





Journal of Algebra 319 (2008) 3100-3111

www.elsevier.com/locate/jalgebra

# Affine surfaces with trivial Makar-Limanov invariant

# Daniel Daigle 1

Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada K1N 6N5

Received 22 May 2007

Available online 26 November 2007

Communicated by Steven Dale Cutkosky

#### Abstract

We study the class of 2-dimensional affine **k**-domains R satisfying  $ML(R) = \mathbf{k}$ , where **k** is an arbitrary field of characteristic zero. In particular, we obtain the following result: Let R be a localization of a polynomial ring in finitely many variables over a field of characteristic zero. If ML(R) = K for some field  $K \subset R$  such that  $\text{trdeg}_K R = 2$ , then R is K-isomorphic to K[X, Y, Z]/(XY - P(Z)) for some nonconstant  $P(Z) \in K[Z]$ .

© 2007 Elsevier Inc. All rights reserved.

Keywords: Locally nilpotent derivations; Group actions; Danielewski surfaces; Affine surfaces; Makar-Limanov invariant: Absolute constants

### 1. Introduction

Let us recall the definition of the Makar-Limanov invariant:

**1.1. Definition.** If R is a ring of characteristic zero, a derivation  $D: R \to R$  is said to be *locally nilpotent* if for each  $r \in R$  there exists  $n \in \mathbb{N}$  (depending on r) such that  $D^n(r) = 0$ . We use the following notations:

$$\begin{split} &\operatorname{LND}(R) = \text{set of locally nilpotent derivations } D: R \to R, \\ &\operatorname{KLND}(R) = \big\{ \ker D \ \big| \ D \in \operatorname{LND}(R) \text{ and } D \neq 0 \big\}, \end{split}$$

E-mail address: ddaigle@uottawa.ca.

Research supported by a grant from NSERC Canada.

$$ML(R) = \bigcap_{D \in LND(R)} ker(D).$$

We are interested in the class of 2-dimensional affine  $\mathbf{k}$ -domains R satisfying  $\mathrm{ML}(R) = \mathbf{k}$ , where  $\mathbf{k}$  is a field of characteristic zero. The corresponding class of affine algebraic surfaces was studied by several authors ([1,2,7–9,14,17], in particular), but almost always under the assumption that  $\mathbf{k}$  is algebraically closed, or even  $\mathbf{k} = \mathbb{C}$ . In this paper we obtain some partial results valid when  $\mathbf{k}$  is an arbitrary field of characteristic zero. We are particularly interested in the following subclass:

**1.2. Definition.** Given a field  $\mathbf{k}$  of characteristic zero, let  $\mathfrak{D}(\mathbf{k})$  be the class of  $\mathbf{k}$ -algebras isomorphic to  $\mathbf{k}[X,Y,Z]/(XY-\varphi(Z))$  for some nonconstant polynomial in one variable  $\varphi(Z) \in \mathbf{k}[Z] \setminus \mathbf{k}$ , where X,Y,Z are indeterminates over  $\mathbf{k}$ .

The class  $\mathfrak{D}(\mathbf{k})$  was studied in [4,5,16], in particular. It is well known that if  $R \in \mathfrak{D}(\mathbf{k})$  then R is a 2-dimensional normal affine domain satisfying  $\mathrm{ML}(R) = \mathbf{k}$ . It is also known that the converse is not true, which raises the following:

**Question.** Suppose that R is a 2-dimensional affine  $\mathbf{k}$ -domain with  $\mathrm{ML}(R) = \mathbf{k}$ . Under what additional assumptions can we infer that  $R \in \mathfrak{D}(\mathbf{k})$ ?

Section 3 completely answers this question in the case where R is a smooth k-algebra. This is achieved by reducing to the case  $k = \mathbb{C}$ , which was solved by Bandman and Makar-Limanov. This reduction is nontrivial, and makes essential use of the main result of Section 2. Also note Corollary 3.8, which gives a pleasant answer to the above question in the factorial case. Then we derive several consequences from Section 3, for instance consider the following special case of Theorem 4.1:

Let R be a localization of a polynomial ring in finitely many variables over a field of characteristic zero. If  $\mathrm{ML}(R) = K$  for some field  $K \subset R$  such that  $\mathrm{trdeg}_K R = 2$ , then  $R \in \mathfrak{D}(K)$ .

