Affine surfaces with trivial Makar-Limanov invariant

Daniel Daigle ${ }^{1}$
Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada K1N 6N5
Received 22 May 2007
Available online 26 November 2007
Communicated by Steven Dale Cutkosky

Abstract

We study the class of 2-dimensional affine \mathbf{k}-domains R satisfying $\operatorname{ML}(R)=\mathbf{k}$, where \mathbf{k} is an arbitrary field of characteristic zero. In particular, we obtain the following result: Let R be a localization of a polynomial ring in finitely many variables over a field of characteristic zero. If $\mathrm{ML}(R)=K$ for some field $K \subset R$ such that $\operatorname{trdeg}_{K} R=2$, then R is K-isomorphic to $K[X, Y, Z] /(X Y-P(Z))$ for some nonconstant $P(Z) \in K[Z]$. © 2007 Elsevier Inc. All rights reserved.

Keywords: Locally nilpotent derivations; Group actions; Danielewski surfaces; Affine surfaces; Makar-Limanov invariant; Absolute constants

1. Introduction

Let us recall the definition of the Makar-Limanov invariant:
1.1. Definition. If R is a ring of characteristic zero, a derivation $D: R \rightarrow R$ is said to be locally nilpotent if for each $r \in R$ there exists $n \in \mathbb{N}$ (depending on r) such that $D^{n}(r)=0$. We use the following notations:

$$
\begin{aligned}
\operatorname{LND}(R) & =\text { set of locally nilpotent derivations } D: R \rightarrow R, \\
\operatorname{KLND}(R) & =\{\operatorname{ker} D \mid D \in \operatorname{LND}(R) \text { and } D \neq 0\},
\end{aligned}
$$

[^0]$$
\operatorname{ML}(R)=\bigcap_{D \in \operatorname{LND}(R)} \operatorname{ker}(D)
$$

We are interested in the class of 2-dimensional affine \mathbf{k}-domains R satisfying $\operatorname{ML}(R)=\mathbf{k}$, where \mathbf{k} is a field of characteristic zero. The corresponding class of affine algebraic surfaces was studied by several authors ($[1,2,7-9,14,17]$, in particular), but almost always under the assumption that \mathbf{k} is algebraically closed, or even $\mathbf{k}=\mathbb{C}$. In this paper we obtain some partial results valid when \mathbf{k} is an arbitrary field of characteristic zero. We are particularly interested in the following subclass:
1.2. Definition. Given a field \mathbf{k} of characteristic zero, let $\mathfrak{D}(\mathbf{k})$ be the class of \mathbf{k}-algebras isomorphic to $\mathbf{k}[X, Y, Z] /(X Y-\varphi(Z))$ for some nonconstant polynomial in one variable $\varphi(Z) \in$ $\mathbf{k}[Z] \backslash \mathbf{k}$, where X, Y, Z are indeterminates over \mathbf{k}.

The class $\mathfrak{D}(\mathbf{k})$ was studied in $[4,5,16]$, in particular. It is well known that if $R \in \mathfrak{D}(\mathbf{k})$ then R is a 2-dimensional normal affine domain satisfying $\operatorname{ML}(R)=\mathbf{k}$. It is also known that the converse is not true, which raises the following:

Question. Suppose that R is a 2-dimensional affine \mathbf{k}-domain with $\operatorname{ML}(R)=\mathbf{k}$. Under what additional assumptions can we infer that $R \in \mathfrak{D}(\mathbf{k})$?

Section 3 completely answers this question in the case where R is a smooth \mathbf{k}-algebra. This is achieved by reducing to the case $\mathbf{k}=\mathbb{C}$, which was solved by Bandman and Makar-Limanov. This reduction is nontrivial, and makes essential use of the main result of Section 2. Also note Corollary 3.8 , which gives a pleasant answer to the above question in the factorial case. Then we derive several consequences from Section 3, for instance consider the following special case of Theorem 4.1:

Let R be a localization of a polynomial ring in finitely many variables over a field of characteristic zero. If $\mathrm{ML}(R)=K$ for some field $K \subset R$ such that $\operatorname{trdeg}_{K} R=2$, then $R \in \mathfrak{D}(K)$.

In turn, this has consequences in the study of G_{a}-actions on \mathbb{C}^{n}.

Conventions. All rings and algebras are commutative, associative and unital. If A is a ring, we write A^{*} for the units of A; if A is a domain, Frac A is its field of fractions. If $A \subseteq B$ are rings, " $B=A^{[n] "}$ means that B is A-isomorphic to the polynomial algebra in n variables over A. If L / K is a field extension, " $L=K^{(n) "}$ means that L is a purely transcendental extension of K and $\operatorname{trdeg}_{K} L=n$ (transcendence degree).

In [5], one defines a Danielewski surface to be a pair (R, \mathbf{k}) such that $R \in \mathfrak{D}(\mathbf{k})$. In the present paper we avoid using the term "Danielewski surface" in that sense, because it is incompatible with accepted usage. The reader should keep this in mind when consulting [5] (our main reference for Section 2).

2. Base extension

Let \mathbf{k} be a field of characteristic zero. It is clear that if $R \in \mathfrak{D}(\mathbf{k})$ then $K \otimes_{\mathbf{k}} R \in \mathfrak{D}(K)$ for every field extension K / \mathbf{k}. However, if $K \otimes_{\mathbf{k}} R \in \mathfrak{D}(K)$ for some K, it does not follow that $R \in \mathfrak{D}(\mathbf{k})$ (see Example 2.2, below).
2.1. Remark. If $R \in \mathfrak{D}(\mathbf{k})$ then $\operatorname{Spec} R$ has infinitely many k-rational points. (Indeed, if $R=$ $\mathbf{k}[X, Y, Z] /(X Y-\varphi(Z))$ then there is a bijection between the set of \mathbf{k}-rational points of Spec R and the zero-set in \mathbf{k}^{3} of the polynomial $X Y-\varphi(Z)$.)
2.2. Example. Let $A=\mathbb{R}[X, Y, Z] /(f)$, where $f=X^{2}+Y^{2}+Z^{2}$. Viewing f as an element of $\mathbb{C}[X, Y, Z]$ we have $f=(X+i Y)(X-i Y)+Z^{2}$ (where $i^{2}=-1$), so $\mathbb{C} \otimes_{\mathbb{R}} A \cong$ $\mathbb{C}[U, V, W] /\left(U V+W^{2}\right) \in \mathfrak{D}(\mathbb{C})$. As Spec A has only one \mathbb{R}-rational point, $A \notin \mathfrak{D}(\mathbb{R})$ by Remark 2.1. Thus

$$
A \notin \mathfrak{D}(\mathbb{R}) \quad \text { and } \quad \mathbb{C} \otimes_{\mathbb{R}} A \in \mathfrak{D}(\mathbb{C})
$$

Note ${ }^{2}$ that Theorem 2.3 (below) implies that $\operatorname{ML}(A)=A$. Moreover, if we define $A^{\prime}=$ $\mathbb{R}[U, V, W] /\left(U V+W^{2}\right) \in \mathfrak{D}(\mathbb{R})$ then $A \nsubseteq A^{\prime}$ but $\mathbb{C} \otimes_{\mathbb{R}} A \cong \mathbb{C} \otimes_{\mathbb{R}} A^{\prime}$.
2.3. Theorem. For an algebra R over a field \mathbf{k} of characteristic zero, the following conditions are equivalent:
(a) $R \in \mathfrak{D}(\mathbf{k})$;
(b) $\operatorname{ML}(R) \neq R$ and there exists a field extension K / \mathbf{k} such that $K \otimes_{\mathbf{k}} R \in \mathfrak{D}(K)$.

