Characterization of double domination subdivision number of trees

M. Atapoura, Abdollah Khodkarb, S.M. Sheikholeslamic,1

aDepartment of Mathematics, Alzahra University, Vanak Square 19834, Tehran, Islamic Republic of Iran
bDepartment of Mathematics, University of West Georgia, Carrollton, GA 30118, USA
cDepartment of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, Islamic Republic of Iran

Received 2 November 2006; received in revised form 14 March 2007; accepted 15 March 2007
Available online 23 March 2007

Abstract

In a graph G, a vertex dominates itself and its neighbors. A subset $S \subseteq V(G)$ is a double dominating set of G if S dominates every vertex of G at least twice. The double domination number $dd(G)$ is the minimum cardinality of a double dominating set of G. The double domination subdivision number $sd_{dd}(G)$ is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the double domination number. In this paper we establish upper bounds on the double domination subdivision number for arbitrary graphs in terms of vertex degree. Then we present several different conditions on G which are sufficient to imply that $sd_{dd}(G) \leq 3$. We also prove that $1 \leq sd_{dd}(T) \leq 2$ for every tree T, and characterize the trees T for which $sd_{dd}(T) = 2$.

MSC: 05C69

Keywords: Double domination number; Double domination subdivision number

1. Introduction

In this paper, G is a simple connected graph with vertex set $V(G)$ and edge set $E(G)$ (briefly V and E). For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood is the set $N[v] = N(v) \cup \{v\}$. The open neighborhood of a set $S \subseteq V$ is the set $N(S) = \bigcup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S] = N(S) \cup S$.

A vertex $v \in V$ dominates itself and its neighbors. A subset S of vertices of G is a dominating set if $N[S] = V$ (that is, S dominates V). The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G, and a dominating set of minimum cardinality is called a γ-set [8]. A subset S of V is a double dominating set of G if S dominates every vertex of G at least twice [5]. Note that a double domination set of G is defined only if G has no isolated vertices. The double domination number $dd(G)$ is the minimum cardinality of a double dominating set of G. A $dd(G)$-set is a double dominating set of G with cardinality $dd(G)$. Throughout this paper we talk about $dd(G)$ we assume that G has no isolated vertices. For a more thorough treatment of domination parameters and for terminology not presented here, see [8,12].

1 Research supported by the Research Office of Azarbaijan University of Tarbiat Moallem.

E-mail addresses: akhodkar@westga.edu (A. Khodkar), s.m.sheikholeslami@azaruniv.edu (S.M. Sheikholeslami).

0166-218X/S - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2007.03.007
The (total) domination subdivision number \(sd_{d_{i}}(G)\) \(sd_{d}(G)\) of a graph \(G\) is the minimum number of edges that must be subdivided (where each edge in \(G\) can be subdivided at most once) in order to increase the (total) domination number of \(G\), see \([6,7]\). (An edge \(uv \in E(G)\) is subdivided if the edge \(uv\) is deleted, but a new vertex \(x\) is added, along with two new edges \(ux\) and \(vx\).) The domination subdivision numbers and the total domination subdivision numbers have been studied by several authors (see for example \([2,4,6,7,9–11]\)). In particular, in \([7]\) it is proved that \(1 \leq sd_{d_{i}}(T) \leq 3\), where \(sd_{d_{i}}(T)\) is the total domination subdivision number of tree \(T\) with at least three vertices. Moreover, the authors of \([1,9]\) give a constructive characterization of trees whose domination subdivision number and total domination subdivision number is 3, respectively.

The purpose of this paper is to initialize the study of the double domination subdivision number \(sd_{dd}(G)\). That is, the double domination subdivision number \(sd_{dd}(G)\) of a graph \(G\) is the minimum number of edges that must be subdivided (where each edge in \(G\) can be subdivided at most once) in order to increase the double domination number of \(G\). Although it may not be immediately obvious that the double domination subdivision number is defined for all connected graphs of order \(n \geq 2\), we will show this shortly.

We make use of the following results in this paper.

Theorem A (Harary and Hages \([5]\)). For \(n \geq 2\), \(dd(P_n) = [(2n + 2)/3]\).

Theorem B (Harary and Hages \([5]\)). Let \(G\) be a graph of order \(n\). Then \(dd(G) = 2\) if and only if there exists vertices \(u, v \in V(G)\) such that \(deg(u) = deg(v) = n - 1\).

Recall that a matching in a graph is a set of non-loop edges with no shared endpoints. The maximum size of a matching in \(G\) is denoted by \(\chi'(G)\).

Theorem C (Brandt \([3]\)). Let \(G\) be a simple graph of order \(n\) such that \(\delta \geq k\) and \(n \geq 2k\) for some \(k \in \mathbb{N}\). Then \(\chi'(G) \geq k\).

2. Bounds on the double domination subdivision number

In this section we present some upper bounds on \(sd_{dd}(G)\) in terms of the vertex degree and the minimum degree of \(G\). We begin with three propositions giving some sufficient conditions for a graph to have a small double domination subdivision number.

Proposition 1. For any graph \(G\) of order \(n \geq 2\) and \(dd(G) = 2\), \(sd_{dd}(G) = 1\).

Proof. For \(n = 2\) the statement is trivial. Now let \(n \geq 3\). Then the graph \(G'\), obtained by subdividing any edge of \(G\), has no vertex of degree \(n(G') - 1\). Therefore, \(dd(G') > 2 = dd(G)\), by Theorem B. This implies that \(sd_{dd}(G) = 1\).