In turn, this has consequences in the study of  $G_a$ -actions on  $\mathbb{C}^n$ .

**Conventions.** All rings and algebras are commutative, associative and unital. If A is a ring, we write  $A^*$  for the units of A; if A is a domain, Frac A is its field of fractions. If  $A \subseteq B$  are rings, " $B = A^{[n]}$ " means that B is A-isomorphic to the polynomial algebra in n variables over A. If L/K is a field extension, " $L = K^{(n)}$ " means that L is a purely transcendental extension of K and trdegK L = n (transcendence degree).

In [5], one defines a Danielewski surface to be a pair  $(R, \mathbf{k})$  such that  $R \in \mathfrak{D}(\mathbf{k})$ . In the present paper we avoid using the term "Danielewski surface" in that sense, because it is incompatible with accepted usage. The reader should keep this in mind when consulting [5] (our main reference for Section 2).

### 2. Base extension

Let **k** be a field of characteristic zero. It is clear that if  $R \in \mathfrak{D}(\mathbf{k})$  then  $K \otimes_{\mathbf{k}} R \in \mathfrak{D}(K)$  for every field extension  $K/\mathbf{k}$ . However, if  $K \otimes_{\mathbf{k}} R \in \mathfrak{D}(K)$  for some K, it does not follow that  $R \in \mathfrak{D}(\mathbf{k})$  (see Example 2.2, below).

- **2.1. Remark.** If  $R \in \mathfrak{D}(\mathbf{k})$  then Spec R has infinitely many  $\mathbf{k}$ -rational points. (Indeed, if  $R = \mathbf{k}[X,Y,Z]/(XY \varphi(Z))$  then there is a bijection between the set of  $\mathbf{k}$ -rational points of Spec R and the zero-set in  $\mathbf{k}^3$  of the polynomial  $XY \varphi(Z)$ .)
- **2.2. Example.** Let  $A = \mathbb{R}[X,Y,Z]/(f)$ , where  $f = X^2 + Y^2 + Z^2$ . Viewing f as an element of  $\mathbb{C}[X,Y,Z]$  we have  $f = (X+iY)(X-iY) + Z^2$  (where  $i^2 = -1$ ), so  $\mathbb{C} \otimes_{\mathbb{R}} A \cong \mathbb{C}[U,V,W]/(UV+W^2) \in \mathfrak{D}(\mathbb{C})$ . As Spec A has only one  $\mathbb{R}$ -rational point,  $A \notin \mathfrak{D}(\mathbb{R})$  by Remark 2.1. Thus

$$A \notin \mathfrak{D}(\mathbb{R})$$
 and  $\mathbb{C} \otimes_{\mathbb{R}} A \in \mathfrak{D}(\mathbb{C})$ .

Note<sup>2</sup> that Theorem 2.3 (below) implies that ML(A) = A. Moreover, if we define  $A' = \mathbb{R}[U, V, W]/(UV + W^2) \in \mathfrak{D}(\mathbb{R})$  then  $A \ncong A'$  but  $\mathbb{C} \otimes_{\mathbb{R}} A \cong \mathbb{C} \otimes_{\mathbb{R}} A'$ .

- **2.3. Theorem.** For an algebra R over a field k of characteristic zero, the following conditions are equivalent:
- (a)  $R \in \mathfrak{D}(\mathbf{k})$ ;
- (b)  $ML(R) \neq R$  and there exists a field extension  $K/\mathbf{k}$  such that  $K \otimes_{\mathbf{k}} R \in \mathfrak{D}(K)$ .

We shall prove this after some preparation.

- **2.4. Some facts.** Refer to [11] or [13] for background on locally nilpotent derivations. Statement (c) is due to Rentschler [20] and (d) to Nouazé and Gabriel [19] and Wright [21].
- (a) If  $A \in KLND(B)$  where B is a domain of characteristic zero then A is factorially closed in B (i.e., if  $x, y \in B \setminus \{0\}$  and  $xy \in A$  then  $x, y \in A$ ). It follows that ML(B) is factorially closed in B. Any factorially closed subring A of B is in particular algebraically closed in B (i.e., if  $x \in B$  is a root of a nonzero polynomial with coefficients in A then  $x \in A$ ) and satisfies  $A^* = B^*$  (in particular, any field contained in B is contained in A).
- (b) Let B be a noetherian domain of characteristic zero. If  $0 \neq D \in LND(B)$  then  $D = \alpha D_0$  for some  $\alpha \in ker(D)$  and  $D_0 \in LND(B)$  where  $D_0$  is *irreducible* (i.e., the only principal ideal of B which contains  $D_0(B)$  is B).
- (c) Let  $B = \mathbf{k}^{[2]}$  where  $\mathbf{k}$  is a field of characteristic zero. If  $D \in \text{LND}(B)$  is irreducible then there exist X, Y such that  $B = \mathbf{k}[X, Y]$  and  $D = \partial/\partial Y$ .
- (d) Let B be a  $\mathbb{Q}$ -algebra. If  $D \in LND(B)$  and  $s \in B$  satisfy  $Ds \in B^*$  then  $B = A[s] = A^{[1]}$  where  $A = \ker D$ .