We shall prove this after some preparation.
2.4. Some facts. Refer to [11] or [13] for background on locally nilpotent derivations. Statement (c) is due to Rentschler [20] and (d) to Nouazé and Gabriel [19] and Wright [21].
(a) If $A \in \operatorname{KLND}(B)$ where B is a domain of characteristic zero then A is factorially closed in B (i.e., if $x, y \in B \backslash\{0\}$ and $x y \in A$ then $x, y \in A$). It follows that $\operatorname{ML}(B)$ is factorially closed in B. Any factorially closed subring A of B is in particular algebraically closed in B (i.e., if $x \in B$ is a root of a nonzero polynomial with coefficients in A then $x \in A$) and satisfies $A^{*}=B^{*}$ (in particular, any field contained in B is contained in A).
(b) Let B be a noetherian domain of characteristic zero. If $0 \neq D \in \operatorname{LND}(B)$ then $D=\alpha D_{0}$ for some $\alpha \in \operatorname{ker}(D)$ and $D_{0} \in \operatorname{LND}(B)$ where D_{0} is irreducible (i.e., the only principal ideal of B which contains $D_{0}(B)$ is B).
(c) Let $B=\mathbf{k}^{[2]}$ where \mathbf{k} is a field of characteristic zero. If $D \in \operatorname{LND}(B)$ is irreducible then there exist X, Y such that $B=\mathbf{k}[X, Y]$ and $D=\partial / \partial Y$.
(d) Let B be a \mathbb{Q}-algebra. If $D \in \operatorname{LND}(B)$ and $s \in B$ satisfy $D s \in B^{*}$ then $B=A[s]=A^{[1]}$ where $A=\operatorname{ker} D$.

[^1]2.5. Lemma. Let \mathbf{k} be a field of characteristic zero and R a \mathbf{k}-algebra satisfying:
$$
\text { there exists a field extension } \overline{\mathbf{k}} / \mathbf{k} \text { such that } \overline{\mathbf{k}} \otimes_{\mathbf{k}} R \in \mathfrak{D}(\overline{\mathbf{k}}) \text {. }
$$

Then R is a two-dimensional normal affine domain over \mathbf{k} and $R^{*}=\mathbf{k}^{*}$.
Proof. This is rather simple but it will be convenient to refer to this proof later. Choose a field extension $\overline{\mathbf{k}} / \mathbf{k}$ such that $\overline{\mathbf{k}} \otimes_{\mathbf{k}} R \in \mathfrak{D}(\overline{\mathbf{k}})$ and let $\bar{R}=\overline{\mathbf{k}} \otimes_{\mathbf{k}} R$. As R is a flat \mathbf{k}-module, the canonical homomorphism $\mathbf{k} \otimes_{\mathbf{k}} R \rightarrow \overline{\mathbf{k}} \otimes_{\mathbf{k}} R$ is injective, so we may regard R as a subring of \bar{R}. In particular, R is an integral domain and we have the diagram:

where $S=R \backslash\{0\}$. Let \mathcal{B} be a basis of $\overline{\mathbf{k}}$ over \mathbf{k} such that $1 \in \mathcal{B}$. Note that \mathcal{B} is also a basis of the free R-module \bar{R} and of the vector space $S^{-1} \bar{R}$ over Frac R. It follows:

$$
\begin{equation*}
\overline{\mathbf{k}} \cap R=\mathbf{k} \quad \text { and } \quad \bar{R} \cap \operatorname{Frac} R=R . \tag{1}
\end{equation*}
$$

As $\bar{R} \in \mathfrak{D}(\overline{\mathbf{k}}),[5,2.3]$ implies that $\bar{R}^{*}=\overline{\mathbf{k}}^{*}$ and that \bar{R} is a normal domain; so (1) implies that $R^{*}=\mathbf{k}^{*}$ and that R is a normal domain. Also:

$$
\begin{equation*}
\text { If } E \text { is a subset of } R \text { such that } \overline{\mathbf{k}}[E]=\bar{R} \text {, then } \mathbf{k}[E]=R \text {. } \tag{2}
\end{equation*}
$$

Indeed, \mathcal{B} is a basis of the R-module \bar{R} and a spanning set of the $\mathbf{k}[E]$-module \bar{R}; as $\mathbf{k}[E] \subseteq R$, it follows that $\mathbf{k}[E]=R$.

Note that R is affine over \mathbf{k}, by (2) and the fact that \bar{R} is affine over $\overline{\mathbf{k}}$. Let $n=\operatorname{dim} R$ then, by Noether Normalization Lemma, there exists a subalgebra $R_{0}=\mathbf{k}^{[n]}$ of R over which R is integral. Then $\bar{R}=\overline{\mathbf{k}} \otimes_{\mathbf{k}} R$ is integral over $\overline{\mathbf{k}} \otimes_{\mathbf{k}} R_{0}=\overline{\mathbf{k}}^{[n]}$, so $n=\operatorname{dim} \bar{R}=2$.

We borrow the following notation from [5, 2.1].
2.6. Definition. Given a k-algebra R, let $\Gamma_{\mathbf{k}}(R)$ denote the (possibly empty) set of ordered triples $\left(x_{1}, x_{2}, y\right) \in R \times R \times R$ satisfying:

The \mathbf{k}-homomorphism $\mathbf{k}\left[X_{1}, X_{2}, Y\right] \rightarrow R$ defined by

$$
X_{1} \mapsto x_{1}, \quad X_{2} \mapsto x_{2} \quad \text { and } \quad Y \mapsto y
$$

is surjective and has kernel equal to $\left(X_{1} X_{2}-\varphi(Y)\right) \mathbf{k}\left[X_{1}, X_{2}, Y\right]$ for some nonconstant polynomial in one variable $\varphi(Y) \in \mathbf{k}[Y]$.

Note that $R \in \mathfrak{D}(\mathbf{k})$ if and only if $\Gamma_{\mathbf{k}}(R) \neq \emptyset$.

Proof of Theorem 2.3. That $R \in \mathfrak{D}(\mathbf{k})$ implies $\operatorname{ML}(R)=\mathbf{k}$ is well known (for instance it follows from part (d) of [5, 2.3]), so it suffices to prove that (b) implies (a).

