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This paper presents interval-valued fuzzy permutation (IVFP) methods for solving multi-
attribute decision making problems based on interval-valued fuzzy sets. First, we evaluate
alternatives according to the achievement levels of attributes, which admits cardinal or or-
dinal representation. The relative importance of each attribute can also be measured by
interval or scalar data. Next, we identify the concordance, midrange concordance, weak
concordance, discordance, midrange discordance and weak discordance sets for each or-
dering. The proposed method consists of testing each possible ranking of the alternatives
against all others. The evaluation value of each permutation can be computed either by
cardinal weights or by solving programming problems. Then, we choose the permutation
with the maximum evaluation value, and the optimal ranking order of alternatives can be
obtained. An experimental analysis of IVFP rankings given cardinal and ordinal evaluations
is conducted with discussions on consistency rates, contradiction rates, inversion rates, and
average Spearman correlation coefficients.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Fuzzy multiattribute decision making problems have become an important research field in multiple criteria decision
analysis (MCDA). The key for solving MCDA is how to obtain the decision maker’s preference information through the
form of attributes or alternatives. There are necessary steps in utilizing MCDA involving numerical measures of the relative
importance of attributes and the performance of each alternative on these attributes. In real-world cases, exact values
may be difficult to be precisely determined since decision makers’ judgments are often vague. The imprecision may result
from unquantifiable information, incomplete information, nonobtainable information, or partial ignorance [5]. Therefore, an
extension to the fuzzy environment is a natural generalization of MCDA models.

Nevertheless, it is not always certain that the evaluation of membership values in real applications. There may be some
hesitation degree between belongingness and nonbelongingness. In view that there are many real life situations where
due to inadequacy in information availability, interval-valued fuzzy sets (IVFSs) with ill-known membership grades are
appropriate to cope with such problems. IVFS is defined by an interval-valued membership function [22,28]. That is, the
degree of membership of an element to a set is characterized by a closed subinterval of [0,1]. In view of the fact that the
membership degrees are considered as intervals, the aim of this paper is to develop a new outranking method for solving
MCDA problems with interval-valued fuzzy data.
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In the present paper we suggest how to determine the optimal ranking order of the decision alternatives whose perfor-
mance evaluations are not necessarily unambiguous and admit some hesitance. We propose a simple and flexible outranking
model for such imprecise, vague, and hesitant decision environment based on IVFSs. The proposed model can be used for
cardinal or ordinal data, even for missing information or noncomparable outcomes. Then, the level of concordance of the
complete preference order can be measured to determine the best ranking order of the alternatives. Next, we show some
numerical examples to illustrate the proposed method. Finally, enormous random MCDA problems are generated and com-
putational studies are undertaken to compare preference orders determined by different methods.

2. Multiattribute decision environment based on interval-valued fuzzy data

A multiattribute decision making problem can be concisely expressed in a decision matrix, whose element indicates
the evaluation or value of the ith alternative, Ai , with respect to the jth attribute, x j . In the present paper, we extend the
canonical matrix format to interval-valued fuzzy decision matrix D; that is, decision makers are expected to assign an extent
of membership grades that captures the degree of the alternative Ai satisfies the attribute x j according to their opinions.
Let X be the discussion universe containing decision attributes in the multiattribute decision problem setting. Denote the
set of all attributes X = {x1, x2, . . . , xn}. Let Int([0,1]) stand for the set of all closed subintervals of [0,1]. An IVFS Ai of the
ith alternative on X is given by:

Ai = {〈
x j, M Ai (x j)

〉 ∣∣ x j ∈ X
}
, (1)

where M Ai : X → Int([0,1]), such that x j → M Ai (x j) = [M−
Ai

(x j), M+
Ai

(x j)]. M Ai indicates the possible degree to which the

alternative Ai satisfies attribute x j . M−
Ai

(x j) and M+
Ai

(x j) are the lower bound and the upper bound, respectively, of the
interval M Ai (x j).

It is worthwhile to mention that IVFS theory is mathematically equivalent to Atanassov’s intuitionistic fuzzy set (A-IFS)
theory [6,7,19]. The concept of A-IFSs, introduced by [1], is a generalization of ordinary fuzzy sets [2,19]. A-IFSs assign to
each element of the universe not only a membership degree but also a nonmembership degree, and furthermore the sum
of these two degrees is less than or equal to 1. In this paper, let μAi (x j) be the degree to which the alternative Ai satisfies
attribute x j , where μAi (x j) : X → [0,1]. Similarly, let νAi (x j) be the degree to which the alternative Ai does not satisfy
attribute x j with νAi (x j) : X → [0,1]. In addition, 0 � μAi (x j) + νAi (x j) � 1 for all x j ∈ X .

The A-IFS theory has been applied to many different fields, such as decision making, logic programming, topology, medi-
cal diagnosis, pattern recognition, machine learning and market prediction [26]. Especially, there exist many useful methods
for MCDA on a basis of A-IFSs [15,17,18,21,26,27]. Although A-IFS and IVFS constitute an isomorphism [25], A-IFS and IVFS
are based on different semantics, such as weighing/modeling preferences versus imprecise membership [7,10]. Furthermore,
the semantic is crucial for real applications [3,25]. From the practical viewpoint, the membership degree and nonmember-
ship degree in A-IFSs are exact without any assumption on indeterminacy, except for μAi (x j) + νAi (x j) � 1, and more or
less independent, while IVFSs assign an interval for approximating the correct membership degree [18].

As mentioned above, the decision maker’s evaluation lies in the closed interval [M−
Ai

(x j), M+
Ai

(x j)]. Let M−
Ai

(x j) = μAi (x j)

and M+
Ai

(x j) = 1 − νAi (x j), and thus [M−
Ai

(x j), M+
Ai

(x j)] = [μAi (x j),1 − νAi (x j)]. An interval [M−
Ai

(x j), M+
Ai

(x j)] can be
mapped bijectively onto a couple (μAi (x j),1 − νAi (x j)) [18]. Since IVFS and A-IFS are equipollent generalizations of or-
dinary fuzzy set [4], we can also express the decision matrix using A-IFS notation. An A-IFS Ai of the ith alternative on X
is given by:

Ai = {〈
x j,μAi (x j), νAi (x j)

〉 ∣∣ x j ∈ X
}
. (2)

For each element x j ∈ X , the intuitionistic index of x j in Ai is defined as follows [2,23]:

πAi (x j) = 1 − μAi (x j) − νAi (x j), (3)

where πAi (x j) ∈ [0,1] ∀x j ∈ X . πAi (x j) reflects the fact that the decision maker may not always be certain of membership
grades. In other words, an interval [M−

Ai
(x j), M+

Ai
(x j)] shows all possible degrees of membership and the decision maker is

hesitated to the extent πAi (x j). This hesitation margin plays an important role for A-IFSs, such as measurement of distances
[8,23], similarity [13,16], entropy [4,12,24], etc.

Let A and B denote two IVFSs of the universe of discourse X . [4] defined the following expressions:

A � B if and only if M−
A (x) � M−

B (x) and M+
A (x) � M+

B (x) for all x ∈ X;
A � B if and only if M−

A (x) � M−
B (x) and M+

A (x) � M+
B (x) for all x ∈ X .

In addition, A � B if and only if B � A; A � B if and only if B � A. The above definitions can be extended to the A-IFSs as
follows:

A � B if and only if μA(x) � μB(x) and νA(x) � νB(x) for all x ∈ X;
A � B if and only if μA(x) � μB(x) and νA(x) � νB(x) for all x ∈ X .
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A = B if and only if M−
A (x) = M−

B (x) and M+
A (x) = M+

B (x) for all x ∈ X (or μA(x) = μB(x) and νA(x) = νB(x) by A-IFS
notation).