<sup>&</sup>lt;sup>2</sup> A different proof that ML(A) = A is given in [13, 9.21].

## **2.5. Lemma.** Let **k** be a field of characteristic zero and R a **k**-algebra satisfying:

there exists a field extension  $\bar{\mathbf{k}}/\mathbf{k}$  such that  $\bar{\mathbf{k}} \otimes_{\mathbf{k}} R \in \mathfrak{D}(\bar{\mathbf{k}})$ .

Then R is a two-dimensional normal affine domain over  $\mathbf{k}$  and  $R^* = \mathbf{k}^*$ .

**Proof.** This is rather simple but it will be convenient to refer to this proof later. Choose a field extension  $\bar{\mathbf{k}}/\mathbf{k}$  such that  $\bar{\mathbf{k}} \otimes_{\mathbf{k}} R \in \mathfrak{D}(\bar{\mathbf{k}})$  and let  $\bar{R} = \bar{\mathbf{k}} \otimes_{\mathbf{k}} R$ . As R is a flat  $\mathbf{k}$ -module, the canonical homomorphism  $\mathbf{k} \otimes_{\mathbf{k}} R \to \bar{\mathbf{k}} \otimes_{\mathbf{k}} R$  is injective, so we may regard R as a subring of  $\bar{R}$ . In particular, R is an integral domain and we have the diagram:

$$\bar{\mathbf{k}} \longrightarrow \bar{R} \longrightarrow S^{-1}\bar{R} \longrightarrow \operatorname{Frac}\bar{R}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

where  $S = R \setminus \{0\}$ . Let  $\mathcal{B}$  be a basis of  $\bar{\mathbf{k}}$  over  $\mathbf{k}$  such that  $1 \in \mathcal{B}$ . Note that  $\mathcal{B}$  is also a basis of the free R-module  $\bar{R}$  and of the vector space  $S^{-1}\bar{R}$  over Frac R. It follows:

$$\bar{\mathbf{k}} \cap R = \mathbf{k}$$
 and  $\bar{R} \cap \operatorname{Frac} R = R$ . (1)

As  $\bar{R} \in \mathfrak{D}(\bar{\mathbf{k}})$ , [5, 2.3] implies that  $\bar{R}^* = \bar{\mathbf{k}}^*$  and that  $\bar{R}$  is a normal domain; so (1) implies that  $R^* = \mathbf{k}^*$  and that R is a normal domain. Also:

If E is a subset of R such that 
$$\bar{\mathbf{k}}[E] = \bar{R}$$
, then  $\mathbf{k}[E] = R$ . (2)

Indeed,  $\mathcal{B}$  is a basis of the R-module  $\overline{R}$  and a spanning set of the  $\mathbf{k}[E]$ -module  $\overline{R}$ ; as  $\mathbf{k}[E] \subseteq R$ , it follows that  $\mathbf{k}[E] = R$ .

Note that R is affine over  $\mathbf{k}$ , by (2) and the fact that  $\bar{R}$  is affine over  $\bar{\mathbf{k}}$ . Let  $n = \dim R$  then, by Noether Normalization Lemma, there exists a subalgebra  $R_0 = \mathbf{k}^{[n]}$  of R over which R is integral. Then  $\bar{R} = \bar{\mathbf{k}} \otimes_{\mathbf{k}} R$  is integral over  $\bar{\mathbf{k}} \otimes_{\mathbf{k}} R_0 = \bar{\mathbf{k}}^{[n]}$ , so  $n = \dim \bar{R} = 2$ .  $\square$ 

We borrow the following notation from [5, 2.1].