Suppose that R satisfies (b). Note that if K / \mathbf{k} is a field extension satisfying $K \otimes_{\mathbf{k}} R \in \mathfrak{D}(K)$ then for any field extension L / K we have $L \otimes_{\mathbf{k}} R \in \mathfrak{D}(L)$. In particular, there exists a field extension $\overline{\mathbf{k}} / \mathbf{k}$ such that $\overline{\mathbf{k}} \otimes_{\mathbf{k}} R \in \mathfrak{D}(\overline{\mathbf{k}})$ and such that $\overline{\mathbf{k}}$ is an algebraically closed field. We fix such a field $\overline{\mathbf{k}}$. The fact that $\overline{\mathbf{k}}$ is algebraically closed implies that

$$
\begin{equation*}
\text { the fixed field } \overline{\mathbf{k}}^{G} \text { is equal to } \mathbf{k} \tag{3}
\end{equation*}
$$

where $G=\operatorname{Gal}(\overline{\mathbf{k}} / \mathbf{k})$. We use the notation (\bar{R}, \mathcal{B}, etc.) introduced in the proof of Lemma 2.5. As $\operatorname{ML}(R) \neq R$, there exists $0 \neq D \in \operatorname{LND}(R)$. Let $\bar{D} \in \operatorname{LND}(\bar{R})$ be the unique extension of D, let $A=\operatorname{ker} D$ and $\bar{A}=\operatorname{ker} \bar{D}$.

It follows from [5] that $\bar{A}=\overline{\mathbf{k}}^{[1]}$ ([5, 2.3] shows that some element of $\operatorname{KLND}(\bar{R})$ is a $\overline{\mathbf{k}}^{[1]}$ and, by [5, 2.7.2], $\operatorname{Aut}_{\overline{\mathbf{k}}}(\bar{R})$ acts transitively on $\operatorname{KLND}(\bar{R})$). Applying the exact functor $\overline{\mathbf{k}} \otimes_{\mathbf{k}}$ to the exact sequence $0 \rightarrow A \rightarrow R \xrightarrow{D} R$ of \mathbf{k}-linear maps shows that $\overline{\mathbf{k}} \otimes_{\mathbf{k}} A=\bar{A}=\overline{\mathbf{k}}^{[1]}$, so $A=\mathbf{k}^{[1]}$. Choose $f \in R$ such that $A=\mathbf{k}[f]$, then $\bar{A}=\overline{\mathbf{k}}[f]$.

Consider the nonzero ideals $I=A \cap D(R)$ and $\bar{I}=\bar{A} \cap \bar{D}(\bar{R})$ of A and \bar{A}, respectively. Let $\psi \in A$ and $s \in R$ be such that $I=\psi A$ and $D(s)=\psi$. We claim that

$$
\begin{equation*}
\bar{I}=\psi \bar{A} \tag{4}
\end{equation*}
$$

Indeed, an arbitrary element of \bar{I} is of the form $\bar{D}(\sigma)$ where $\sigma \in \bar{R}$ and $\bar{D}^{2}(\sigma)=0$. Write $\sigma=$ $\sum_{\lambda \in \mathcal{B}} s_{\lambda} \lambda$ with $s_{\lambda} \in R$, then $0=\bar{D}^{2}(\sigma)=\sum_{\lambda \in \mathcal{B}} D^{2}\left(s_{\lambda}\right) \lambda$, so for all $\lambda \in \mathcal{B}$ we have $D^{2}\left(s_{\lambda}\right)=0$, hence $D\left(s_{\lambda}\right) \in I=\psi A$, and consequently $\bar{D}(\sigma) \in \psi \bar{A}$, which proves (4).

By 2.4(b), $\bar{D}=\alpha \Delta$ for some $\alpha \in \bar{A} \backslash\{0\}$ and some irreducible $\Delta \in \operatorname{LND}(\bar{R})$. Consider the nonzero ideal $I_{0}=\bar{A} \cap \Delta(\bar{R})$ of \bar{A}. We claim that

$$
\begin{equation*}
I_{0}=\Delta(s) \bar{A} \tag{5}
\end{equation*}
$$

To see this, consider an arbitrary element $\Delta(\sigma)$ of I_{0} (where $\sigma \in \bar{R}, \Delta^{2}(\sigma)=0$). Then $\alpha \Delta(\sigma)=$ $\bar{D}(\sigma) \in \bar{I}=\psi \bar{A}=\bar{D}(s) \bar{A}=\alpha \Delta(s) \bar{A}$, so $\Delta(\sigma) \in \Delta(s) \bar{A}$ and (5) is proved.

Consider the case where $\Delta(s) \in \bar{R}^{*}$. Then $\bar{R}=\bar{A}[s]=\overline{\mathbf{k}}[f, s]$ by 2.4(d), so (2) implies that $R=\mathbf{k}[f, s]=\mathbf{k}^{[2]}$, so in particular $R \in \mathfrak{D}(\mathbf{k})$ and we are done.

From now on assume that $\Delta(s) \notin \bar{R}^{*}$. By [5, 2.8], $\bar{A}=\overline{\mathbf{k}}[\Delta(y)]$ for some $y \in \bar{R}$. Note that $\Delta(y) \in I_{0}$, so (5) gives $\Delta(s) \mid \Delta(y)$ in \bar{A}. As $\Delta(y)$ is an irreducible element of \bar{A} (because $\left.\overline{\mathbf{k}}[\Delta(y)]=\bar{A}=\overline{\mathbf{k}}^{[1]}\right)$ and $\Delta(s) \notin \bar{A}^{*}$, we have $\overline{\mathbf{k}}[\Delta(s)]=\bar{A}=\overline{\mathbf{k}}[f]$ and consequently $\Delta(s)=$ $\mu(f-\lambda)$ for some $\mu \in \overline{\mathbf{k}}^{*}, \lambda \in \overline{\mathbf{k}}$. We may as well replace Δ by $\mu^{-1} \Delta$, so

$$
\begin{equation*}
\Delta(s)=f-\lambda, \quad \text { for some } \lambda \in \overline{\mathbf{k}} \tag{6}
\end{equation*}
$$

We claim:

$$
\begin{equation*}
\{c \in \overline{\mathbf{k}} \mid \bar{R} /(f-c) \bar{R} \text { is not an integral domain }\}=\{\lambda\} . \tag{7}
\end{equation*}
$$

Indeed, $[5,2.8]$ implies that there exists $x_{2} \in \bar{R}$ such that $\left(f-\lambda, x_{2}, s\right) \in \Gamma_{\overline{\mathbf{k}}}(\bar{R})$. This means (cf. 2.6) that the $\overline{\mathbf{k}}$-homomorphism $\pi: \overline{\mathbf{k}}\left[X_{1}, X_{2}, Y\right] \rightarrow \bar{R}$ defined by $X_{1} \mapsto f-\lambda, X_{2} \mapsto x_{2}$,
$Y \mapsto s$, is surjective and has kernel $\left(X_{1} X_{2}-P(Y)\right)$ for some nonconstant $P(Y) \in \overline{\mathbf{k}}[Y]$ (where X_{1}, X_{2}, Y are indeterminates). By (5) and $\Delta(s) \notin \bar{R}^{*}$, we see that there does not exist $\sigma \in \bar{R}$ such that $\Delta(\sigma)=1$; as Δ is irreducible, it follows from $2.4(\mathrm{c})$ that $\bar{R} \neq \overline{\mathbf{k}}^{[2]}$ and hence that $\operatorname{deg}_{Y} P(Y)>1$. Thus, for $c \in \overline{\mathbf{k}}$,

$$
\bar{R} /(f-c) \bar{R} \cong \overline{\mathbf{k}}\left[X_{1}, X_{2}, Y\right] /\left(X_{1}-(c-\lambda), X_{1} X_{2}-P(Y)\right)
$$

is a domain if and only if $c \neq \lambda$. This proves (7).
Let $\theta \in \operatorname{Gal}(\overline{\mathbf{k}} / \mathbf{k})$. Then θ extends to some $\Theta \in \operatorname{Aut}_{R}(\bar{R})$ and Θ determines a ring isomorphism

$$
\bar{R} /(f-\lambda) \bar{R} \cong \bar{R} / \Theta(f-\lambda) \bar{R}=\bar{R} /(f-\theta(\lambda)) \bar{R} .
$$