Consider i = 1,2, . . . ,m; j = 1,2, . . . ,n; and [M−
Ai

(x j), M+
Ai

(x j)] (or equivalently, (μAi (x j), νAi (x j)) by A-IFS notation)
representing the performance measure of the ith alternative in terms of the jth attribute. The interval-valued fuzzy decision
matrix D is defined as the following form:

D =

⎡
⎢⎢⎢⎣

[M−
A1

(x1), M+
A1

(x1)] [M−
A1

(x2), M+
A1

(x2)] · · · [M−
A1

(xn), M+
A1

(xn)]
[M−

A2
(x1), M+

A2
(x1)] [M−

A2
(x2), M+

A2
(x2)] · · · [M−

A2
(xn), M+

A2
(xn)]

.

.

.
.
.
.

. . .
.
.
.

[M−
Am

(x1), M+
Am

(x1)] [M−
Am

(x2), M+
Am

(x2)] · · · [M−
Am

(xn), M+
Am

(xn)]

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

(μA1 (x1), νA1 (x1)) (μA1 (x2), νA1 (x2)) · · · (μA1 (xn), νA1 (xn))

(μA2 (x1), νA2 (x1)) (μA2 (x2), νA2 (x2)) · · · (μA2 (xn), νA2 (xn))

.

.

.
.
.
.

. . .
.
.
.

(μAm (x1), νAm (x1)) (μAm (x2), νAm (x2)) · · · (μAm (xn), νAm (xn))

⎤
⎥⎥⎦ . (4)

Since all attributes cannot be assumed to be of equal importance, we must receive a set of grades of importance, denoted
as W , from the decision maker. The IVFS can also be expressed as the subjective importance of decision attributes during
the decision maker’s evaluation process. An IVFS W in X is an object having the form:

W = {〈
x j, MW (x j)

〉 ∣∣ x j ∈ X
}

= {〈
x j,μW (x j), νW (X j)

〉 ∣∣ x j ∈ X
}
, (5)

where MW : X → Int([0,1]), such that x j → MW (x j) = [M−
W (x j), M+

W (x j)]. In addition, μW (x j) : X → [0,1] and
νW (x j) : X → [0,1] define the degree of importance and the degree of unimportance for an attribute, respectively, where
0 � μW (x j) + νW (x j) � 1. For each x j ∈ X , the intuitionistic index toward the importance of an attribute is as follows:

πW (x j) = 1 − μW (x j) − νW (x j). (6)

The intuitionistic index πW (x j) allows decision makers to change their evaluating the relative importance of an at-
tribute between the highest weight and the lowest one. The grades of attribute importance are usually given by a set of
weights, w j ’s, which is normalized to sum to 1. Hence, a set of weights lying in the closed interval [M−

W (x j), M+
W (x j)] =

[μW (x j),μW (x j) + πW (x j)] must satisfies the following conditions:

M−
W (x j) � w j � M+

W (x j), j = 1,2, . . . ,n; (7)
n∑

j=1

w j = 1. (8)

For the sake of obtaining a set of feasible weights, we assume that
∑n

j=1 M−
W (x j) � 1 and

∑n
j=1 M+

W (x j) � 1 in this paper.

3. Interval-valued fuzzy permutation (IVFP) method

Similar to the permutation method [14,20], the proposed IVFP method measures the level of concordance of the complete
preference order. According to interval-valued fuzzy decision matrix, we test each possible ranking of the alternatives against
all others. Then, the best order of the alternatives can be chosen by the evaluation criteria consisting of the levels of
concordance and of discordance. The IVFP method is a useful approach owing to its simplicity and flexibility with regard to
cardinal and ordinal rankings.

3.1. IVFP method with cardinal evaluations of alternatives given

Consider the interval-valued fuzzy decision matrix D that refers to m alternatives on n attributes. Then, m! permutations
of the ranking of the alternatives exist. Let Pi denote the ith permutation:

Pi = (. . . , Ak, . . . , Al, . . .), for i = 1,2, . . . ,m!, (9)

where Ak is ranked higher than Al . Next, we define six subsets of all attributes according to the inequality relations of
IVFSs and the accuracy function. [11] discussed MCDA problems based on the vague set theory. They proposed an accuracy
function defined by the sum of the degrees of membership and nonmembership, i.e., one minus the intuitionistic index.
[17] defined the same accuracy function for an A-IFS. The accuracy function can be used to validate the evaluation precision
and help the decision maker to make decisions more credibly. For the real decision making problems, as [18] indicated, we
need to reduce the level of uncertainty as much as possible, especially to a conservative decision maker. Thus, in addition
to inequality relations �, �, �, and �, we consider two conditions of πA (x j) � πA (x j) and πA (x j) � πA (x j) to order Ak
k l k l
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and Al . We define the concordance set Ckl , midrange concordance set C ′
kl , weak concordance set C ′′

kl , discordance set Dkl ,
midrange discordance set D ′

kl , and weak discordance set D ′′
kl as follows, where they are expressed equivalently using either

IVFS or A-IFS notation:

Ckl = {
j
∣∣ Ak(x j) � Al(x j) and πAk (x j) � πAl (x j)

}
= {

j
∣∣ M−

Ak
(x j) � M−

Al
(x j), M+

Ak
(x j) � M+

Al
(x j) and πAk (x j) � πAl (x j)

}
= {

j
∣∣ μAk (x j) � μAl (x j), νAk (x j) � νAl (x j) and πAk (x j) � πAl (x j)

}
, k, l = 1,2, . . . ,m,k �= l, (10)

C ′
kl = {

j
∣∣ Ak(x j) � Al(x j) and πAk (x j) � πAl (x j)

}
= {

j
∣∣ M−

Ak
(x j) � M−

Al
(x j), M+

Ak
(x j) � M+

Al
(x j) and πAk (x j) � πAl (x j)

}
= {

j
∣∣ μAk (x j) � μAl (x j), νAk (x j) � νAl (x j) and πAk (x j) � πAl (x j)

}
, k, l = 1,2, . . . ,m,k �= l, (11)

C ′′
kl = {

j
∣∣ Ak(x j) � Al(x j)

}
= {

j
∣∣ M−

Ak
(x j) � M−

Al
(x j) and M+

Ak
(x j) � M+

Al
(x j)

}
= {

j
∣∣ μAk (x j) � μAl (x j) and νAk (x j) � νAl (x j)

}
, k, l = 1,2, . . . ,m,k �= l, (12)

Dkl = {
j
∣∣ Ak(x j) � Al(x j) and πAk (x j) � πAl (x j)

}
= {

j
∣∣ M−

Ak
(x j) � M−

Al
(x j), M+

Ak
(x j) � M+

Al
(x j) and πAk (x j) � πAl (x j)

}
= {

j
∣∣ μAk (x j) � μAl (x j), νAk (x j) � νAl (x j) and πAk (x j) � πAl (x j)

}
, k, l = 1,2, . . . ,m,k �= l, (13)

D ′
kl = {

j
∣∣ Ak(x j) � Al(x j) and πAk (x j) � πAl (x j)

}
= {

j
∣∣ M−

Ak
(x j) � M−

Al
(x j), M+

Ak
(x j) � M+

Al
(x j) and πAk (x j) � πAl (x j)

}
= {

j
∣∣ μAk (x j) � μAl (x j), νAk (x j) � νAl (x j) and πAk (x j) � πAl (x j)

}
, k, l = 1,2, . . . ,m,k �= l, (14)

D ′′
kl = {

j
∣∣ Ak(x j) � Al(x j)

}
= {

j
∣∣ M−

Ak
(x j) � M−

Al
(x j) and M+

Ak
(x j) � M+

Al
(x j)