Proposition 2. For any graph \(G\) with \(dd(G) = 3\), \(sd_{dd}(G) \leq 2\).

Proof. Let \(S = \{v_1, v_2, v_3\}\) be a \(dd\)-set of \(G\). Obviously, the induced subgraph \(G[S]\) is connected. We may assume \(v_1v_2, v_2v_3 \in E(G)\). Let \(G'\) be obtained from \(G\) by subdividing the edges \(v_1v_2, v_2v_3\) with new vertices \(x_1, x_2\), respectively. Let \(S'\) be a \(dd(G')\)-set. Clearly, \(|S' \cap \{v_1, x_1, v_{i+1}\}| \geq 2\) for \(i = 1, 2\). If \(x_1, x_2 \notin S'\), then \(\{v_1, v_2, v_3\} \subseteq S'\). Now in order to dominate \(v_2\) twice we have \(|S'| \geq 4\). We may assume \(x_1 \in S'\). If \(x_2 \notin S'\), then \(v_2, v_3 \in S'\) and since \(v_3\) must be dominated twice, we have \(|S'| \geq 4\). Let \(x_2 \in S'\). If \(v_2 \notin S'\), then \(v_1, v_3 \in S'\) and so \(|S'| \geq 4\). Let \(v_2 \in S'\). Now \(v_1\) must be dominated twice. This forces \(|S'| \geq 4\) and the result follows.

Proposition 3. If \(G\) contains a strong support vertex, then \(sd_{dd}(G) = 1\).

Proof. Let \(u, v \in V(G)\) be two leaves adjacent to \(w\) and let \(G'\) be obtained from \(G\) by subdividing the edge \(uw\) with vertex \(x\). Let \(S\) be a \(dd(G')\)-set. Obviously, \(\{u, v, x, w\} \subseteq S\). Now since \(S \setminus \{x\}\) is a double dominating set in \(G\) it follows that \(sd_{dd}(G) = 1\).

Theorem 4. For any graph \(G\) of order \(n \geq 2\) and \(\delta = 1\), \(sd_{dd}(G) \leq 2\).
Theorem 7. For every simple connected graph G of order n, we have $sd_{dd}(G) \leq n/2$. Furthermore, this bound is sharp.

Proof. Let $v \in V$ be a vertex of degree 1 and assume u is adjacent to v. If $\deg(u) = 1$, then $sd_{dd}(G) = 1$. So, assume $w \neq v$ is adjacent to u. Let G' be obtained from G by subdividing the edges uv and uw with vertices x and y, respectively, and let S be a $dd(G')$-set. Obviously, $v, x \in S$ and $|S \setminus \{u, v, y\}| \geq 2$. Now if $y, w \in S$, then $(S \setminus \{x, y\}) \cup \{u\}$ is a double dominating set in G. The cases $u, y \in S$ or $u, w \in S$ are similar. Hence, $sd_{dd}(G) \leq 2$. \hfill \square

An immediate consequence of Theorem 4 is:

Corollary 5. For any nontrivial tree T, $sd_{dd}(T) \leq 2$.

Theorem 6. For every simple connected graph G with $\delta \geq 2$, $sd_{dd}(G) \leq \delta$.

Proof. Let $v \in V(G)$ be a vertex of degree δ and let $N(v) = \{v_1, v_2, \ldots, v_\delta\}$. Suppose that G' is obtained from G by subdividing the edges $vv_1, vv_2, \ldots, vv_\delta$ with vertices $x_1, x_2, \ldots, x_\delta$, respectively. Let S be a $dd(G')$-set. Then $|S \setminus \{x_1, \ldots, x_\delta\}| \geq 1$. If $v \in S$, then we may assume $x_1 \in S$. We note that in order to dominate x_i twice we must have $|\{x_j, v_i\} \cap S| \geq 1$ for $i \in \{1, 2, 3, \ldots, \delta\}$. Hence, $(S \setminus \{x_1, \ldots, x_\delta\}) \cup \{v_2, \ldots, v_\delta\}$ is a double dominating set of G whose size is less than $|S|$. If $v \notin S$, then $|\{x_i, v_i : 1 \leq i \leq \delta\}| \leq S$. Now $(S \setminus \{x_1, \ldots, x_\delta\}) \cup \{v\}$ is a double dominating set of G. Therefore $sd_{dd}(G) \leq \delta$. \hfill \square

A consequence of Theorems 4 and 6 is that $sd_{dd}(G)$ is defined for every simple connected graph G of order $n \geq 2$.

Theorem 7. For any simple connected graph G with adjacent vertices u and v, each of degree at least two,

$$sd_{dd}(G) \leq \deg(u) + \deg(v) - |N(u) \cap N(v)| - 2.$$

Furthermore, this bound is sharp.

Proof. Let $N(v) = \{v_1, v_2, \ldots, v_k\}$, where $u = v_1$, and if $N(u) \setminus N[v] \neq \emptyset$, let $N(u) \setminus N[v] = \{u_1, \ldots, u_t\}$. Let G' be the graph obtained by subdividing the edge vv_1 with vertex x_i for $2 \leq i \leq k$, and the edge uu_i with vertex y_j for $1 \leq j \leq t$. Let $A = \{x_1, y_j : 2 \leq i \leq k \text{ and } 1 \leq j \leq t\}$ and let S' be a $dd(G')$-set such that $|S' \cap A|$ is minimum. We prove that $dd(G) \leq |S'|-1$.