So $\bar{R} /(f-\theta(\lambda)) \bar{R}$ is not a domain and it follows from (7) that $\theta(\lambda)=\lambda$. As this holds for every $\theta \in \operatorname{Gal}(\overline{\mathbf{k}} / \mathbf{k})$, (3) implies that $\lambda \in \mathbf{k}$. To summarize, if we define $x_{1}=f-\lambda$ then

$$
x_{1}, s \in R \text { and there exists } x_{2} \in \bar{R} \text { such that }\left(x_{1}, x_{2}, s\right) \in \Gamma_{\overline{\mathbf{k}}}(\bar{R}) .
$$

We now show that x_{2} can be chosen in R. Consider the ideals $J=\mathbf{k}[s] \cap x_{1} R$ of $\mathbf{k}[s]$ and $\bar{J}=\overline{\mathbf{k}}[s] \cap x_{1} \bar{R}$ of $\overline{\mathbf{k}}[s]$, and choose $\varphi(Y) \in \mathbf{k}[Y]$ such that $J=\varphi(s) \mathbf{k}[s]$. Let $\Phi(s)$ be any element of \bar{J} (where $\Phi(Y) \in \overline{\mathbf{k}}[Y]$). Then $\Phi(s)=x_{1} G$ for some $G \in \bar{R}$. As \mathcal{B} is a basis of the R-module \bar{R} and also of the $\mathbf{k}[Y]$-module $\overline{\mathbf{k}}[Y]$, we may write $G=\sum_{\lambda \in \mathcal{B}} G_{\lambda} \lambda$ (where $G_{\lambda} \in R$) and $\Phi=\sum_{\lambda \in \mathcal{B}} \Phi_{\lambda} \lambda$ (where $\Phi_{\lambda} \in \mathbf{k}[Y]$). Then $\sum_{\lambda \in \mathcal{B}}\left(x_{1} G_{\lambda}\right) \lambda=\Phi(s)=\sum_{\lambda \in \mathcal{B}} \Phi_{\lambda}(s) \lambda$, so for every $\lambda \in \mathcal{B}$ we have $\Phi_{\lambda}(s)=x_{1} G_{\lambda}$, i.e., $\Phi_{\lambda}(s) \in J=\varphi(s) \mathbf{k}[s]$. We obtain that $\Phi(s) \in \varphi(s) \overline{\mathbf{k}}[s]$, so:

$$
\bar{J}=\varphi(s) \overline{\mathbf{k}}[s] .
$$

On the other hand, $[5,2.4]$ asserts that $\bar{J}=x_{1} x_{2} \overline{\mathbf{k}}[s]$, so $x_{1} x_{2}=\mu \varphi(s)$ for some $\mu \in \overline{\mathbf{k}}^{*}$. It is clear that if $\left(x_{1}, x_{2}, s\right)$ belongs to $\Gamma_{\overline{\mathbf{k}}}(\bar{R})$ then so does $\left(x_{1}, \mu^{-1} x_{2}, s\right)$; so there exists $x_{2} \in \bar{R}$ such that $\left(x_{1}, x_{2}, s\right) \in \Gamma_{\overline{\mathbf{k}}}(\bar{R})$ and $x_{1} x_{2}=\varphi(s)$. As $x_{2}=\varphi(s) / x_{1} \in \operatorname{Frac} R$, (1) implies that $x_{2} \in R$. Thus

$$
\left(x_{1}, x_{2}, s\right) \in \Gamma_{\overline{\mathbf{k}}}(\bar{R}), \quad \text { where } x_{1}, x_{2}, s \in R .
$$

In particular we have $\bar{R}=\overline{\mathbf{k}}\left[x_{1}, x_{2}, s\right]$, so (2) gives $R=\mathbf{k}\left[x_{1}, x_{2}, s\right]$. As $x_{1} x_{2}=\varphi(s)$ where $\varphi(Y) \in \mathbf{k}[Y]$ is nonconstant, it follows that $\left(x_{1}, x_{2}, s\right) \in \Gamma_{\mathbf{k}}(R)$ and hence that $R \in \mathfrak{D}(\mathbf{k})$.

3. On a result of Bandman and Makar-Limanov

In this paper we adopt the following:
3.1. Definition. Let R be an affine algebra over a field \mathbf{k} and let $q=\operatorname{dim} R$. We say that R is a complete intersection over \mathbf{k} if $R \cong \mathbf{k}\left[X_{1}, \ldots, X_{p+q}\right] /\left(f_{1}, \ldots, f_{p}\right)$ for some $p \geqslant 0$ and some $f_{1}, \ldots, f_{p} \in \mathbf{k}\left[X_{1}, \ldots, X_{p+q}\right]$.

We refer to [18, 28.D] for the definition of a smooth \mathbf{k}-algebra and to [18, 26.C] for the definition of the R-module $\Omega_{R / \mathbf{k}}$ (the module of differentials of R over \mathbf{k}), where R is a \mathbf{k} algebra.
3.2. Theorem. Let \mathbf{k} be a field of characteristic zero and R a smooth affine \mathbf{k}-domain of dimension 2 such that $\mathrm{ML}(R)=\mathbf{k}$. Then the following are equivalent:
(a) $R \in \mathfrak{D}(\mathbf{k})$;
(b) R is generated by 3 elements as a \mathbf{k}-algebra;
(c) R is a complete intersection over \mathbf{k};
(d) $\bigwedge^{2} \Omega_{R / \mathbf{k}} \cong R$.

We shall prove this by reducing to the case $\mathbf{k}=\mathbb{C}$, which was proved by Bandman and MakarLimanov in [1]. That reduction makes essential use of Theorem 2.3.
3.3. Remark. Let \mathbf{k} be a field of characteristic zero. According to the definition of "Danielewski surface over \mathbf{k} " given in [10], one has the following situation:

