a(s) f(y(s)) d s x\right] \\
& \geq \frac{1}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \sum_{i=1}^{m-2} a_{i}\left[\int_{\xi_{i}}^{1} \xi_{i} a(s) f(y(s)) d s-\xi_{i} \int_{\xi_{i}}^{1} s a(s) f(y(s)) d s\right] \\
& \geq \frac{\left(\text { we have used, in fact, that } 1>\xi_{i}\right)}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \sum_{i=1}^{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \sum_{i=1}^{m-2} a_{i} \int_{\xi_{m}}^{1} \xi_{\xi_{i}}^{1} \xi_{1}(1-s) a(s) f(y(s)) d s \\
&= \frac{1}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \sum_{i=1}^{m-2} a_{i} \int_{\xi_{i}}^{1} \xi_{i}(1-s) a(s) f(y(s)) d s \\
& m-2 \\
& 1
\end{align*}
$$

Hence, for $y \in K \cap \partial \Omega_{2}$,

$$
\|A y\| \geq|u(1)| \geq \rho \Gamma \frac{1}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \sum_{i=1}^{m-2} a_{i} \int_{\xi_{m-2}}^{1} \xi_{1}(1-s) a(s) d s\|y\| \geq\|y\|
$$

Therefore, by the first part of the fixed-point theorem, it follows that A has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$, such that $H_{1} \leq\|u\| \leq H_{2}$. This completes the superlinear part of the theorem. Sublinear Case. Suppose next that $f_{0}=\infty$ and $f_{\infty}=0$. We first choose $H_{3}>0$ such that $f(y) \geq M y$ for $0<y<H_{3}$, where

$$
\begin{equation*}
M \Gamma \frac{1}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \sum_{i=1}^{m-2} a_{i} \int_{\xi_{m-2}}^{1} \xi_{1}(1-s) a(s) d s \geq 1 \tag{3.8}
\end{equation*}
$$

For $y \in K$ and $\|y\|=H_{3}$, by using the method to get (3.7), we can get that

$$
\begin{align*}
A y(1) & =\sum_{i=1}^{m-2} a_{i} A y\left(\xi_{i}\right) \\
& \geq \frac{1}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \sum_{i=1}^{m-2} a_{i} \int_{\xi_{i}}^{1} \xi_{i}(1-s) a(s) f(y(s)) d s \\
& \geq \frac{1}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \sum_{i=1}^{m-2} a_{i} \int_{\xi_{m-2}}^{1} \xi_{1}(1-s) a(s) M y(s) d s \tag{3.9}\\
& \geq \frac{1}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \sum_{i=1}^{m-2} a_{i} \int_{\xi_{m-2}}^{1} \xi_{1}(1-s) a(s) M \Gamma d s\|y\| \\
& \geq H_{3} .
\end{align*}
$$

Thus, we may let $\Omega_{3}=\left\{y \in C[0,1] \mid\|y\|<H_{3}\right\}$, so that

$$
\|A y\| \geq\|y\|, \quad y \in K \cap \partial \Omega_{3}
$$

Now, since $f_{\infty}=0$, there exists $\hat{H}_{4}>0$ so that $f(y) \leq \lambda y$ for $y \geq \hat{H}_{4}$, where $\lambda>0$ satisfies

$$
\begin{equation*}
\frac{\lambda \int_{0}^{1}(1-s) a(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \leq 1 \tag{3.10}
\end{equation*}
$$

We consider two cases.
Case (i). Suppose f is bounded, say $f(y) \leq N$ for all $y \in[0, \infty)$. In this case, choose

$$
H_{4}=\max \left\{2 H_{3}, \frac{N \int_{0}^{1}(1-s) a(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}\right\}
$$

so that, for $y \in K$ with $\|y\|=H_{4}$, we have

$$
\begin{aligned}
A y(t)= & -\int_{0}^{t}(t-s) a(s) f(y(s)) d s \\
& -t \frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}+t \frac{\int_{0}^{1}(1-s) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
\leq & \frac{\int_{0}^{1}(1-s) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
\leq & \frac{\int_{0}^{1}(1-s) a(s) N d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
\leq & H_{4},
\end{aligned}
$$

and therefore, $\|A y\| \leq\|y\|$.
Case (ii). If f is unbounded, then we know from (A1) that there is $H_{4}: H_{4}>\max \left\{2 H_{3},(1 / \Gamma)\right.$ $\left.\hat{H}_{4}\right\}$ such that

$$
f(y) \leq f\left(H_{4}\right), \quad \text { for } 0<y \leq H_{4} .
$$

(We are able to do this, since f is unbounded.) Then for $y \in K$ and $\|y\|=H_{4}$, we have

$$
\begin{aligned}
A y(t)= & -\int_{0}^{t}(t-s) a(s) f(y(s)) d s \\
& -t \frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}+t \frac{\int_{0}^{1}(1-s) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
\leq & t \frac{\int_{0}^{1}(1-s) a(s) f(y(s)) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
& \leq \frac{\int_{0}^{1}(1-s) a(s) f\left(H_{4}\right) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
& \leq \frac{\int_{0}^{1}(1-s) a(s) \lambda H_{4} d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
\leq & H_{4} .
\end{aligned}
$$

Therefore, in either case, we may put

$$
\Omega_{4}=\left\{y \in C[0,1] \mid\|y\|<H_{4}\right\},
$$

and for $y \in K \cap \partial \Omega_{4}$, we may have $\|A y\| \leq\|y\|$. By the second part of the fixed-point theorem, it follows that BVP (1.1),(1.2) has a positive solution. Therefore, we have completed the proof of Theorem 1.

REFERENCES

1. V.A. Il'in and E.I. Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differential Equations 23 (7), 803-810 (1987).
2. V.A. Il'in and E.I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differential Equations 23 (8), 979-987 (1987).
3. C.P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168, 540-551 (1992).
4. W. Feng and J.R.L. Webb, Solvability of a three-point boundary value problems at resonance, Nonlinear Analysis TMA 30 (6), 3227-3238 (1997).
5. W. Feng and J.R.L. Webb, Solvability of a m-point boundary value problems with nonlinear growth, J. Math. Anál. Appl. 212, 467-480 (1997).
6. W. Feng, On a m-point nonlinear boundary value problem, Nonlinear Analysis TMA 30 (6), 5369-5374 (1997).
7. C.P. Gupta, S.K. Ntouyas and P.Ch. Tsamatos, On an m-point boundary value problem for second order ordinary differential equations, Nonlinear Analysis TMA 23 (11), 1427-1436 (1994).
8. C. Gupta and S. Trofimchuk, Existence of a solution to a three-point boundary values problem and the spectral radius of a related linear operator, Nonlinear Analysis TMA 34, 498-507 (1998).
9. S.A. Marano, A remark on a second order three-point boundary value problem, J. Math. Anal. Appl. 183, 581-522 (1994).
10. R. Ma, Existence theorems for a second order three-point boundary value problem, J. Math. Anal. Appl. 212, 430-442 (1997).
11. R. Ma, Positive solutions of a nonlinear three-point boundary value problem, Electron. J. Differential Equations 34, 1-8 (1999).
12. R. Ma, Existence theorems for a second order m-point boundary value problem, J. Math. Anal. Appl. 211, 545-555 (1997).
13. D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, CA 1988.
14. M.A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, (1964).
15. H. Wang, On the existence of positive solutions for semilinear elliptic equations in annulus, J. Differential Equations 109, 1-7 (1994).

[^0]: Supported by the Natural Science Foundation of China (No. 19801028).