If both u and v are in S', then $S' \cap A = \emptyset$ since $|S' \cap A|$ is minimum. Hence, $S' \setminus \{u\}$ is a double dominating set in G. Assume $u \in S'$ and $v \notin S'$ (the case $u \notin S'$ and $v \in S'$ is similar). If $k \geq 3$, then $(S' \setminus \{x_2, x_3\}) \cup \{v\}$ is a double dominating set for G. If $k = 2$ and $t \geq 1$, then $(S' \setminus \{x_2, y_1\}) \cup \{v\}$ is a double dominating set for G. If $k = 2$ and $t = 0$, then $S' \setminus \{x_2\}$ is a double dominating set for G. Now let $u, v \notin S'$. Then $\{x_i, y_j, u_j : 2 \leq i \leq k, 1 \leq j \leq t\} \subseteq S'$ and $\deg(u), \deg(v) \geq 3$, since u and v must be dominated twice by S. If $t \geq 1$, then $(S' \setminus \{x_i, y_j : 2 \leq i \leq k, 1 \leq j \leq t\}) \cup \{u, v\}$ is a double dominating set for G. If $t = 0$, then $(S' \setminus \{x_i : 2 \leq i \leq k\}) \cup \{u\}$ is a double dominating set for G.

Therefore $dd(G) < dd(G')$ and $sd_{dd}(G) \leq \deg(u) + \deg(v) - |N(u) \cap N(v)| - 2$. For a cycle of order $n, n \equiv 2 \pmod{3}$, this bound is attained. This completes the proof. \hfill \square

Lemma 8. If G contains a matching M such that $dd(G) \leq 2|M| - 1$, then $sd_{dd}(G) \leq |M|$.

Proof. Let G' be obtained from G by subdividing every edge of M. Each double dominating set of G' has order at least $2|M|$. Hence, $dd(G') > dd(G)$ and $sd_{dd}(G) \leq |M|$. \hfill \square

Theorem 9. For every simple connected graph G of order $n \geq 2$, $sd_{dd}(G) \leq \lfloor n/2 \rfloor$.

Proof. For $n = 2$ or 3, the proof is clear. Assume $n \geq 4$. If $\delta \leq \lfloor n/2 \rfloor$, the statement holds by Theorem 6. Suppose that $\delta > \lfloor n/2 \rfloor$ which implies $\delta \geq 3$. If $x, y \in V(G)$, then obviously $V(G) \setminus \{x, y\}$ is a double dominating set of G and $dd(G) \leq n - 2$. Apply Theorem C with $k = \lfloor n/2 \rfloor$ to see that $dd(G) \geq \lfloor n/2 \rfloor$. Let M be a matching in G with $\lfloor n/2 \rfloor$ edges. We have $dd(G) \leq n - 2 \leq 2|M| - 1$. Hence, by Theorem 8, $sd_{dd}(G) \leq \lfloor n/2 \rfloor$. \hfill \square
3. Trees whose double domination subdivision numbers is 2

By Corollary 5, trees can be classified as Class 1 or Class 2 depending on whether their double domination subdivision number is 1 or 2, respectively. In this section we provide a constructive characterization of all trees in Class 2. For this purpose, we describe a procedure to build a family \mathcal{F} of labeled trees that are in Class 2 as follows. First we define the following operations on labeled trees. The label of a vertex is also called its status and denoted $sta(v)$. Let \mathcal{F} be the family of labeled trees that:

1. contains P_4 where the two leaves have status C, and the two support vertices have status B, and
2. is closed under the two operations \mathcal{I}_1, \mathcal{I}_2, which extend the tree T by attaching a tree to the vertex $y \in V(T)$, called the attacher.

Operation \mathcal{I}_1. Assume $sta(y) = C$. Then add a path $yxvw$ to T with $sta(x) = A$, $sta(w) = B$ and $sta(v) = C$ (see Fig. 1).

Operation \mathcal{I}_2. Assume $sta(y) \in \{A, B\}$. Then add a path yxw to T with $sta(x) = B$ and $sta(v) = C$ (see Fig. 1).

4. The family \mathcal{F}

If $T \in \mathcal{F}$, we let $A(T)$, $B(T)$ and $C(T)$ be the set of vertices of status A, B and C, respectively, in T. The relation $|B(T)| = |C(T)|$ and the following observation come from the way in which each tree in the family \mathcal{F} is constructed.

Observation 10. Let $T \in \mathcal{F}$ and $v \in V(T)$.

1. If v is a leaf, then $sta(v) = C$.
2. If v is a support vertex, then $sta(v) = B$.
3. If $sta(v) = A$, then v is adjacent to exactly one vertex of status C, and at least one vertex of status B.
4. If $sta(v) = B$, then v is adjacent to exactly one vertex of status C.
5. If $sta(v) = C$, then v is adjacent to exactly one vertex, say x, of status B. Moreover, $N(v) \setminus \{x\} \subseteq A(T)$.
6. The distance between any two vertices in $C(T)$ is at least three.
7. Let $P_4 = v_1v_2v_3v_4$ with $sta(v_1) = sta(v_4) = C$ and $sta(v_2) = sta(v_3) = B$. Assume T is obtained from P_4 by successive operations \mathcal{I}^1, ... , \mathcal{I}^m, respectively, where $\mathcal{I}^i \in \{\mathcal{I}_1, \mathcal{I}_2\}$ for $1 \leq i \leq m$. If $v \in V(T)$, $\deg(v) = 2$, $sta(v) = B$ and v has a neighbor u in T such that $\deg(u) = 2$ and $sta(u) = B$, then u and v lie on initial P_4.