where $\operatorname{DANML}(\mathbf{k})$ is the class of Danielewski surfaces S over \mathbf{k} satisfying $\operatorname{ML}(S)=\mathbf{k}, \operatorname{SML}(\mathbf{k})$ is the larger class of smooth affine surfaces S over \mathbf{k} satisfying $\operatorname{ML}(S)=\mathbf{k}$, and $\mathfrak{D}(\mathbf{k})$ is the class of surfaces corresponding to the already defined class $\mathfrak{D}(\mathbf{k})$ of \mathbf{k}-algebras. Among other things, paper [10] classifies the elements of $\operatorname{DANML}(\mathbf{k})$ and characterizes those which belong to $\mathfrak{D}(\mathbf{k})$. In contrast, Theorem 3.2 characterizes the elements of $\operatorname{SML}(\mathbf{k})$ which belong to $\mathfrak{D}(\mathbf{k})$.
3.4. Remark. Let R be a q-dimensional smooth affine domain over a field \mathbf{k} of characteristic zero. Then $X=\operatorname{Spec} R$ is in particular an irreducible regular scheme of finite type over the perfect field \mathbf{k}; so, by [15, ex. 8.1(c), p. 187], the sheaf of differentials $\Omega_{X / \mathbf{k}}$ is locally free of rank q; so the canonical sheaf $\omega_{X}=\bigwedge^{q} \Omega_{X / \mathbf{k}}$ is locally free of rank 1, i.e., is an invertible sheaf on X. As ω_{X} and the structure sheaf \mathcal{O}_{X} are respectively the sheaves associated to the R modules $\bigwedge^{q} \Omega_{R / \mathbf{k}}$ and R, the condition $\bigwedge^{q} \Omega_{R / \mathbf{k}} \cong R$ is equivalent to $\omega_{X} \cong \mathcal{O}_{X}$ (one says that X has trivial canonical sheaf). This is also equivalent to the canonical divisor of X being linearly equivalent to zero (because $\operatorname{Pic}(X) \cong \mathrm{Cl}(X)$ by [15, 6.16, p. 145]).
3.5. Remark. Let A^{\prime} and B be algebras over a ring A and let $B^{\prime}=A^{\prime} \otimes_{A} B$. Then $\Omega_{B^{\prime} / A^{\prime}} \cong$ $B^{\prime} \otimes_{B} \Omega_{B / A}$ (cf. [18, p. 186]) and, for any B-module $M, \bigwedge^{n}\left(B^{\prime} \otimes_{B} M\right) \cong B^{\prime} \otimes_{B} \bigwedge^{n} M$ for every n [3, Chapter 3, §7, No. 5, Proposition 8]. Consequently, $\bigwedge^{n} \Omega_{B^{\prime} / A^{\prime}} \cong B^{\prime} \otimes_{B} \bigwedge^{n} \Omega_{B / A}$.
3.6. Lemma. Let R be an algebra over a field \mathbf{k}. If R is a complete intersection over \mathbf{k} and a smooth \mathbf{k}-algebra, then $\bigwedge^{q} \Omega_{R / \mathbf{k}} \cong R$ where $q=\operatorname{dim} R$.

This is the well-known fact that a smooth complete intersection has trivial canonical sheaf, but we do not know a suitable reference so we sketch a proof.

Proof of 3.6. Let $R=\mathbf{k}\left[X_{1}, \ldots, X_{p+q}\right] /\left(f_{1}, \ldots, f_{p}\right)$ and let $\varphi_{i j} \in R$ be the image of $\frac{\partial f_{j}}{\partial X_{i}}$. Because R is smooth over \mathbf{k}, [18, 29.E] implies that the matrix ($\varphi_{i j}$) satisfies:

$$
\begin{equation*}
\text { the } p \times p \text { determinants of }\left(\varphi_{i j}\right) \text { generate the unit ideal of } R \text {. } \tag{8}
\end{equation*}
$$

By [15, $8.4 \mathrm{~A}, \mathrm{p} .173]$, there is an exact sequence $R^{p} \xrightarrow{\varphi} R^{p+q} \rightarrow \Omega_{R / \mathbf{k}} \rightarrow 0$ of R-linear maps where φ is the map corresponding to the matrix $\left(\varphi_{i j}\right)$. Now if R is a ring and $R^{p} \xrightarrow{\varphi} R^{p+q} \rightarrow$ $M \rightarrow 0$ is an exact sequence of R-linear maps such that φ satisfies (8), then $\bigwedge^{q} M \cong R$.
3.7. Lemma. Let R be an integral domain containing a field \mathbf{k} of characteristic zero. If R is normal and $\mathrm{ML}(R)=\mathbf{k}$, then for any field extension K of \mathbf{k} we have:
(a) $K \otimes_{\mathbf{k}} R$ is an integral domain;
(b) $\operatorname{ML}\left(K \otimes_{\mathbf{k}} R\right)=K$.

Proof. As $\mathbf{k}=\mathrm{ML}(R)$ is algebraically closed in $R(2.4(\mathrm{a}))$ and R is normal, it follows that \mathbf{k} is algebraically closed in $L=\operatorname{Frac} R$. By [22, Corollary 2 , p. 198], $K \otimes_{\mathbf{k}} L$ is an integral domain. As K is flat over \mathbf{k} and $R \rightarrow L$ is injective, $K \otimes_{\mathbf{k}} R \rightarrow K \otimes_{\mathbf{k}} L$ is injective and (a) is proved.

Let $\xi \in \operatorname{ML}\left(K \otimes_{\mathbf{k}} R\right)$. Consider a basis \mathcal{B} of K over \mathbf{k}; note that \mathcal{B} is also a basis of the free R-module $R^{\prime}=K \otimes_{\mathbf{k}} R$ and write $\xi=\sum_{\lambda \in \mathcal{B}} x_{\lambda} \lambda$ (where $x_{\lambda} \in R$). If $D \in \operatorname{LND}(R)$ then D extends to an element $D^{\prime} \in \operatorname{LND}\left(R^{\prime}\right)$ and the equation $0=D^{\prime}(\xi)=\sum_{\lambda \in \mathcal{B}} D\left(x_{\lambda}\right) \lambda$ shows that $D\left(x_{\lambda}\right)=0$ for all $\lambda \in \mathcal{B}$. As this holds for every $D \in \operatorname{LND}(R)$, we have $x_{\lambda} \in \operatorname{ML}(R)=\mathbf{k}$ for all λ, so $\xi \in K$.

Proof of Theorem 3.2. Implications $(a) \Rightarrow(b) \Rightarrow$ (c) are trivial and (c) \Rightarrow (d) is Lemma 3.6, so only $(\mathrm{d}) \Rightarrow$ (a) requires a proof. Assume for a moment that $\mathbf{k}=\mathbb{C}$ and suppose that R satisfies (d). Then Lemmas 4 and 5 of [1] imply that $R \in \mathfrak{D}(\mathbb{C})$, so the theorem is valid in the case $\mathbf{k}=\mathbb{C}$.

Let \mathbf{k} be a field of characteristic zero, consider a smooth affine \mathbf{k}-domain R of dimension 2 such that $\operatorname{ML}(R)=\mathbf{k}$, and suppose that R satisfies (d).