**2.6. Definition.** Given a **k**-algebra R, let  $\Gamma_{\mathbf{k}}(R)$  denote the (possibly empty) set of ordered triples  $(x_1, x_2, y) \in R \times R \times R$  satisfying:

The **k**-homomorphism  $\mathbf{k}[X_1, X_2, Y] \rightarrow R$  defined by

$$X_1 \mapsto x_1, \quad X_2 \mapsto x_2 \quad and \quad Y \mapsto y$$

is surjective and has kernel equal to  $(X_1X_2 - \varphi(Y))\mathbf{k}[X_1, X_2, Y]$  for some nonconstant polynomial in one variable  $\varphi(Y) \in \mathbf{k}[Y]$ .

Note that  $R \in \mathfrak{D}(\mathbf{k})$  if and only if  $\Gamma_{\mathbf{k}}(R) \neq \emptyset$ .

**Proof of Theorem 2.3.** That  $R \in \mathfrak{D}(\mathbf{k})$  implies  $ML(R) = \mathbf{k}$  is well known (for instance it follows from part (d) of [5, 2.3]), so it suffices to prove that (b) implies (a).

Suppose that R satisfies (b). Note that if  $K/\mathbf{k}$  is a field extension satisfying  $K \otimes_{\mathbf{k}} R \in \mathfrak{D}(K)$  then for any field extension L/K we have  $L \otimes_{\mathbf{k}} R \in \mathfrak{D}(L)$ . In particular, there exists a field extension  $\bar{\mathbf{k}}/\bar{\mathbf{k}}$  such that  $\bar{\mathbf{k}} \otimes_{\mathbf{k}} R \in \mathfrak{D}(\bar{\mathbf{k}})$  and such that  $\bar{\mathbf{k}}$  is an algebraically closed field. We fix such a field  $\bar{\mathbf{k}}$ . The fact that  $\bar{\mathbf{k}}$  is algebraically closed implies that

the fixed field 
$$\bar{\mathbf{k}}^G$$
 is equal to  $\mathbf{k}$  (3)

where  $G = \operatorname{Gal}(\bar{\mathbf{k}}/\mathbf{k})$ . We use the notation  $(\bar{R}, \mathcal{B}, \text{etc.})$  introduced in the proof of Lemma 2.5. As  $\operatorname{ML}(R) \neq R$ , there exists  $0 \neq D \in \operatorname{LND}(R)$ . Let  $\bar{D} \in \operatorname{LND}(\bar{R})$  be the unique extension of D, let  $A = \ker D$  and  $\bar{A} = \ker \bar{D}$ .

It follows from [5] that  $\bar{A} = \bar{\mathbf{k}}^{[1]}$  ([5, 2.3] shows that some element of  $\mathrm{KLND}(\bar{R})$  is a  $\bar{\mathbf{k}}^{[1]}$  and, by [5, 2.7.2],  $\mathrm{Aut}_{\bar{\mathbf{k}}}(\bar{R})$  acts transitively on  $\mathrm{KLND}(\bar{R})$ ). Applying the exact functor  $\bar{\mathbf{k}} \otimes_{\mathbf{k}}$  to the exact sequence  $0 \to A \to R \xrightarrow{D} R$  of  $\bar{\mathbf{k}}$ -linear maps shows that  $\bar{\mathbf{k}} \otimes_{\mathbf{k}} A = \bar{A} = \bar{\mathbf{k}}^{[1]}$ , so  $A = \mathbf{k}^{[1]}$ . Choose  $f \in R$  such that  $A = \mathbf{k}[f]$ , then  $\bar{A} = \bar{\mathbf{k}}[f]$ .

Consider the nonzero ideals  $I = A \cap D(R)$  and  $\bar{I} = \bar{A} \cap \bar{D}(\bar{R})$  of A and  $\bar{A}$ , respectively. Let  $\psi \in A$  and  $s \in R$  be such that  $I = \psi A$  and  $D(s) = \psi$ . We claim that

$$\bar{I} = \psi \,\bar{A}.\tag{4}$$

Indeed, an arbitrary element of  $\bar{I}$  is of the form  $\bar{D}(\sigma)$  where  $\sigma \in \bar{R}$  and  $\bar{D}^2(\sigma) = 0$ . Write  $\sigma = \sum_{\lambda \in \mathcal{B}} s_{\lambda} \lambda$  with  $s_{\lambda} \in R$ , then  $0 = \bar{D}^2(\sigma) = \sum_{\lambda \in \mathcal{B}} D^2(s_{\lambda})\lambda$ , so for all  $\lambda \in \mathcal{B}$  we have  $D^2(s_{\lambda}) = 0$ , hence  $D(s_{\lambda}) \in I = \psi A$ , and consequently  $\bar{D}(\sigma) \in \psi \bar{A}$ , which proves (4).