In order to show that each tree in the family \mathcal{F} is in Class 2, we first present four lemmas.

Lemma 11. If $T \in \mathcal{F}$ and T is obtained from $T_0 = P_4$ by successive operations \mathcal{I}^1, ... , \mathcal{I}^m, where $\mathcal{I}^i \in \{\mathcal{I}_1, \mathcal{I}_2\}$ for $i = 1, 2, \ldots, m$, then $C(T) \cup B(T)$ is a $dd(T)$-set and $dd(T) = 2m + 4$.

Proof. By Observation 10 (3, 4, 5), $B(T) \cup C(T)$ is a double dominating set of T implying that $dd(T) \leq |B(T)| + |C(T)| = 2|C(T)|$. Now let S be a $dd(T)$-set. For each $x \in C(T)$, $|S \cap N[x]| \geq 2$ and if x, $y \in C(T)$, then $N[x] \cap N[y] = \emptyset$, by Observation 10(6). This implies $|S| \geq 2|C(T)|$. Therefore, $C(T) \cup B(T)$ is a $dd(T)$-set. Since $|B(P_4) \cup C(P_4)| = 4$ and each operation \mathcal{I}_1 and \mathcal{I}_2 adds two more vertices of $C(T) \cup B(T)$, it follows that $|B(T) \cup C(T)| = 2m + 4$. □

Lemma 12. Let $T \in \mathcal{F}$ and $v \in C(T)$. Then there exists a set S containing v that doubly dominates $V(T) \setminus \{v\}$ and $|S| = dd(T) - 1$.

![Fig. 1. The two operations.](image-url)
Proof. Let $P_4 = v_1v_2v_3v_4$ and let T be obtained from P_4 by successive operations $\mathcal{Z}^1, \ldots, \mathcal{Z}^m$, respectively, where $\mathcal{Z}^i \in \{\mathcal{Z}_1, \mathcal{Z}_2\}$ for $1 \leq i \leq m$ if $m \geq 1$ and $T = P_4$ if $m = 0$. The proof is by induction on m. If $m = 0$, then clearly the statement is true. Assume $m \geq 1$ and that the statement holds for all trees which are obtained from P_4 by applying at most $m - 1$ operations $\mathcal{Z} \in \{\mathcal{Z}_1, \mathcal{Z}_2\}$. Let T be rooted at v_2. Assume $u_1 \not\in \{v_1, v_4\}$ is a leaf with maximum distance from v_2 and let u_2 be the parent of u_1. By Observation 10(6), $d(u_1, v_2) \geq 2$. If $d(u_1, v_2) = 2$, then we must have $\mathcal{Z}^i = \mathcal{Z}_2$ for each $1 \leq i \leq m$. Let $T_{m-1} = T \setminus \{u_1, u_2\}$. By inductive hypothesis, for every vertex $u \in C(T_{m-1})$, there exists a set S_u containing u that doubly dominates $V(T) \setminus \{u\}$ and $|S_u| = dd(T_{m-1}) - 1$. Take $S = S_u \cup \{u_1, u_2\}$ if $u \in C(T_{m-1})$ and $S = S_{u_1} \cup \{v_2, u_1\}$ if $u = u_1$. Then S is the required set.

Now let $d(v_2, u_1) \geq 3$ and let u_3 be the parent of u_2. By Observation 10(6), $d(u_2, v_2) = 2$ and $sta(u_2) = A$ or B. First let $d(u_3, u_2) = 2$ and assume u_3 is the parent of u_2. Obviously, $sta(u_2) = A$ and $sta(u_4) = C$. Now we may assume $\mathcal{Z}^m = \mathcal{Z}_1$ which adds the path $u_4u_3u_2u_1$. Let $T_{m-1} = T \setminus \{u_1, u_2, u_3\}$. By inductive hypothesis, for any vertex $u \in C(T_{m-1})$, there exists a set S_u containing u that doubly dominates $V(T) \setminus \{u\}$ and $|S_u| = dd(T_{m-1}) - 1$. Take $S = S_u \cup \{u_1, u_2\}$ if $u \in C(T_{m-1})$ and $S = S_{u_1} \cup \{v_3, u_1\}$ if $u = u_1$. Then S is the required set.

Now let $d(u_3, u_2) \geq 3$. Then u_3 is a support vertex or is adjacent to a support vertex. By Observation 10(4), $sta(u_3) = A$ or B. So, we can assume $\mathcal{Z}^m = \mathcal{Z}_2$ which adds the path $u_3u_2u_1$. Let $T_{m-1} = T \setminus \{u_1, u_2\}$. By inductive hypothesis, for any vertex $u \in C(T_{m-1})$, there exists a set S_u containing u that doubly dominates $V(T) \setminus \{u\}$ and $|S_u| = dd(T_{m-1}) - 1$. Take $S = S_u \cup \{u_1, u_2\}$ if $u \in C(T_{m-1})$, $S = B(T_{m-1}) \cap C(T_{m-1}) \cup \{u_1\}$ if $u = u_1$, $sta(u_3) = B$ and $S = S_x \cup \{u_1, u_2\}$, where $x = N(u_3)$ and $sta(x) = C$ if $u = u_1$ and $sta(u_3) = A$. Then S is the required set.

Lemma 13. If $T \in \mathcal{F}$, then every vertex of $V(T)$ is in some $dd(T)$-set.