We have $R \cong \mathbf{k}\left[X_{1}, \ldots, X_{n}\right] /\left(f_{1}, \ldots, f_{m}\right)$ for some $m, n \geqslant 0$ and some $f_{1}, \ldots, f_{m} \in$ $\mathbf{k}\left[X_{1}, \ldots, X_{n}\right]$. Also consider $D_{1}, D_{2} \in \operatorname{LND}(R)$ such that $\operatorname{ker} D_{1} \cap \operatorname{ker} D_{2}=\mathbf{k}$. Each D_{i} can be lifted to a (not necessarily locally nilpotent) \mathbf{k}-derivation δ_{i} of $\mathbf{k}\left[X_{1}, \ldots, X_{n}\right]$. Let \mathbf{k}_{0} be a subfield of \mathbf{k} which is finitely generated over \mathbb{Q} and which contains all coefficients of the polynomials f_{i} and $\delta_{i}\left(X_{j}\right)$. Define $R_{0}=\mathbf{k}_{0}\left[X_{1}, \ldots, X_{n}\right] /\left(f_{1}, \ldots, f_{m}\right)$ and note that $\mathbf{k} \otimes_{\mathbf{k}_{0}} R_{0} \cong R$. As $\mathbf{k}_{0} \rightarrow \mathbf{k}$ is injective and R_{0} is flat over $\mathbf{k}_{0}, \mathbf{k}_{0} \otimes_{\mathbf{k}_{0}} R_{0} \rightarrow \mathbf{k} \otimes_{\mathbf{k}_{0}} R_{0}$ is injective and we may regard R_{0} as a subring of R. In particular, R_{0} is a domain (a 2 -dimensional affine \mathbf{k}_{0}-domain). Also note that $D_{i}\left(R_{0}\right) \subseteq R_{0}$ for $i=1,2$; if $d_{i}: R_{0} \rightarrow R_{0}$ is the restriction of D_{i} then $d_{1}, d_{2} \in \operatorname{LND}\left(R_{0}\right)$ and $\operatorname{ker} d_{1} \cap \operatorname{ker} d_{2}=\mathbf{k} \cap R_{0}=\mathbf{k}_{0}$ (see (1) for the last equality), showing that $\operatorname{ML}\left(R_{0}\right)=\mathbf{k}_{0}$. As \mathbf{k}_{0} is a field and $\mathbf{k} \rightarrow R$ is obtained from $\mathbf{k}_{0} \rightarrow R_{0}$ by base extension, the fact that $\mathbf{k} \rightarrow R$ is smooth implies that $\mathbf{k}_{0} \rightarrow R_{0}$ is smooth (cf. [18, 28.O]).

Consider the R-module $M=\bigwedge^{2} \Omega_{R / \mathbf{k}}$ and the R_{0}-module $M_{0}=\bigwedge^{2} \Omega_{R_{0} / \mathbf{k}_{0}}$. Consider an isomorphism of R-modules $\theta: R \rightarrow M$ and let $\omega=\theta(1)$. We have $R \otimes_{R_{0}} M_{0} \cong M$ by 3.5, so there is a natural homomorphism $M_{0} \rightarrow R \otimes_{R_{0}} M_{0} \cong M, x \mapsto 1 \otimes x$; by adjoining a finite subset
of \mathbf{k} to \mathbf{k}_{0}, we may arrange that there exists $\omega_{0} \in M_{0}$ such that $1 \otimes \omega_{0}=\omega$. Consider the $R_{0}-$ linear map $f: R_{0} \rightarrow M_{0}, f(a)=a \omega_{0}$. Note that $R=\mathbf{k} \otimes_{\mathbf{k}_{0}} R_{0}$ is faithfully flat as an R_{0}-module and that applying the functor $R \otimes_{R_{0}-}$ to f yields the isomorphism θ; so f is an isomorphism, so $\bigwedge^{2} \Omega_{R_{0} / \mathbf{k}_{0}} \cong R_{0}$. As $R \in \mathcal{D}(\mathbf{k})$ would follow from $R_{0} \in \mathcal{D}\left(\mathbf{k}_{0}\right)$, the problem reduces to proving the case $\mathbf{k}=\mathbf{k}_{0}$ of the theorem. Now \mathbf{k}_{0} is isomorphic to a subfield of \mathbb{C}, so it suffices to prove the theorem in the case $\mathbf{k} \subseteq \mathbb{C}$.

Assume that $\mathbf{k} \subseteq \mathbb{C}$. As R is smooth over \mathbf{k}, the local ring $R_{\mathfrak{p}}$ is regular for every $\mathfrak{p} \in \operatorname{Spec} R$ (by [18, 28.E, F, K]) so in particular R is a normal domain. Then it follows from 3.7 that $R^{\prime}=$ $\mathbb{C} \otimes_{\mathbf{k}} R$ is an integral domain and that $\mathrm{ML}\left(R^{\prime}\right)=\mathbb{C}$. By [18, 28.G], R^{\prime} is smooth over \mathbb{C}. It is clear that $\operatorname{dim} R^{\prime}=2$ (for instance see the proof of 2.5) and 3.5 gives $\bigwedge^{2} \Omega_{R^{\prime} / \mathbb{C}} \cong R^{\prime} \otimes_{R} \bigwedge^{2} \Omega_{R / \mathbf{k}} \cong$ $R^{\prime} \otimes_{R} R \cong R^{\prime}$. As the theorem is valid over \mathbb{C}, it follows that $R^{\prime} \in \mathcal{D}(\mathbb{C})$. As $\operatorname{ML}(R)=\mathbf{k} \neq R$, Theorem 2.3 implies that $R \in \mathcal{D}(\mathbf{k})$.
3.8. Corollary. Let R be a 2-dimensional affine domain over a field \mathbf{k} of characteristic zero. If R is a UFD and a smooth \mathbf{k}-algebra satisfying $\operatorname{ML}(R)=\mathbf{k}$, then $R \in \mathfrak{D}(\mathbf{k})$.

Proof. Since R is a UFD, the scheme $X=\operatorname{Spec} R$ has a trivial divisor class group [15, 6.2, p. 131]. By Remark 3.4, it follows that $\bigwedge^{2} \Omega_{R / \mathbf{k}} \cong R$ and the desired conclusion follows from Theorem 3.2.

4. Localizations of nice rings

Throughout this section we fix a field \mathbf{k} of characteristic zero and we consider the class $\mathcal{N}(\mathbf{k})$ of \mathbf{k}-algebras B satisfying the following conditions:
B is a geometrically integral affine \mathbf{k}-domain which is smooth over \mathbf{k} and satisfies at least one of the following conditions:

- B is a UFD; or
- B is a complete intersection over \mathbf{k}.

Note that $\mathbf{k}^{[n]} \in \mathcal{N}(\mathbf{k})$ for every n.
4.1. Theorem. Suppose that R is a localization of a ring belonging to the class $\mathcal{N}(\mathbf{k})$. If $\operatorname{ML}(R)=$ K for some field $K \subset R$ such that $\operatorname{trdeg}_{K} R=2$, then $R \in \mathfrak{D}(K)$.
4.2. Lemma. Let $B \in \mathcal{N}(\mathbf{k})$, let E be a finitely generated \mathbf{k}-subalgebra of B and let $S=E \backslash\{0\}$. Then $S^{-1} B$ is a smooth algebra over the field $S^{-1} E$.