}
= {

j|μAk (x j) � μAl (x j) and νAk (x j) � νAl (x j)
}
, k, l = 1,2, . . . ,m,k �= l. (15)

In a particular ranking, if the partial ranking Ak � Al appears, the fact that Ak(x j) � Al(x j) and πAk (x j) � πAl (x j) will
be rated w j , Ak(x j) � Al(x j) and πAk (x j) � πAl (x j) being rated 2

3 w j , Ak(x j) � Al(x j) being rated 1
3 w j , Ak(x j) � Al(x j) and

πAk (x j) � πAl (x j) being rated −w j , Ak(x j) � Al(x j) and πAk (x j) � πAl (x j) being rated − 2
3 w j , and Ak(x j) � A j(x j) being

rated − 1
3 w j . The evaluation criterion of the chosen hypothesis for ranking of the alternatives is the algebraic sum of w j ’s

corresponding to the element by element consistency.
In the proposed IVFP method, the evaluation value E(Pi) of the ith permutation Pi is defined by

E(Pi) =
∑
j∈Ckl

w j + 2

3

∑
j∈C ′

kl

w j + 1

3

∑
j∈C ′′

kl

w j −
∑
j∈Dkl

w j − 2

3

∑
j∈D ′

kl

w j − 1

3

∑
j∈D ′′

kl

w j, i = 1,2, . . . ,m!. (16)

For each permutation Pi , its optimal weight values can be computed via the following linear programming (LP):

max E(Pi) =
∑
j∈Ckl

w j + 2

3

∑
j∈C ′

kl

w j + 1

3

∑
j∈C ′′

kl

w j −
∑
j∈Dkl

w j − 2

3

∑
j∈D ′

kl

w j − 1

3

∑
j∈D ′′

kl

w j,

subject to M−
W (x j) � w j � M+

W (x j) ( j = 1,2, . . . ,n),

n∑
j=1

w j = 1 (17)

for each i = 1,2, . . . ,m!.
Solving Eq. (17) by Simplex method, we can obtain its optimal solution of attribute weights wi = (wi

1, wi
2, . . . , wi

n)T and
the optimal evaluation value E(Pi) of the ith permutation. In total, m! LP problems need to be solved since there are m!
permutations in the alternative set. Then, we choose the maximum value among E(Pi)’s, and the optimal ranking order of
the alternatives can be found correspondingly.
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What has to be noticed is that the proposed IVFP method can be used for the attribute information to be in a scalar
form, not interval-valued fuzzy data. Assume that a set of cardinal weights w j, j = 1,2, . . . ,n, and

∑n
j=1 w j = 1 be given

to the set of decision attributes. Applying Eq. (16), the evaluation value E(Pi) of each permutation can be computed as an
evaluation criterion. The permutation with the maximum E(Pi) value represents the best order of the alternatives.

3.2. IVFP method with ordinal evaluations of alternatives given

Besides the cardinal evaluations of alternatives given, the IVFP method can be used for the ordinal evaluations given.
Assume that the decision maker only give ordering or ranking information of the alternative on each attribute. Moreover,
the relative importance among attributes can be determined either by interval-valued fuzzy data or by cardinal weights.
The proposed method in this subsection features limited information requirements because the decision maker has no need
to scale the qualitative attributes in the decision matrix.

There is one simple way to transform the attributewise ranks into the interval-valued fuzzy data. The method, similar
to Grzegorzewski’s method [9], is to calculate the number of alternatives surely worse than (e.g., the inequality relation �
in the interval-valued fuzzy decision matrix D , exclusive of =) and surely better than (e.g., the inequality relation � in D ,
exclusive of =) a particular alternative. The point we wish to emphasize is that the method admits incomplete ordinal data
since not all alternatives can been ranked with respect to an attribute. Considering the situation with missing information
or noncomparable outcomes, we define two functions, α j(Ai) and β j(Ai) for each Ai with respect to x j . Let α j(Ai) denote
the number of alternatives A1, A2, . . . , Ai−1, Ai+1, Ai+2, . . . , Am surely worse than Ai , while β j(Ai) denotes the number of
alternatives A1, A2, . . . , Ai−1, Ai+1, Ai+2, . . . , Am surely better than Ai . The degrees of membership and nonmembership are
given as follows, respectively.

μAi (x j) = α j(Ai)

m − 1
, (18)

νAi (x j) = β j(Ai)

m − 1
. (19)

Correspondingly, the lower bound and upper bound of the interval M Ai (x j) are as follows:

M−
Ai

(x j) = α j(Ai)

m − 1
, (20)

M+
Ai

(x j) = m − 1 − β j(Ai)

m − 1
. (21)

The situation that α j(Ai) + β j(Ai) < m − 1 (i.e., πAi (x j) > 0) occurs when the decision maker assigns the same rank
to more than one alternative or some alternatives are not comparable with the others. Taking the interval-valued fuzzy
decision matrix D for example, the attributewise preference in the weak concordance C ′′

kl set or the weak discordance set
D ′′

kl belongs to the noncomparable relations.
In such a way, the ordinal evaluations of alternatives on each attribute can be easily converted into interval-valued fuzzy

data. Then, the IVFP method can be also applied the situation with ties, missing information or noncomparable evaluation
data.

3.3. The presented algorithm

The IVFP method for solving a MCDA problem can be summed up as a series of successive steps:

Step 1. Generating relevant attributes for the MCDA problem setting.
Step 2. Developing a limited (and countably small) number of predetermined noninferior alternatives.
Step 3. Evaluating alternatives in terms of attributes. The alternatives have associated with them a level of the achievement

of the attributes, which admits cardinal or ordinal information.
Step 3-1. For cardinal information, construct the interval-valued fuzzy decision matrix D to concisely express the

MCDA problem of concern.
Step 3-2. For ordinal information, Eqs. (20) and (21) (or Eqs. (18) and (19) based on A-IFSs) are utilized to construct

the interval-valued fuzzy decision matrix D .
Step 4. Receiving a set of grades of importance for decision attributes. The relative importance of each attribute can be given

by interval or scalar data. The premises of interval-valued fuzzy weights are both
∑

M−
W (x j) � 1 and

∑
M+

W (x j) � 1;
while the premise of cardinal weights is

∑
w j = 1.

Step 5. Identifying concordance and discordance sets for each ordering. There are m! permutations of the alternatives which
have to be tested. Using Eqs. (10)–(15), we can find Ckl , C ′

kl , C ′′
kl , Dkl , D ′

kl and D ′′
kl for pairwise partial rankings.

Step 6. Computing the evaluation value E(Pi) of the permutation Pi .
Step 6-1. In the case of cardinal weights, compute E(Pi) by using Eq. (16).
Step 6-2. In the case of interval-valued fuzzy weights, solve Eq. (17) to acquire the optimal solution of attribute

weights wi and the evaluation value E(Pi).
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Step 7. Selecting the largest value among the evaluation values. The permutation with the maximum evaluation value is the
optimal ranking order of the alternatives.

In the following, we present numerical examples connected with a decision making problem. The case of cardinal eval-
uations given will be discussed first, then the ordinal ones.