Proof. If $v \in B(T) \cup C(T)$, then the statement holds by Lemma 11. Now let $v \in A(T)$. By Observation 10(3), v is adjacent to a vertex $u \in C(T)$. By Lemma 12, there exists a set S containing u that doubly dominates $V(T) \setminus \{u\}$ and $|S| = dd(T) - 1$. Now $S \cup \{v\}$ is the required set.

Lemma 14. Let $T \in \mathcal{F}$ and let T^* be a tree obtained from T by subdividing one edge of T. Then $dd(T^*) = dd(T)$.

Proof. Let $T \in \mathcal{F}$. First note that $dd(T^*) \geq dd(T)$ and that any double dominating set of T^* of order $dd(T)$ is a $dd(T)$-set. Let $e \in E(T)$ and let T^* be obtained from T by adding a new vertex x which subdivides the edge e. Let $P_4 = v_1v_2v_3v_4$ and let T be obtained from P_4 by successive operations $\mathcal{Z}^1, \ldots, \mathcal{Z}^m$, respectively, where $\mathcal{Z}^i \in \{\mathcal{Z}_1, \mathcal{Z}_2\}$ for $1 \leq i \leq m$ if $m \geq 1$ and $T = P_4$ if $m = 0$. The proof is by induction on m. If $m = 0$, then clearly the statement is true by Theorem A. Assume $m \geq 1$ and that the statement holds for all trees which are obtained from P_4 by applying at most $m - 1$ operations. Suppose T_{m-1} is a tree obtained by applying the first $m - 1$ operations $\mathcal{Z}^1, \ldots, \mathcal{Z}^{m-1}$. When $e \in E(T_{m-1})$, let T_{m-1}^e be obtained from T_{m-1} by subdividing the edge e. Let T be rooted at v_2. Assume $u_1 \not\in \{v_1, v_4\}$ is a leaf with maximum distance from v_2 and u_2 is the parent of u_1. By Observation 10(6), $d(u_1, v_2) \geq 2$. If $d(u_1, u_2) = 2$, then we must have \mathcal{Z}_2 for each $1 \leq i \leq m$. We may assume $T_{m-1} = T \setminus \{u_1, u_2\}$. If $e \in E(T_{m-1})$, then by inductive hypothesis, $dd(T_{m-1}^e) = dd(T_{m-1})$. Also, we can easily check that $dd(T^*) \leq dd(T_{m-1}^e) + 2 = dd(T)$. Hence, $dd(T^*) = dd(T)$ and the result follows.

Now assume $e = v_2u_2$ (or $e = u_1u_2$) and let S be a $dd(T_{m-1})$-set. Since v_2 is a support vertex, $v_2 \in S$. Then $S \cup \{u_1, u_2\}$ (respectively, $S \cup \{u_1, x\}$) is a double dominating set of T^*. Therefore, $dd(T^*) \leq dd(T_{m-1}^e) + 2 = dd(T)$ and the result follows.

Now let $d(v_2, u_1) \geq 3$ and assume u_3 is the parent of u_2. By Observation 10(1, 5) and the fact that u_1 has maximum distance from v_2 we have $deg(u_2) = 2$ and $sta(u_3) = A$ or B.

Case 1: $deg(u_2) = 3$. By Observation 10(7, 4) we have $sta(u_3) = A$ and $sta(u_4) = C$. Hence, we may assume $\mathcal{Z}^m = \mathcal{Z}_1$ which adds the path $u_4u_3u_2u_1$, where u_4 is the parent of u_3. Let $T_{m-1} = T \setminus \{u_1, u_2, u_3\}$.

Subcase 1.1: $e \in E(T_{m-1})$. By inductive hypothesis, $dd(T_{m-1}^e) = dd(T_{m-1})$. If $deg(u_4) = 2$, then for any $dd(T_{m-1}^e)$-set S, $S \cup \{v_2, u_2\}$ is a double dominating set for T^*. Hence, $dd(T^*) \leq dd(T)$. Let $deg(u_4) \geq 3$. Since $sta(u_4) = C$, u_4 neither is a support vertex nor is adjacent to a support vertex. Hence, T_{v_4} is a star $K_{1,t}$ ($t \geq 2$) whose each edge is subdivided twice. Now we may assume T_1 has a path $v_4x_1x_2x_3$ where $x_1 \not\in \{v_3, v_5\}$. Let S be a $dd(T_{m-1})$-set. We may assume $u_4 \in S$. Then $S \cup \{u_1, u_2\}$ is a double dominating set for T^*. Hence, $dd(T^*) \leq dd(T)$ and the result follows.

Subcase 1.2: $e \in E(T) \setminus E(T_{m-1})$. Let $e = u_2u_3$ ($e = u_1u_2$). By Lemma 12, there exists a set S containing u_4 that doubly dominates $V(T_{m-1}) \setminus \{u_4\}$ and $|S| = dd(T_{m-1}) - 1$. Then $S \cup \{u_1, u_2, u_3\}$ ($S \cup \{u_1, x, u_3\}$) is a double dominating set for T^*. Hence, $dd(T^*) \leq dd(T)$ and the result follows.
Case 2: $\deg(u_3) \geq 3$. Then u_3 is a support vertex or adjacent to a support vertex.