Proof. Let $\overline{\mathbf{k}}$ be an algebraic closure of \mathbf{k} and define $\bar{E}=\overline{\mathbf{k}} \otimes_{\mathbf{k}} E$ and $\bar{B}=\overline{\mathbf{k}} \otimes_{\mathbf{k}} B$. Note that \bar{B} is a domain because B is geometrically integral, and $\bar{E} \rightarrow \bar{B}$ is injective because $\overline{\mathbf{k}}$ is flat over \mathbf{k}. Let $K=\operatorname{Frac} E$ and $L=\operatorname{Frac} \bar{E}$. As \bar{B} is smooth over $\overline{\mathbf{k}}$, applying [15, 10.7, p. 272] to Spec $\bar{B} \rightarrow$ Spec \bar{E} implies that $L \rightarrow L \otimes_{\bar{E}} \bar{B}$ is smooth. It is not difficult to see that $L \rightarrow L \otimes_{\bar{E}} \bar{B}$ is obtained from $K \rightarrow K \otimes_{E} B$ by base extension. As K is a field and $L \rightarrow L \otimes_{\bar{E}} \bar{B}$ is smooth, it follows from [18, 28.0] that $K \rightarrow K \otimes_{E} B$ is smooth.
4.3. Lemma. Let $B \in \mathcal{N}(\mathbf{k})$, let S be a multiplicative subset of B and suppose that K is a field such that $\mathbf{k} \cup S \subseteq K \subseteq S^{-1} B$. Then $S^{-1} B$ is a smooth K-algebra and some transcendence basis of K / \mathbf{k} is a subset of B.

Proof. Note that K / \mathbf{k} is a finitely generated field extension and write $K=\mathbf{k}\left(\alpha_{1}, \ldots, \alpha_{m}\right)$. For each i we have $\alpha_{i}=b_{i} / s_{i}$ for some $b_{i} \in B$ and $s_{i} \in S$; as $S \subseteq K$, we have $b_{i}=s_{i} \alpha_{i} \in K$. Define $E=\mathbf{k}\left[b_{1}, \ldots, b_{m}, s_{1}, \ldots, s_{m}\right] \subseteq K$ and $S_{1}=E \backslash\{0\}$, then $S_{1}^{-1} E=K$ and hence $S_{1}^{-1} B=S^{-1} B$. By Lemma 4.2, $S^{-1} B$ is a smooth K-algebra. Moreover, $\left\{b_{1}, \ldots, b_{m}, s_{1}, \ldots, s_{m}\right\}$ contains a transcendence basis of K / \mathbf{k}.

Proof of Theorem 4.1. We have $R=S^{-1} B$ for some $B \in \mathcal{N}(\mathbf{k})$ and some multiplicative subset S of B. As $\mathbf{k}^{*} \cup S \subseteq R^{*} \subseteq \operatorname{ML}(R)=K, R$ is smooth over K by Lemma 4.3. By definition of $\mathcal{N}(\mathbf{k}), B$ is a UFD or a complete intersection over \mathbf{k}.

If B is a UFD then so is R; in this case we obtain $R \in \mathfrak{D}(K)$ by Corollary 3.8, so we are done.
From now on, assume that B is a complete intersection over \mathbf{k}. Let $q=\operatorname{dim} B$ and write $B=\mathbf{k}\left[X_{1}, \ldots, X_{p+q}\right] /\left(G_{1}, \ldots, G_{p}\right)$. Using Lemma 4.3 again, choose a transcendence basis $\left\{f_{1}, \ldots, f_{q-2}\right\}$ of K over \mathbf{k} such that $f_{1}, \ldots, f_{q-2} \in B$; let $S_{0}=\mathbf{k}\left[f_{1}, \ldots, f_{q-2}\right] \backslash\{0\}$ and $K_{0}=$ $\mathbf{k}\left(f_{1}, \ldots, f_{q-2}\right)$. We claim:

$$
\begin{equation*}
S_{0}^{-1} B \text { is a complete intersection over } K_{0} \tag{9}
\end{equation*}
$$

Let us prove this. For $1 \leqslant i \leqslant q-2$, choose $F_{i} \in \mathbf{k}\left[X_{1}, \ldots, X_{p+q}\right]$ such that $\pi\left(F_{i}\right)=f_{i}$ where $\pi: \mathbf{k}\left[X_{1}, \ldots, X_{p+q}\right] \rightarrow B$ is the canonical epimorphism. Also, let T_{1}, \ldots, T_{q-2} be extra indeterminates. The \mathbf{k}-homomorphism $\mathbf{k}\left[T_{1}, \ldots, T_{q-2}, X_{1}, \ldots, X_{p+q}\right] \rightarrow B$ which maps T_{i} to f_{i} and X_{i} to $\pi\left(X_{i}\right)$ has kernel $\left(G_{1}, \ldots, G_{p}, F_{1}-T_{1}, \ldots, F_{q-2}-T_{q-2}\right)$, so there is an isomorphism of \mathbf{k}-algebras

$$
B \cong \mathbf{k}\left[T_{1}, \ldots, T_{q-2}, X_{1}, \ldots, X_{p+q}\right] /\left(G_{1}, \ldots, G_{p}, F_{1}-T_{1}, \ldots, F_{q-2}-T_{q-2}\right)
$$

Localization gives an isomorphism of \mathbf{k}-algebras

$$
\begin{equation*}
S_{0}^{-1} B \cong \mathbf{k}\left(T_{1}, \ldots, T_{q-2}\right)\left[X_{1}, \ldots, X_{p+q}\right] /\left(G_{1}, \ldots, G_{p}, F_{1}-T_{1}, \ldots, F_{q-2}-T_{q-2}\right) \tag{10}
\end{equation*}
$$

which maps K_{0} onto $\mathbf{k}\left(T_{1}, \ldots, T_{q-2}\right)$. As the right-hand side of (10) is a complete intersection over $\mathbf{k}\left(T_{1}, \ldots, T_{q-2}\right)$, assertion (9) is proved. Then we obtain

$$
\begin{equation*}
\bigwedge^{2} \Omega_{S_{0}^{-1} B / K_{0}} \cong S_{0}^{-1} B \tag{11}
\end{equation*}
$$

by Lemma 3.6, because $S_{0}^{-1} B$ is a smooth K_{0}-algebra by Lemma 4.2.
Each element of K belongs to $\operatorname{Frac}\left(S_{0}^{-1} B\right)$ and is algebraic over K_{0}, hence integral over $S_{0}^{-1} B$; as $S_{0}^{-1} B$ is normal, $K \subseteq S_{0}^{-1} B$ and hence $S_{0}^{-1} B=R$. We may therefore rewrite (11) as:

$$
\begin{equation*}
\bigwedge^{2} \Omega_{R / K_{0}} \cong R \tag{12}
\end{equation*}
$$

Applying [18, 26.H] to $K_{0} \subseteq K \subseteq R$ gives the exact sequence of R-modules

$$
\Omega_{K / K_{0}} \otimes_{K} R \rightarrow \Omega_{R / K_{0}} \rightarrow \Omega_{R / K} \rightarrow 0,
$$

where $\Omega_{K / K_{0}}=0$ by [18, 27.B]. So $\Omega_{R / K} \cong \Omega_{R / K_{0}}$ and hence (12) gives $\bigwedge^{2} \Omega_{R / K} \cong R$. So $R \in \mathfrak{D}(K)$ by Theorem 3.2.