4. Numerical examples and discussions

4.1. Case of cardinal evaluations of alternatives on each attribute

In this subsection, we work out a numerical example to illustrate the IVFP method for MCDA problems with cardinal
cases. Consider a sneakers-choice problem. Suppose that five attributes x1 (styling), x2 (color), x3 (price), x4 (air-sole), and x5
(brand image) are taken into consideration in the selection problem. Denote the set of all attributes by X = {x1, x2, x3, x4, x5}.
(Note that Step 1 has been done.) Suppose that there exist four nondominated brands A1, A2, A3, and A4. Denote the
alternative set by A = {A1, A2, A3, A4}. (Note that Step 2 has been done.) Assume that a decision maker has indicated an
extent of membership grades that captures the degree of the brand Ai satisfies the attribute x j . (Note that Step 3 has been
done.) The interval-valued fuzzy decision matrix D in Step 3-1 is given below:

x1 x2 x3 x4 x5

D =
A1
A2
A3
A4

⎡
⎢⎢⎣

[0.3379,0.6639] [0.5119,0.6238] [0.1640,0.3414] [0.2556,0.8424] [0.2766,0.7013]
[0.0059,0.7713] [0.2561,0.3808] [0.3010,0.4029] [0.5434,0.8702] [0.5522,0.8509]
[0.2585,0.4713] [0.2132,0.8856] [0.1243,0.4259] [0.4664,0.6260] [0.8205,0.9602]
[0.6388,0.9890] [0.3997,0.4897] [0.0492,0.6926] [0.3202,0.5387] [0.9065,0.9433]

⎤
⎥⎥⎦

=
A1
A2
A3
A4

⎡
⎢⎢⎣

(0.3379,0.3361) (0.5119,0.3762) (0.1640,0.6586) (0.2556,0.1576) (0.2766,0.2987)

(0.0059,0.2287) (0.2561,0.6192) (0.3010,0.5971) (0.5434,0.1298) (0.5522,0.1491)

(0.2585,0.5287) (0.2132,0.1144) (0.1243,0.5741) (0.4664,0.3740) (0.8205,0.0398)

(0.6388,0.0110) (0.3997,0.5103) (0.0492,0.3074) (0.3202,0.4613) (0.9065,0.0567)

⎤
⎥⎥⎦ .

Assume that the subjective importance of attributes, W , in Step 4 is given by the decision maker as:

x1 x2 x3 x4 x5

W = [ [0.1228,0.8670] [0.0030,0.6884] [0.0879,0.5912] [0.5527,0.8887] [0.1387,0.6718] ]
= [

(0.1228,0.1330) (0.0030,0.3116) (0.0879,0.4088) (0.5527,0.1113) (0.1387,0.3282)
]
.

It should be noted that
∑

M−
W (x j) = 0.9051 � 1 and

∑
M+

W (x j) = 3.7071 � 1.
There are 24(= 4!) permutations of the ranking for all alternatives that have to be tested in Step 5. They are:

P1 = (A1, A2, A3, A4), P9 = (A2, A3, A1, A4), P17 = (A3, A4, A1, A2),

P2 = (A1, A2, A4, A3), P10 = (A2, A3, A4, A1), P18 = (A3, A4, A2, A1),

P3 = (A1, A3, A2, A4), P11 = (A2, A4, A1, A3), P19 = (A4, A1, A2, A3),

P4 = (A1, A3, A4, A2), P12 = (A2, A4, A3, A1), P20 = (A4, A1, A3, A2),

P5 = (A1, A4, A2, A3), P13 = (A3, A1, A2, A4), P21 = (A4, A2, A1, A3),

P6 = (A1, A4, A3, A2), P14 = (A3, A1, A4, A2), P22 = (A4, A2, A3, A1),

P7 = (A2, A1, A3, A4), P15 = (A3, A2, A1, A4), P23 = (A4, A3, A1, A2),

P8 = (A2, A1, A4, A3), P16 = (A3, A2, A4, A1), P24 = (A4, A3, A2, A1).

Let us, for example, compute the testing results of the ordering P16 = (A3, A2, A4, A1) derived from the interval-valued
fuzzy decision matrix, D . Applying Step 5, we draw the procedure for determining concordance and discordance sets
on account of alternatives A4 and A1. Observe that M−

A4
(x5)(= 0.9065) � M−

A1
(x5)(= 0.2766) (or equivalently, μA4 (x5)(=

0.9065) � μA1 (x5)(= 0.2766)), M+
A4

(x5)(= 0.9433) � M+
A1

(x5)(= 0.7013) (or νA4 (x5)(= 0.0567) � νA1 (x5)(= 0.2987)), and
πA4 (x5)(= 0.0368) � πA1 (x5)(= 0.4247), the concordance set C41 is:

C41 = {
j
∣∣ A4(x j) � A1(x j) and πA4 (x j) � πA1 (x j)

} = {5}.
Because M−

A4
(x1)(= 0.6388) � M−

A1
(x1)(= 0.3379), M+

A4
(x1)(= 0.9890) � M+

A1
(x1)(= 0.6639), and πA4 (x1)(= 0.3502) �

πA1 (x1)(= 0.3260), the midrange concordance set C ′
41 is:

C ′
41 = {

j
∣∣ A4(x j) � A1(x j) and πA4 (x j) � πA1 (x j)

} = {1}.
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Since M−
A4

(x4)(= 0.3202) � M−
A1

(x4)(= 0.2556) and M+
A4

(x4)(= 0.5387) � M+
A1

(x4)(= 0.8424), we know that the weak con-
cordance set C ′′

41 is:

C ′′
41 = {

j
∣∣ A4(x j) � A1(x j)

} = {4}.

Therefore, the concordance testing result concerning alternatives A4 and A1 is 2
3 w1 + 1

3 w4 + w5.
On the part of discordance sets, M−

A4
(x2)(= 0.3997) � M−

A1
(x2)(= 0.5119), M+

A4
(x2)(= 0.4897) � M+

A1
(x2)(= 0.6238), and

πA4 (x2)(= 0.0900) � πA1 (x2)(= 0.1119). Thus, the midrange discordance set D ′
41 is:

D ′
41 = {

j
∣∣ A4(x j) � A1(x j) and πA4 (x j) � πA1 (x j)

} = {2}.
Moreover, on account of M−

A4
(x3)(= 0.0492) � M−

A1
(x3)(= 0.1640) and M+

A4
(x3)(= 0.6926) � M+

A1
(x3)(= 0.3414), we have

the weak discordance set D ′′
41 is:

D ′′
41 = {

j
∣∣ A4(x j) � A1(x j)

} = {3}.

The discordance testing result concerning alternatives A4 and A1 is 2
3 w2 + 1

3 w3.
The rest of P16 is conducted in a similar manner. The complete testing results of P16 are presented in the following

matrix:

3 2 4 1

3
2
4
1

⎡
⎢⎢⎢⎣

0 1
3 w1 + w5

1
3 w3 + w4

1
3 w4 + w5

1
3 w2 + 1

3 w3 + 2
3 w4 0 1

3 w3 + 2
3 w4 w3 + w4 + w5

2
3 w1 + 1

3 w2 + 1
3 w5 w1 + w2 + w5 0 2

3 w1 + 1
3 w4 + w5

2
3 w1 + 1

3 w2 + 1
3 w3

1
3 w1 + w2

2
3 w2 + 1

3 w3 0

⎤
⎥⎥⎥⎦ .