Subcase 2.1: u_3 is a support vertex. Then $sta(u_3) = B$. Let $T_{m-1} = T \setminus \{u_1, u_2\}$. If $e \in E(T_{m-1})$, then by inductive hypothesis $dd(T_{m-1}^*) = dd(T_{m-1})$. Let S be a $dd(T_{m-1}^*)$-set. Then $S \cup \{u_1, u_2\}$ is a double dominating set in T^* and $dd(T^*) \leq dd(T)$. When $e = u_2u_3$ or $e = u_1u_2$ we let S be a $dd(T_{m-1})$-set. Then $S \cup \{u_1, u_2\}$ or $S \cup \{u_1, x\}$ is a double dominating set in T^*, respectively. Hence, $dd(T^*) \leq dd(T)$.

Subcase 2.2: u_3 is adjacent to a support vertex. Then $sta(u_3) = A$ or B. Let $T_{m-1} = T \setminus \{u_1, u_2\}$. If $e \in E(T_{m-1})$, then by inductive hypothesis $dd(T_{m-1}^*) = dd(T_{m-1})$. Let S be a $dd(T_{m-1}^*)$-set. Then $S \cup \{u_1, u_2\}$ is a double dominating set for T^*. Hence, $dd(T^*) \leq dd(T_{m-1}^*) + 2 = dd(T)$. Let now $e = u_2u_3$ ($e = u_1u_2$) be subdivided with vertex x. By Observation 10(3, 4), u_3 is adjacent to a vertex $v \in C(T_{m-1})$. By Lemma 12, there exists a set S containing y that doubly dominates $V(T_{m-1}) \setminus \{y\}$ and $|S| = dd(T_{m-1}) - 1$. Now $S \cup \{u_1, u_2, u_3\}$ $(S \cup \{u_1, x, u_3\})$ is a double dominating set for T^*. So $dd(T^*) \leq dd(T_{m-1}) + 2 = dd(T)$. This completes the proof. □

Theorem 15. Each tree in Family \mathcal{F} is in Class 2.

Proof. If $T \in \mathcal{F}$, then $sd_{dd}(T) \geq 2$ by Lemma 14. Now the result follows by Corollary 5. □

The following result is similar to Lemma 13 of [9]. The proof of this lemma is straightforward and therefore omitted.

Lemma 16. If T is a tree obtained from a tree T' of order at least two by adding a subdivided star $SK_{1,t}$ ($t \geq 2$) and an edge which joins the center of the star to a vertex of T', then $dd(T) = dd(T') + 2t$. Moreover, $sd_{dd}(T) \leq sd_{dd}(T')$.

Now we are ready to prove the main theorem of this section.

Theorem 17. A tree T of order $n \geq 4$ is in Class 2 if and only if $T \in \mathcal{F}$.

Proof. By Theorem 15, we only need to prove that every tree in Class 2 is in \mathcal{F}. We prove this by induction on the order n of the tree. Let $n = 4$. The only tree of order 4 and $sd_{dd}(T) = 2$, is $P_4 \in \mathcal{F}$. Let $n \geq 5$ and assume the statement holds for every tree in Class 2 of order less than n. Let T be a tree of order n and $sd_{dd}(T) = 2$. Let $P = v_1 v_2 \ldots v_r$ be a longest path in T. Obviously, $\deg(v_1) = \deg(v_r) = 1$ and $\deg(v_2) = \deg(v_{r-1}) = 2$ by Proposition 3. If $r = 3$, then obviously v_2 is a strong support vertex and hence, $sd_{dd}(T) = 1$ by Proposition 3, a contradiction. If $r = 4$, then either $n = 4$ and $T = P_4 \in \mathcal{F}$ or $n \geq 5$ and $sd_{dd}(T) = 1$, a contradiction. Now let $r \geq 5$.

Case 1: $\deg(v_3) = 2$. Let $T_1 = T \setminus \{v_1, v_2, v_3\}$.

Subcase 1.1: $\deg(v_4) = 2$. Let S be a $dd(T)$-set. Obviously, $v_1, v_2 \in S$ and we may assume $v_4 \in S$. Now if $v_3 \in S$, then $S \setminus \{v_1, v_2, v_3\} \cup \{v_5\}$ is a double dominating set for T_1 and if $v_3 \notin S$, then $S' \setminus \{v_1, v_2\}$ is a double dominating set for T_1. Therefore $dd(T_1) \leq dd(T) - 2$. Now if S_1 is a $dd(T_1)$-set, then $S_1 \cup \{v_1, v_2\}$ is a double dominating set for T. Hence, $dd(T) = dd(T_1) + 2$.

Claim 1. $sd_{dd}(T_1) = 2$.

Proof of Claim 1. Let $e \in E(T_1)$ and T_1^* (respectively, T_1^*) be obtained from T_1 (respectively, T) by subdividing the edge e. By assumption, $dd(T_1^*) = dd(T)$). If S is a $dd(T_1^*)$-set, then $S \cup \{v_1, v_2\}$ is a double dominating set in T^* and $dd(T^*) \leq dd(T_1^*) + 2$. Now let S be a $dd(T)$-set. Obviously, $v_1, v_2 \in S$ and we may assume $v_4 \in S$. Now if $v_3 \in S$, then $S \setminus \{v_1, v_2, v_3\} \cup \{x\}$, where $x \in N(v_4) \setminus \{v_5\}$, is a double dominating set for T_1^* and if $v_3 \notin S$, then $S' \setminus \{v_1, v_2\}$ is a double dominating set for T_1^*. Hence, $dd(T^*) = dd(T_1^*) + 2$. Now we have $dd(T_1) + 2 = dd(T) = dd(T^*) = dd(T_1^*) + 2$ which implies $sd_{dd}(T_1) = 2$.