Let \mathbf{k} be a field of characteristic zero, let $B \in \mathcal{N}(\mathbf{k})$ and consider locally nilpotent derivations $D: B \rightarrow B$. See 1.1 for the definition of $\operatorname{Klnd}(B)$. It is known that if $A \in \operatorname{Klnd}(B)$ then $\operatorname{trdeg}_{A}(B)=1$, and if A_{1}, A_{2} are distinct elements of $\operatorname{KLND}(B)$ then $\operatorname{trdeg}_{A_{1} \cap A_{2}}(B) \geqslant 2$. We are interested in the situation where $\operatorname{trdeg}_{A_{1} \cap A_{2}}(B)=2$, i.e., when A_{1}, A_{2} are distinct and have an intersection which is as large as possible.
4.4. Corollary. Let $B \in \mathcal{N}(\mathbf{k})$, where \mathbf{k} is a field of characteristic zero. If $A_{1}, A_{2} \in \operatorname{KLND}(B)$ are such that $\operatorname{trdeg}_{A_{1} \cap A_{2}}(B)=2$, then the following hold.
(a) Let $R=A_{1} \cap A_{2}$ and $K=$ Frac R. Then $K \otimes_{R} B \in \mathfrak{D}(K)$.
(b) If B is a UFD then there exists a finite sequence of local slice constructions which transforms A_{1} into A_{2}.

Remark. This generalizes results 1.10 and 1.13 of [6]. Local slice construction was originally defined in [12] in the case $B=\mathbf{k}^{[3]}$, and was later generalized in [5].

Proof of Corollary 4.4. Let $S=R \backslash\{0\}, \mathcal{A}_{i}=S^{-1} A_{i}(i=1,2)$ and $\mathcal{B}=S^{-1} B=K \otimes_{R} B$. If $D_{i} \in \operatorname{LND}(B)$ has kernel A_{i}, then $S^{-1} D_{i} \in \operatorname{LND}(\mathcal{B})$ has kernel \mathcal{A}_{i}; thus $\mathcal{A}_{1}, \mathcal{A}_{2} \in \operatorname{KLND}(\mathcal{B})$. Using that A_{1}, A_{2} are factorially closed in B, we obtain $\mathcal{A}_{1} \cap \mathcal{A}_{2} \subseteq K$, so $\operatorname{ML}(\mathcal{B}) \subseteq K$. The reverse inclusion is trivial $\left(K^{*} \subseteq \mathcal{B}^{*} \subseteq \operatorname{ML}(\mathcal{B})\right.$), so $\operatorname{ML}(\mathcal{B})=K$. Then $\mathcal{B} \in \mathfrak{D}(K)$ by Theorem 4.1, so assertion (a) is proved.
 $\operatorname{KLND}(B)$, one says that A^{\prime} can be obtained from A "by a local slice construction" if there exists an edge in KLND (B) joining vertices A and A^{\prime}. So assertion (b) of the corollary is equivalent
 subgraph $\underline{K L N D}_{R}(B)$ of the graph $\underline{\operatorname{KLND}}(B)$, and clearly A_{1}, A_{2} are two vertices of $\underline{K L N D}_{R}(B)$; so, to prove (b), it suffices to show that $\underline{K L N D}_{R}(B)$ is a connected graph. We have $R \in \mathcal{R}^{\text {in }}(B)$ (cf. [5,5.2]) and consequently (cf. [5,5.3], using that B is a UFD) we have an isomorphism of graphs $\underline{K L N D}_{R}(B) \cong \underline{K L N D}_{K}(\mathcal{B})$. As $\mathcal{B} \in \mathfrak{D}(K)$ by part (a), we may apply [5, 4.8] and conclude that $\underline{K L N D}_{K}(\mathcal{B})$ is connected. Assertion (b) is proved.

The following is a trivial consequence of Corollary 4.4.
4.5. Corollary. Let $B \in \mathcal{N}(\mathbf{k})$, where \mathbf{k} is a field of characteristic zero. Suppose that B has transcendence degree two over $\operatorname{ML}(B)$.
(1) Let $R=\operatorname{ML}(B)$ and $K=\operatorname{Frac} R$. Then $K \otimes_{R} B \in \mathfrak{D}(K)$.
(2) If B is a UFD then, for any $A_{1}, A_{2} \in \operatorname{KLND}(B)$, there exists a finite sequence of local slice constructions which transforms A_{1} into A_{2}.

References

[1] T. Bandman, L. Makar-Limanov, Affine surfaces with $A K(S)=\mathbb{C}$, Michigan Math. J. 49 (2001) 567-582.
[2] J. Bertin, Pinceaux de droites et automorphismes des surfaces affines, J. Reine Angew. Math. 341 (1983) 32-53.
[3] N. Bourbaki, Éléments de mathématique. Algèbre, Hermann, Paris, 1970, Chapitres 1 à 3.
[4] D. Daigle, On locally nilpotent derivations of $k\left[X_{1}, X_{2}, Y\right] /\left(\varphi(Y)-X_{1} X_{2}\right)$, J. Pure Appl. Algebra 181 (2003) 181-208.
[5] D. Daigle, Locally nilpotent derivations and Danielewski surfaces, Osaka J. Math. 41 (2004) 37-80.
[6] D. Daigle, On polynomials in three variables annihilated by two locally nilpotent derivations, J. Algebra 310 (2007) 303-324.
[7] D. Daigle, P. Russell, On $\log \mathbb{Q}$-homology planes and weighted projective planes, Canad. J. Math. 56 (2004) 11451189.
[8] A. Dubouloz, Completions of normal affine surfaces with a trivial Makar-Limanov invariant, Michigan Math. J. 52 (2004) 289-308.
[9] A. Dubouloz, Danielewski-Fieseler surfaces, Transform. Groups 10 (2005) 139-162.
[10] A. Dubouloz, Embeddings of Danielewski surfaces in affine spaces, Comment. Math. Helv. 81 (2006) 49-73.
[11] A. van den Essen, Polynomial Automorphisms, Progr. Math., vol. 190, Birkhäuser, 2000.
[12] G. Freudenburg, Local slice constructions in $K[X, Y, Z]$, Osaka J. Math. 34 (1997) 757-767.
[13] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations. Invariant Theory and Algebraic Transformation Groups VII, Springer-Verlag, 2006.
[14] R.V. Gurjar, M. Miyanishi, Automorphisms of affine surfaces with \mathbb{A}^{1}-fibrations, Michigan Math. J. 53 (2005) 33-55.
[15] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math., vol. 52, Springer-Verlag, 1977.
[16] L. Makar-Limanov, On groups of automorphisms of a class of surfaces, Israel J. Math. 69 (1990) 250-256.
[17] K. Masuda, M. Miyanishi, The additive group actions on \mathbb{Q}-homology planes, Ann. Inst. Fourier (Grenoble) 53 (2003) 429-464.
[18] H. Matsumura, Commutative Algebra, 2nd edition, Math. Lecture Note Ser., Benjamin-Cummings, 1980.
[19] Y. Nouazé, P. Gabriel, Idéaux premiers de l'algèbre enveloppante d'une algèbre de Lie nilpotente, J. Algebra 6 (1967) 77-99.
[20] R. Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris 267 (1968) 384-387.
[21] D. Wright, On the jacobian conjecture, Illinois J. Math. 25 (1981) 423-440.
[22] O. Zariski, P. Samuel, Commutative Algebra, vol. 1, Grad. Texts in Math., vol. 28, Springer-Verlag, New York, 1975.

[^0]: E-mail address: ddaigle @uottawa.ca.
 ${ }^{1}$ Research supported by a grant from NSERC Canada.

[^1]: 2 A different proof that $\operatorname{ML}(A)=A$ is given in [13, 9.21].