Applying Step 6, the evaluation value of P16, E(P16), is:

E(P16) =
∑
j∈Ckl

w j + 2

3

∑
j∈C ′

kl

w j + 1

3

∑
j∈C ′′

kl

w j −
( ∑

j∈Dkl

w j + 2

3

∑
j∈D ′

kl

w j + 1

3

∑
j∈D ′′

kl

)

= −5

3
w1 − 11

3
w2 + 2

3
w3 + 8

3
w4 + 8

3
w5,

where
∑

j∈Ckl
w j + 2

3

∑
j∈C ′

kl
w j + 1

3

∑
j∈C ′′

kl
w j is the sum of the upper-triangular elements of the above matrix in accordance

with the hypothesis: A3 � A2 � A4 � A1, and
∑

j∈Dkl
w j + 2

3

∑
j∈D ′

kl
w j + 1

3

∑
j∈D ′′

kl
w j is the sum of the lower-triangular

elements in conflict with the hypothesis. Since the grades of attribute importance here are given by a set of interval-valued
fuzzy weights, we solve the following LP problem by Simplex method according to Step 6-2:

max E(P16) = −5

3
w1 − 11

3
w2 + 2

3
w3 + 8

3
w4 + 8

3
w5,

subject to 0.1228 � w1 � 0.8670,

0.0030 � w2 � 0.0684,

0.0879 � w3 � 0.5912,

0.5527 � w4 � 0.8887,

0.1387 � w5 � 0.6718,

w1 + w2 + w3 + w4 + w5 = 1.

The optimal solution can be obtained as follows:

w16 = (
w̄16

1 , w̄16
2 , w̄16

3 , w̄16
4 , w̄16

5

)T = (0.1228,0.0030,0.0879,0.5527,0.2336)T .

Correspondingly, the optimal evaluation value of P16, E(P16), can be computed as follows:

E(P16) = −5
w̄16

1 − 11
w̄16

2 + 2
w̄16

3 + 8
w̄16

4 + 8
w̄16

5 = 1.9397.

3 3 3 3 3
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The optimal evaluation values E(Pi)’s of 24 permutations can be derived in a similar way. The results are:

E(P1) = −0.4194, E(P2) = −1.2619, E(P3) = −0.9209, E(P4) = −0.9977,

E(P5) = −1.3387, E(P6) = −1.8402, E(P7) = 1.2095, E(P8) = 0.2405,

E(P9) = 1.6943, E(P10) = 2.5045, E(P11) = 0.9242, E(P12) = 1.4089,

E(P13) = −0.5311, E(P14) = −0.6395, E(P15) = 1.1295, E(P16) = 1.9397,

E(P17) = 0.2024, E(P18) = 1.8629, E(P19) = −0.6549, E(P20) = −1.0300,

E(P21) = 0.7525, E(P22) = 1.2689, E(P23) = −0.6401, E(P24) = 1.0204.

In applying Step 7 to this example, E(P10) = 2.5045 gives the maximum value. Thus, the best order of the alternatives is
P10 = (A2, A3, A4, A1) (i.e., A2 � A3 � A4 � A1) and the best choice is Brand A2.

4.2. Case of ordinal evaluations of alternatives on each attribute

Consider the same sneakers-choice problem, but the input data are replaced with ordinal evaluations. We adopt a simple
method to produce attributewise ranks based on the original interval-valued data, i.e., the inequality relation � is desig-
nated as “better than,” � as “worse than,” and � and � as “noncomparable.” The original interval-valued fuzzy decision
matrix roughly renders the following overranking relationships, and these relationships are well illustrated by the graphical
representation.

Attribute x1 x2 x3 x4 x5

Outranking relationship A1 > A3 A1 > A2 A2 > A1 A2 > A1 A2 > A1

A4 > A1 A1 > A4 A2 > A3 A3 > A1

A4 > A2 A4 > A2 A2 > A4 A3 > A2

A4 > A3 A3 > A4 A4 > A1

A4 > A2

Graphical representation

Take attribute x2 for example. Since M−
A1

(x2)(= 0.5119) > M−
A2

(x2)(= 0.2561) and M+
A1

(x2)(= 0.6238) > M+
A2

(x2)(=
0.3808), alternative A1 is better than A2 with respect to x2 and denoted as A1 > A2. In a similar way, we get A1 > A4
and A4 > A2. As mentioned before, the attributewise preference in the weak concordance set C ′′

kl or the weak discordance
set D ′′

kl belongs to the noncomparable relations; thus, attribute x2 has tied attributewise rankings between A1 and A3, A2
and A3, A3 and A4, respectively.

From the ordinal information of attributewise outranking relationships, we apply Eqs. (20) and (21) in Step 3-2 to recon-
struct a new interval-valued fuzzy decision matrix D ′ .

x1 x2 x3 x4 x5

D ′ =
A1
A2
A3
A4

⎡
⎢⎢⎣

[0.3333,0.6667] [0.6667,1.0000] [0.0000,0.6667] [0.0000,0.6667] [0.0000,0.0000]
[0.0000,0.6667] [0.0000,0.3333] [0.3333,1.0000] [1.0000,1.0000] [0.3333,0.3333]
[0.0000,0.3333] [0.0000,1.0000] [0.0000,1.0000] [0.3333,0.6667] [0.6667,1.0000]
[1.0000,1.0000] [0.3333,0.6667] [0.0000,1.0000] [0.0000,0.3333] [0.6667,1.0000]

⎤
⎥⎥⎦

=
A1
A2
A3
A4

⎡
⎢⎢⎣

(0.3333,0.3333) (0.6667,0.0000) (0.0000,0.3333) (0.0000,0.3333) (0.0000,1.0000)

(0.0000,0.3333) (0.0000,0.6667) (0.3333,0.0000) (1.0000,0.0000) (0.3333,0.6667)

(0.0000,0.6667) (0.0000,0.0000) (0.0000,0.0000) (0.3333,0.3333) (0.6667,0.0000)

(1.0000,0.0000) (0.3333,0.3333) (0.0000,0.0000) (0.0000,0.6667) (0.6667,0.0000)

⎤
⎥⎥⎦ .

Given D ′ and W , we implement the IVFP method again. Taking P16(= (A3, A2, A4, A1)) for example, the testing results
are presented in the following matrix:

3 2 4 1

3
2
4
1

⎡
⎢⎢⎣

0 1
3 w1 + 2

3 w2 + 2
3 w5

1
3 w3 + 2

3 w4 + 1
3 w5

2
3 w3 + 1

3 w4 + 2
3 w5

w3 + w4 0 1
3 w3 + w4

2
3 w3 + w4 + 2

3 w5

w1 + 1
3 w2 w1 + 2

3 w2 + 2
3 w5 0 w1 + 2

3 w3 + 1
3 w4 + 2

3 w5
2 w + w w + 2 w 2 w 0

⎤
⎥⎥⎦ .
3 1 2 1 3 2 3 2
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The evaluation value E(P16) is equal to − 7
3 w1 − 8

3 w2 + 5
3 w3 + 7

3 w4 + 7
3 w5. Next, the following LP problem can be

obtained:

max E(P16) = −7

3
w1 − 8

3
w2 + 5

3
w3 + 7

3
w4 + 7

3
w5,

subject to 0.1228 � w1 � 0.8670,

0.0030 � w2 � 0.6884,

0.0879 � w3 � 0.5912,

0.5527 � w4 � 0.8887,

0.1387 � w5 � 0.6718,

w1 + w2 + w3 + w4 + w5 = 1.

Solving the above LP, its optimal solution can be acquired as follows:

w16 = (
w̄16

1 , w̄16
2 , w̄16

3 , w̄16
4 , w̄16

5

)T = (0.1228,0.0030,0.0879,0.5527,0.2336)T .

The optimal evaluation value of P16, E(P16), can be calculated as follows:

E(P16) = −7

3
w̄16

1 − 8

3
w̄16

2 + 5

3
w̄16

3 + 7

3
w̄16

4 + 7

3
w̄16

5 = 1.6867.