By inductive hypothesis, $T_1 \in \mathcal{F}$ and hence, $sta(v_4) = C$, by Observation 10. Now T can be obtained from T_1 by operation Ξ_1. Therefore $T \in \mathcal{F}$.

Subcase 1.2: $\deg(v_4) \geq 3$. Assume v_4 is a support vertex or is adjacent to a support vertex. Let T^* be obtained from T by subdividing the edge v_1v_2 with vertex x. Suppose that S is a $dd(T)$-set. Obviously, $v_1, x \in S$. In order to dominate v_3 at least twice, we may assume $v_3, v_4 \in S$. Now $(S \setminus \{x, v_1\}) \cup \{v_5\}$ is a double dominating set of T which contradicts $sd_{dd}(T) = 2$. Since $v_1v_2\ldots v_r$ is a longest path in T, it follows that T_{v_4} is a star $K_{1,t}$ ($t = \deg_T(v_4) - 1 \geq 2$) whose edges
are subdivided twice. Then we may assume T_1 has a path $v_4x_1x_2x_3$ where $x_1 \notin \{v_3, v_5\}$. Obviously, $dd(T) \leq dd(T_1) + 2$. We claim that T has a $dd(T)$-set S' such that $v_4 \in S'$ and $v_3 \notin S'$. Let S be a $dd(T)$-set. First let $v_4 \in S$. If $v_3 \notin S$, then we take $S' = S$. Let $v_3 \in S$. Then obviously $x_1 \notin S$ and $S' = (S\setminus\{v_3\}) \cup \{x_3\}$ is the desired $dd(T)$-set. Now let $v_4 \notin S$. Then $\{x_1, v_3, v_4\}$ is a double dominating set for T_1, it follows that $dd(T_1) \leq dd(T) - 2$ and $dd(T) = dd(T_1) + 2$. Let T_1^* (respectively, T^*) be obtained from T_1 (respectively, T) by subdividing the edge $e \in E(T_1)$. An argument similar to that described above shows that $dd(T_1^*) = dd(T_1^*) + 2$. Since $sd_{dd}(T_1) = 2$, we have $dd(T_1) + 2 = dd(T_1^*) = dd(T_1^*) + 2$. Hence, $sd_{dd}(T_1) = 2$ and by the inductive hypotheses $T_1 \in \mathcal{F}$. Therefore, by Observation 10(1, 2, 3, 4), $sta(v_4) = C$ and hence, T can be obtained from T_1 by operation \mathcal{T}_1. This implies $T \in \mathcal{F}$.

Case 2: $deg(v_3) \geq 3$. We consider two subcases.

Subcase 2.1: v_3 is adjacent to only support vertices, except possibly v_4, in T. Assume T is rooted at v_r. Then T_{v_3} is a subdivided star $SK_{1,t-1}$ where $t = deg(v_3)$. Let $V(T_{v_3}) = \{v_1, v_2, v_3, x_1, x_2 : 1 \leq i \leq t - 2\}$ and $T_3 = T - T_{v_3}$. Now if $e \in E(T_3)$ is subdivided, then by Lemma 16, $dd(T_3) + 2(t - 1) = dd(T) = dd(T^*) = dd(T_3^*) + 2(t - 1)$.

Hence, $dd(T_3) = dd(T_3^*)$ and $sd_{dd}(T_3) = 2$. Therefore by inductive hypothesis, $T_3 \in \mathcal{F}$. If v_4 is a support vertex, then let T^* be obtained from T by subdividing the edge v_3v_4 with vertex x. Let S be a $dd(T^*)$-set. Obviously, $|S \cap \{v_3, x\}| \geq 1$. Therefore $S \setminus \{v_3, x\}$ is a double dominating set for T, a contradiction. Let v_3 be adjacent to a support vertex v_4 and $v_2 \in N(y_1) \setminus \{v_3, v_5\}$. If $deg(v_4) = 2$, then $deg_T(v_4) = 1$ and since $T_3 \in \mathcal{F}$, we see that $sta(v_4) = C$, by Observation 10. If $deg(v_4) \geq 3$ and $w \in N(v_4) \setminus \{v_3, v_5\}$, then by Observation 10 we see that $sta(w) = A$ and $N(w) \setminus \{v_4\} \subseteq B(T)$. Therefore, $sta(v_4) = C$.

Now T can be obtained from T_3 by applying operation \mathcal{T}_1 once and operation \mathcal{T}_2, $(deg(v_3) - 2)$ times. Hence, $T \in \mathcal{F}$.

Subcase 2.2: v_3 is adjacent to a leaf x. Let $T_1 = T\setminus\{v_1, v_2\}$. For any $dd(T_1)$-set S, $S \cup \{v_1, v_2\}$ is a double dominating set for T. So $dd(T) \leq dd(T_1) + 2$. Let S be a $dd(T)$-set. Obviously, $\{v_1, v_2, v_3, x\} \subseteq S$. Now $S \setminus \{v_1, v_2\}$ is a double dominating set for T_1. Therefore, $dd(T) = dd(T_1) + 2$.

First let $deg(v_3) \geq 4$. Then v_3 is adjacent to a support vertex, say y, by Proposition 3. Let $e \in E(T_1)$ and T_1^* (respectively, T^*) be obtained from T_1 (respectively, T) by subdividing the edge e. It is easy to see that $dd(T^*) = dd(T_1^*) + 2$. Since $sd_{dd}(T_1) = 2$, we have $dd(T_1^*) = dd(T_1^*) + 2$ and hence, $sd_{dd}(T_1) = 2$. By inductive hypotheses $T_1 \in \mathcal{F}$ and so $sta(v_3) = B$ by Observation 10(2). Now T can be obtained from T_1 by operation \mathcal{T}_3 and so $T \in \mathcal{F}$.