The optimal evaluation values E(Pi)’s of 24 permutations can be derived in a similar way. The results are:

E(P1) = 0.3745, E(P2) = −0.0832, E(P3) = −0.7031, E(P4) = −1.3646,

E(P5) = −0.7447, E(P6) = −1.7907, E(P7) = 1.8042, E(P8) = 1.2199,

E(P9) = 2.7141, E(P10) = 2.9540, E(P11) = 1.5231, E(P12) = 2.3381,

E(P13) = 0.0171, E(P14) = −0.7077, E(P15) = 1.4467, E(P16) = 1.6867,

E(P17) = −0.3412, E(P18) = 1.0251, E(P19) = −0.3150, E(P20) = −1.4242,

E(P21) = 0.7983, E(P22) = 1.4868, E(P23) = −0.7673, E(P24) = 0.5358,

where E(P10) = 2.9540 gives the maximum value. Therefore, the best order of the alternatives is P10 = (A2, A3, A4, A1)

and the best alternative is A2. The point to observe is that this result matches the solution of the cardinal evaluations of
alternatives given.

In the case of interval-valued fuzzy weights, no matter what type of evaluation values is given, the numerical examples
show the same results of best order for the alternatives. What is true for the illustrative examples could be to a considerable
extent true for general cases as well. If there are no significantly different results between the methods with cardinal
evaluations and with ordinal evaluations, this phenomenon implies that the data requirement in the proposed method can
be simplified. That is, the cardinal evaluations of alternatives can be replaced with ordinal ones to construct the decision
matrix required in the IVFP method. For the above reasons, test problems for the cases of cardinal and ordinal evaluations
will be generated, and a simulation validation of different given cases will be investigated.

5. Design of computational experiments

The computational experiments will be conducted in a similar manner to the analysis of the illustrative examples. Fig. 1
depicts four classes of experimental scenarios based on the solution approach and the data type of alternative evaluations.
The input data of Scenario I (upper left-hand side) include a set of cardinal weights and cardinal evaluations of alternatives
based on IVFSs. The required data in Scenario II (upper right-hand side) consists of cardinal weights and ordinal evaluations
based on IVFSs. Scenario III (lower left-hand side) refers to interval-valued fuzzy weights and cardinal evaluations, while
Scenario IV (lower right-hand side) indicates interval-valued fuzzy weights and ordinal evaluations. When interval-valued
fuzzy weights are given, the exact value of attribute importance must be derived by using a LP approach for solving Eq. (17).
Nevertheless, it has no need to use the LP approach when given weights are just scalars. The experimental analysis is
intended to compare the IVFP results according to cardinal and ordinal evaluations when the non-LP and LP approaches are
separately used.

A MATLAB computer program is written to generate random data and to solve MCDA problems with all possible
combinations of 3,4,5, . . . ,10 alternatives and 3,4,5, . . . ,10 attributes. Hence, 64(= 8 × 8) different instances will be
examined in this study. Let us consider an IVFS Ai ∈ X . First, two real numbers, η1 and η2, are uniformly distributed
over the interval [0,1]. Next, let M−

Ai
(x j) = min{η1, η2} (or equivalently, μAi (x j) = min{η1, η2}) and M+

Ai
(x j) = max{η1, η2}

(or equivalently, νAi (x j) = 1 − max{η1, η2}). Then, πAi (x j) = 1 − μAi (x j) − νAi (x j). In a similar manner, the simulation
data of [M− (x j), M+ (x j)]’s can be randomly generated, but more noteworthy are the conditions of

∑
M− (x j) � 1 and
W W W
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Fig. 1. Four types of experimental scenarios.

∑
M+

W (x j) � 1. As for cardinal weights, let w j be uniformly distributed over [0,1] and all w j ’s must satisfy
∑

w j = 1. For
each instance in Scenarios I and III, 1000 different interval-valued fuzzy decision matrices D ’s and subjective importance of
attributes w j ’s and W ’s, respectively, are randomly produced.

On the other hand, in both Scenarios II and IV, their decision matrices need only ordering or ranking information. Thus,
we specify the attributewise ranks of alternatives according to the interval-valued fuzzy decision matrix D in Scenarios I
and III. Then, transform these ordinal data into new interval-valued fuzzy data that probably differ from the original IVFSs
in D . For each Ai with respect to x j , determine α j(Ai) which is equal to the number of alternatives surely worse than Ai
(i.e., Ai(x j) � Ak(x j) and Ai(x j) �= Ak(x j) for k ∈ {1,2, . . . , i − 1, i + 1, . . . ,m}). Similarly, β j(Ai) is equal to the number of
alternatives surely better than Ai (i.e., Ai(x j) � Ak(x j) and Ai(x j) �= Ak(x j) for k ∈ {1,2, . . . , i − 1, i + 1, . . . ,m}). Applying
Eqs. (20) and (21) (or Eqs. (18) and (19)) we can get new interval-valued fuzzy data. In such a way, 1000 interval-valued
fuzzy decision matrices for each instance in Scenarios II and IV are generated according to random data in Scenarios I and III,
respectively. In addition, the subjective importance of attributes in Scenarios II and IV coincides with attribute importance in
Scenarios I and III, respectively. Therefore, it follows from what has been mentioned that a total of 256,000(= 64×1000×4)

sets of experimental cases are generated for four scenarios.
In order to compare the IVFP results yielded by cardinal and ordinal evaluations, several approaches are applied to

determine whether the similar results or not. We conduct a comprehensive comparative study of preference rank orders,
consisting of average Spearman correlation coefficients, consistency rates, contradiction rates of the best alternative, and
inversion rates between the better alternatives and the worse ones. Finally, a second-order regression will be further imple-
mented to realize the influence of the number of alternatives, the number of attributes, and non-LP and LP approaches on
the mean of Spearman correlation coefficients. In the following, we present the major computational results and comparison
analysis.

6. Analysis of computational results

6.1. Spearman correlation coefficients

The first examination approach is comparison of best order derived from cardinal and ordinal evaluations by using av-
erage Spearman correlation coefficients. We compute the mean of Spearman correlation coefficients of 1000 experiment
observations for non-LP and LP approaches, respectively. The results are presented in Fig. 2 and the detailed figures are
revealed in Tables 1 and 2. As the plots in Fig. 2 illustrate, the preference orders between cardinal and ordinal evaluations
have very high Spearman correlation coefficients in small m values. The highest coefficients are 0.9164 in pair (Scenario I,
Scenario II) and 0.9023 in pair (Scenario III, Scenario IV). For both non-LP and LP approaches, the average Spearman corre-
lation coefficients are around 0.6 to 0.9 when m < 7. Moreover, the fewer alternatives are involved, the more likely it is that
the ranking orders between cardinal and ordinal evaluations will be highly related.

For each pair of cardinal and ordinal evaluations, there exists a consistent trend that the mean of Spearman correlation
coefficients decreases with the number of alternatives. Besides, the standard deviations of Spearman correlation coefficients
are almost around 0.2 or 0.3. Hence, the discrepancy of average Spearman correlation coefficients is moderately unobvious as
a whole. On the other hand, the number of attributes produces no significant effects upon Spearman correlation coefficients.
The mean of Spearman correlation coefficients undergoes little change as the number of attributes increases. In addition, as
n increases, no special trend was found regarding the standard deviation of Spearman correlation coefficients.
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(a) Average ρ-values of (Scenario I, Scenario II).

(b) Average ρ-values of (Scenario III, Scenario IV).

Fig. 2. Experimental results: average Spearman correlation coefficients (ρ).

6.2. Ranking consistency

The consistency rate measures the level of concordance between two complete preference orders yielded by different
types of evaluations for each m × n combination. The results in Fig. 3 correspond to 1000 experiment observations for each
pairwise comparison. The computational results indicate that the consistency rates are rather high (i.e., around 80% to 50%
or 40%) when the number of alternatives in a decision problem is rather small (i.e., equal to 3, 4 or 5). Therefore, when m is
small, there has high percentage that the overall preference ranking of alternatives based on ordinal evaluations completely
matches the solution based on cardinal evaluations. Nevertheless, as m increases, the consistency rates gradually decrease.
The consistency rate approaches below 10% when the value of m is greater than 8 for non-LP and LP situations. As sketched
here, it seems reasonable to recognize that the preference orders using cardinal and ordinal data will be unlikely identical
when m is greater than 10.

Also in the same figure, the influence of the number of attributes on consistency rates does not seem to be impor-
tant. This is indicated by the closeness of the curves that correspond to different numbers of attributes. No matter how
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Table 1
Average Spearman correlation coefficients of pair (Scenario I, Scenario II).

Number of
alternatives

Number of attributes

3 4 5 6 7 8 9 10

3 0.9020 0.8916 0.8998 0.8995 0.9114 0.9138 0.9113 0.9164
(0.1986)a (0.2061) (0.2003) (0.2005) (0.1910) (0.1890) (0.1911) (0.1867)

4 0.7866 0.7988 0.7922 0.7888 0.7918 0.8002 0.7874 0.7976
(0.2998) (0.2954) (0.3030) (0.2979) (0.3041) (0.2965) (0.3042) (0.2972)

5 0.7099 0.7005 0.7046 0.7066 0.7062 0.7275 0.7288 0.6958
(0.3159) (0.3196) (0.3287) (0.3289) (0.3285) (0.3249) (0.3154) (0.3268)

6 0.6562 0.6354 0.6493 0.6589 0.6367 0.6470 0.6364 0.6530
(0.3193) (0.3266) (0.3212) (0.3175) (0.3267) (0.3280) (0.3284) (0.3086)

7 0.5828 0.5639 0.5639 0.5672 0.5480 0.5814 0.5709 0.5748
(0.3158) (0.3175) (0.3141) (0.3227) (0.3187) (0.3189) (0.3114) (0.3183)

8 0.5376 0.5447 0.5012 0.5105 0.5389 0.5406 0.5147 0.5304
(0.2968) (0.3002) (0.2910) (0.2978) (0.2943) (0.3030) (0.2914) (0.2982)

9 0.5075 0.4948 0.5054 0.4817 0.5010 0.4914 0.4834 0.5040
(0.2814) (0.2812) (0.2832) (0.2855) (0.2854) (0.2930) (0.2821) (0.2893)

10 0.4708 0.4689 0.4871 0.4387 0.5012 0.4960 0.4592 0.4812
(0.2724) (0.2682) (0.2841) (0.2578) (0.2734) (0.2946) (0.2703) (0.2956)

a Standard deviations are in parentheses.

Table 2
Average Spearman correlation coefficients of pair (Scenario III, Scenario IV).

Number of
alternatives

Number of attributes

3 4 5 6 7 8 9 10

3 0.8821 0.8878 0.8840 0.9023 0.8901 0.8906 0.9012 0.8858
(0.2124)a (0.2087) (0.2112) (0.1984) (0.2072) (0.2068) (0.1992) (0.2101)

4 0.7581 0.7645 0.7529 0.7510 0.7677 0.7296 0.7423 0.7666
(0.3269) (0.3144) (0.3285) (0.3257) (0.3148) (0.3317) (0.3311) (0.3174)

5 0.6637 0.6530 0.6724 0.6463 0.6672 0.6657 0.6688 0.6661
(0.3402) (0.3474) (0.3377) (0.3507) (0.3392) (0.3392) (0.3386) (0.3434)

6 0.6140 0.6184 0.5991 0.6158 0.6276 0.6071 0.5855 0.6068
(0.3263) (0.3263) (0.3271) (0.3290) (0.3249) (0.3237) (0.3307) (0.3331)

7 0.5622 0.5452 0.5516 0.5529 0.5573 0.5227 0.5345 0.5284
(0.3105) (0.3143) (0.3169) (0.3070) (0.3228) (0.3238) (0.3157) (0.3138)

8 0.5171 0.4777 0.4824 0.4977 0.5035 0.5055 0.4683 0.4876
(0.3044) (0.3013) (0.3022) (0.2982) (0.2993) (0.3103) (0.2974) (0.2960)

9 0.4392 0.4343 0.4318 0.4293 0.4268 0.4242 0.4108 0.4192
(0.2883) (0.2840) (0.2835) (0.2830) (0.2930) (0.2819) (0.2400) (0.2808)

10 0.3684 0.3659 0.3634 0.3609 0.3584 0.3558 0.3533 0.3508
(0.2694) (0.2688) (0.2683) (0.2678) (0.2672) (0.2667) (0.2661) (0.2656)

a Standard deviations are in parentheses.

many attributes are considered, the results of consistency rates yield similar patterns. Therefore, changes in the number of
alternatives are more meaningful toward consistency rates than changes in the number of attributes.

6.3. Ranking contradiction

Two kinds of ranking inconsistency merit to be examined. The first kind is the contradiction rate of the best alternative in
the chosen permutation. Since decision makers are always concerned about the best alternative, the frequency of matching
the top rank seems to be more important than matching all ranks. Thus, we further observe the contradiction rate of the
top rank between two results using cardinal and ordinal evaluations. For example, if the ranking of a set of six alternatives
is equal to (4,1,5,2,6,3) (i.e., A4 � A1 � A5 � A2 � A6 � A3) based on cardinal evaluations and the other method using
ordinal evaluations yields (1,4,5,2,6,3), then a case of a ranking contradiction of the best alternative has occurred.

Fig. 4 shows the contradiction rate for the best alternative. The contradiction rate gently increases with the number of
alternatives, but it seems to have a little irregular pattern with the number of attributes. Among m × n combinations for
pair (Scenario I, Scenario II), the case of m = 3 and n = 10 has the lowest contradiction rate (0.0796) and thus has largest
concordance proportion of the best choice; whereas the case of m = 10 and n = 6 receives the highest contradiction rate
(0.3144) and become the less common top choices. The contradiction rate (0.0855) of the best alternative in the cases of
m = 3 and n = 9 is the smallest among the rest of m × n combinations for pair (Scenario III, Scenario IV). On the contrary,
the contradiction rate (0.4966) in the cases of m = n = 10 is relatively higher than the rest.

Fig. 4 depicts a phenomenon that most of the contradiction rates lies in 0.1 to 0.3 for pair (Scenario I, Scenario II) and 0.1
to 0.5 for pair (Scenario III, Scenario IV). In regard to non-LP case, the probability that the most preferred alternative using
cardinal and ordinal evaluations are contradictory is estimated to be 10 to 30 percent. It implies that the top choice yielded
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(a) The consistency rates of (Scenario I, Scenario II).

(b) The consistency rates of (Scenario III, Scenario IV).

Fig. 3. Experimental results: the consistency rates. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

by using ordinal evaluations in the IVFP method is often in common with the selected alternative obtained by cardinal data.
The concordance proportion of the top choice is, on average, up to the range of 70–90%.

6.4. Ranking inversion

The second kind of ranking inconsistency is the inversion rate between the better alternatives and the worse alternatives.
Let better alternatives denote the first half alternatives in the final ranking; similarly, worse alternatives for the last half.
The event that one of the better alternatives by using cardinal evaluations becomes the worse one by using ordinal evalu-
ations will cause decision makers quite a confusion, and vice versa. The higher the degree of ranking inversion, the more
difficult the final decision. As an example, if a ranking based on ordinal evaluations of a set of six alternatives is equal to
(6,4,1︸ ︷︷ ︸,3,5,2) but cardinal data yielded (6,5,1︸ ︷︷ ︸,3,4,2), then a case of a ranking inversion between the better alternatives

and the worse ones has occurred. Notice that the determination approach of better and worse alternatives is rounding to
the nearest integer. The actual numbers of better and worse alternatives are not equal proportion when m is odd.
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(a) The contradiction rates of (Scenario I, Scenario II).