Now let $deg(v_3) = 3$. First assume $deg(v_4) = 2$. Let $e \in E(T_1)$ and T_1^* (respectively, T^*) be obtained from T_1 (respectively, T) by adding a new vertex z which subdivides the edge e. If $e \notin v_3v_5$, then obviously $dd(T^*) = dd(T_1^*) + 2$. Now let $e = v_3x$ and let S be a $dd(T^*)$-set. Then $v_3 \notin S$, otherwise $S \setminus \{z\}$ is a double dominating set for T_1 which leads to $dd(T) \leq dd(T_1^*)$, a contradiction. Now since $deg(v_4) = 2$, we must have $v_4 \in S$. Hence, $S \setminus \{v_1, v_2\}$ is a double dominating set for T_1. Thus, $dd(T^*) = dd(T_1^*) + 2$ and we obtain $sd_{dd}(T_1) = 2$. As above this leads to $T \in \mathcal{F}$.

Now let $deg(v_3) \geq 3$. First assume v_4 is a support vertex. Let $e \in E(T_1)$ be subdivided. Since for any $dd(T^*)$-set S, $|S \cap \{v_3, v_4\}| \geq 1$, it is easy to see that $dd(T^*) = dd(T_1^*) + 2$ and hence, $sd_{dd}(T_1) = 2$. This leads to $T \in \mathcal{F}$. Now we assume that v_4 is not a support vertex. Let $y \in N(v_4) \setminus \{v_3, v_5\}$. If the height of T_y is 1, then deg(y) = 2 by Proposition 3. If the height of T_y is 2, then by repeating above argument we may assume $T_y \simeq T_{v_3}$.

First assume $deg(v_4) \geq 4$. Let $T_2 = T - T_{v_3}$, $e \in E(T_2)$ and T_2^* (respectively, T^*) be obtained from T_1 (respectively, T) by subdividing the edge e. It is easy to see that $dd(T_2) = dd(T_1) + 4$ and $dd(T^*) = dd(T_1^*) + 4$ which implies $sd_{dd}(T_2) = 2$. By inductive hypotheses $T_2 \in \mathcal{F}$. Since every neighbor of v_4 in T_2 (except possibly v_5) is a support vertex, $sta(v_4) = A$ or B by Observation 10(4). Now T can be obtained from T_2 by applying operation \mathcal{T}_2 twice and hence, $T \in \mathcal{F}$.

Now assume $deg(v_4) = 3$ and $y \in N(v_4) \setminus \{v_3, v_5\}$. Recall that the height of T_y is 1 or 2. Suppose that $T_y \simeq T_{v_3}$ ($T_y \simeq K_2$). That is $T_y = zyy_1y_2$ (respectively, $T_y = yyz$). If v_5 is either a support vertex or adjacent to a support vertex and if T^* is obtained from T by subdividing the edge v_3v_5, then it is easy to see that $dd(T^*) > dd(T)$, a contradiction. Therefore, v_5 is not a support vertex or adjacent to a support vertex. Let there exists $w \in N(v_4) \setminus \{v_4, v_5\}$ such that the height of T_w is 2. Then T_w is a subdivided star $K_{1, deg(w) - 1}$, by Proposition 3. Let $T_3 = T - T_w$. Since $sd_{dd}(T_3) = 2$, it follows that $sd_{dd}(T_3) = 2$, by Lemma 16. By inductive hypotheses $T_3 \in \mathcal{F}$. It is easy to see that $sta(v_5) = C$ and hence,
can be obtained from T_3 by applying operation Ξ_1 once and operation Ξ_2, $\deg(w) - 2$ times. Thus, $T \in \mathcal{F}$. Finally, let the height of subtree T_w be four for every $w \in N(v_5) \setminus \{v_4, v_6\}$. Suppose that $T_4 = T - T_{v_4}$. For any $dd(T_4)$-set S, $S \cup (V(T_{v_4}) - \{v_4\})$ is a double dominating set for T. Therefore if $T_y \simeq T_{v_3}$, then $dd(T) \leq dd(T_4) + 8$, and if $T_y \simeq K_2$, then $dd(T) \leq dd(T_4) + 6$. Hence, $dd(T_4) + 8$ if $T_y \simeq T_{v_4}$ and $dd(T) = dd(T_4) + 6$ if $T_y \simeq K_2$. Let $e \in E(T_4)$ and let T^\ast_4 (respectively, T^\ast) be obtained from T_4 (respectively, T) by subdividing the edge e. In a similar fashion, we can show that $dd(T^\ast_4) = dd(T_4^\ast) + 8$ (respectively, $dd(T^\ast) = dd(T_4^\ast) + 6$). Thus, $sd_{dd}(T_4) = 2$ and so $T_4 \in \mathcal{F}$ by inductive hypotheses. By Observation 10, we see that $sta(v_5) = C$. Now T can be obtained from T_4 by applying operation Ξ_1 once and operation Ξ_2, three times if $T_y \simeq T_{v_5}$ (twice if $T_y \simeq K_2$). Thus, $T \in \mathcal{F}$. This completes the proof. □

We conclude this paper with the following problem.

Problem. Prove or disprove: let G be a connected graph with no isolated vertices. Then $1 \leq sd_{dd}(G) \leq 2$.

References