(b) The contradiction rates of (Scenario III, Scenario IV).

Fig. 4. Experimental results: the contradiction rates. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5 illustrates the inversion rate between the better alternatives and the worse ones. For each pair of scenarios, it
should be noted that the inversion rates for all experimental instances constitute increasing curves. Most of the inversion
rates rise from around 0.1 (when m = 3) to 0.6 (when m = 10). For pair (Scenario I, Scenario II), the minimal inversion
rate (0.0793) occurs in the case of m = 3 and n = 8, while the maximum (0.6777) in the case of m = 10 and n = 7. For
pair (Scenario III, Scenario IV), the minimal inversion rate (0.1137) can be found in the case of m = 3 and n = 6, while the
maximum (0.7295) in the case of m = n = 10. When m is small (e.g., 3,4,5), the better and worse alternatives yielded by
ordinal evaluations are generally consistent with the ones by cardinal evaluations. In consequence of ranking inconsistency,
the contradiction and inversion rates have an increasing trend with the number of alternatives, whereas no apparent features
have been found with regard to the number of attributes.

6.5. Second-order regression model

In order to get an understanding of the shape of the graph in the above figures, we further conduct a regression analysis.
We use a second-order regression model to capture the relationship of the number of alternatives, number of attributes, and
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(a) The inversion rates of (Scenario I, Scenario II).

(b) The inversion rates of (Scenario III, Scenario IV).

Fig. 5. Experimental results: the inversion rates. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

different scenario pairs to average Spearman correlation coefficients. From the previous analysis, it is found that there is a
negative relationship between the number of alternatives and Spearman correlation coefficients, and no obvious relationship
between the number of attributes and Spearman correlation coefficients. However, it is also found that the relationships are
not linear: the effects seem to be decreasing as the number of alternatives increases. In addition, the effects also little differ
in non-LP and LP approaches. Let z(III,IV) be a dummy variable which is equal to 1 if the correlation coefficient is obtained
from pair (Scenario III, Scenario IV) (i.e., LP approach). The second-order regression model relates a dependent variable ρ to
a set of independent variables involving m, m2, n, mn, z(III,IV) , z(III,IV)m, and z(III,IV)n. Let ε be the random term representing
the effects caused by other factors that are not considered in this model. We assume that ε is an independent random
variable with finite mean and variance. In sums, we consider the following regression model:

ρ = β0 + β1m + β2n + β3m2 + β4mn + β5z(III,IV) + β6z(III,IV)m + β7z(III,IV)n + ε. (22)

The total sample size is 128 (i.e., 8 different number of alternatives ×8 different number of attributes ×2 different pairs
of scenarios). The results are listed in Table 3. Most of the coefficients are significant under 95% significant level except for
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Table 3
The second-order regression model of Spearman correlation coefficients.

Variable Coefficient Standardized t-statistic p-value
(standard deviation) coefficient

constant 1.216 38.025 0.000
(0.032)

m −0.130 −1.935 −16.562 0.000
(0.008)

n 0.005 0.069 1.343 0.182
(0.003)

m2 0.006 1.105 10.402 0.000
(0.001)

mn −0.001 −0.090 −1.341 0.182
(0.000)

z(III,IV) 0.023 0.076 1.133 0.259
(0.021)

z(III,IV)m −0.007 −0.169 −3.303 0.001
(0.002)

z(III,IV)n −0.003 −0.070 −1.374 0.172
(0.002)

F = 529.904; F (p − value) = 0.000; R2 = 0.969; and adj − R2 = 0.967.

the variables of n, mn, z(III,IV) , and z(III,IV)n. Overall speaking, the model is significant in terms of F -test and the explanatory
power is so high. The R2 and the adjusted-R2 are 0.969 and 0.967, respectively.

In order to examine the effects of the number of alternatives (m) and the number of attributes (n) on the correlation
between cardinal and ordinal cases, the partial derivatives of estimated Spearman correlation coefficient (ρ̂) with respect to
m and n are obtained as follows:

∂ρ̂

∂m
= −0.130 + 0.012 · m − 0.001 · n − 0.007 · z(III,IV), (23)

∂ρ̂

∂n
= 0.005 − 0.001 · m − 0.003 · z(III,IV). (24)

From Eqs. (23) and (24), it is found that the effect of the number of alternatives is negative in reference to a reasonable
size of the choice set, and the effect of the number of attributes is mixed in general. That is, more alternatives make higher
dissimilarity of the preference orders of alternatives under different given data and more attributes get the hybrid results.
However, the negative effect of m decreases gradually when the numbers of alternatives become large. The interaction
between m and n is negative which means that large n will enhance the effects of m on ρ̂ but large m will obstruct the
effects of n on ρ̂ . On the other hand, the effects of m and n are different between different given data. The negative effect of
m on ρ̂ is higher in the pair of (Scenario III, Scenario IV) relative to the pair of (Scenario I, Scenario II), but the relative effect
of n on ρ̂ is mitigated. From the magnitude of coefficients in Eqs. (23) and (24), the effect of the number of alternatives
becomes greater and have more deviations.

In this study, the uniform distribution from the interval [0,1] was selected because it is the simplest and most widely
statistical distribution used in numerous simulation investigations. However, it should be emphasized that the present sim-
ulation results might be contingent on how the random data, including the decision matrix and attribute importance, were
generated. Other possibilities, such as assigning interval-valued fuzzy data from a normal distribution, would probably have
slightly different computational results.

7. Conclusions

In this study, we have proposed a new decision method for multiattribute decision making under interval-valued fuzzy
environments. In addition, we conducted computational experiments to analyze the difference between cardinal evaluations
of each alternative with respect to each attribute and ordinal ones. The comparison results represent that the solutions
based on ordinal and cardinal evaluations have median to high correlation coefficients and low contradiction rates. In
addition, the cases when the number of alternatives is small have high consistency rates and low inversion rates. The above
analysis demonstrates that the IVFP results based on ordinal evaluations can approximate the solution based on cardinal
evaluations. Thus, based on a set of attributewise rankings (not necessarily numerical values) and a set of attribute weights,
the IVFP method performed acceptable results in the computational experiments. This weaker information requirement is
very attractive in that we do not need to scale the alternatives in terms of attributes.

Besides being able to determine the approximation of the best order for alternatives, the proposed method has certain
advantages in real life applications. For data collection, all that is required is the attributewise rankings. Thus, we eliminate
the tedious requirements of the existing compensatory MCDA models such as lengthy scaling procedures. Even though a
lengthy data gathering effort is eliminated, the method does have satisfactory results through computational experimen-
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tal analysis. However, with the increase of the number of alternatives, the number of permutations increases drastically.
Fortunately, this implementation difficulty can be moderately surmounted with the help of powerful computer hardware.

The IVFP method presented in this paper is different from previous studies in a number of significant aspects. First, it can
treat ordinal or cardinal evaluations of alternatives with respect to each attribute. Second, it can deal with ordering which
are not necessarily linear orderings because there are alternatives which are noncomparable in some attributes. Third, it is
originally designed for the cardinal preferences of attributes given, but it is also to be used for the ordinal preferences given
if the decision maker is willing make an acceptable sacrifice in accuracy. Finally, comparing most of the MCDA methods, the
proposed method does not require that the evaluation information of alternatives in each attribute be in numerical form.
For each attribute, the alternatives can be merely ranked in terms of their performance; then a simplified version of the
interval-valued fuzzy decision matrix can be constructed correspondingly. Because of its limited information requirements,
the IVFP method is anticipated to have application values in MCDA reality.
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