By 2.4(b),  $\bar{D} = \alpha \Delta$  for some  $\alpha \in \bar{A} \setminus \{0\}$  and some irreducible  $\Delta \in LND(\bar{R})$ . Consider the nonzero ideal  $I_0 = \bar{A} \cap \Delta(\bar{R})$  of  $\bar{A}$ . We claim that

$$I_0 = \Delta(s)\bar{A}. \tag{5}$$

To see this, consider an arbitrary element  $\Delta(\sigma)$  of  $I_0$  (where  $\sigma \in \bar{R}$ ,  $\Delta^2(\sigma) = 0$ ). Then  $\alpha \Delta(\sigma) = \bar{D}(\sigma) \in \bar{I} = \psi \bar{A} = \bar{D}(s)\bar{A} = \alpha \Delta(s)\bar{A}$ , so  $\Delta(\sigma) \in \Delta(s)\bar{A}$  and (5) is proved.

Consider the case where  $\Delta(s) \in \bar{R}^*$ . Then  $\bar{R} = \bar{A}[s] = \bar{k}[f, s]$  by 2.4(d), so (2) implies that  $R = k[f, s] = k^{[2]}$ , so in particular  $R \in \mathfrak{D}(k)$  and we are done.

From now on assume that  $\Delta(s) \notin \bar{R}^*$ . By [5, 2.8],  $\bar{A} = \bar{\mathbf{k}}[\Delta(y)]$  for some  $y \in \bar{R}$ . Note that  $\Delta(y) \in I_0$ , so (5) gives  $\Delta(s) \mid \Delta(y)$  in  $\bar{A}$ . As  $\Delta(y)$  is an irreducible element of  $\bar{A}$  (because  $\bar{\mathbf{k}}[\Delta(y)] = \bar{A} = \bar{\mathbf{k}}[1]$ ) and  $\Delta(s) \notin \bar{A}^*$ , we have  $\bar{\mathbf{k}}[\Delta(s)] = \bar{A} = \bar{\mathbf{k}}[f]$  and consequently  $\Delta(s) = \mu(f - \lambda)$  for some  $\mu \in \bar{\mathbf{k}}^*$ ,  $\lambda \in \bar{\mathbf{k}}$ . We may as well replace  $\Delta$  by  $\mu^{-1}\Delta$ , so

$$\Delta(s) = f - \lambda, \quad \text{for some } \lambda \in \bar{\mathbf{k}}.$$
 (6)

We claim:

$$\{c \in \bar{\mathbf{k}} \mid \bar{R}/(f-c)\bar{R} \text{ is not an integral domain}\} = \{\lambda\}.$$
 (7)

Indeed, [5, 2.8] implies that there exists  $x_2 \in \bar{R}$  such that  $(f - \lambda, x_2, s) \in \Gamma_{\bar{k}}(\bar{R})$ . This means (cf. 2.6) that the  $\bar{k}$ -homomorphism  $\pi : \bar{k}[X_1, X_2, Y] \to \bar{R}$  defined by  $X_1 \mapsto f - \lambda$ ,  $X_2 \mapsto x_2$ ,

 $Y\mapsto s$ , is surjective and has kernel  $(X_1X_2-P(Y))$  for some nonconstant  $P(Y)\in \bar{\mathbf{k}}[Y]$  (where  $X_1,X_2,Y$  are indeterminates). By (5) and  $\Delta(s)\notin \bar{R}^*$ , we see that there does not exist  $\sigma\in \bar{R}$  such that  $\Delta(\sigma)=1$ ; as  $\Delta$  is irreducible, it follows from 2.4(c) that  $\bar{R}\neq \bar{\mathbf{k}}^{[2]}$  and hence that  $\deg_Y P(Y)>1$ . Thus, for  $c\in \bar{\mathbf{k}}$ ,

$$\bar{R}/(f-c)\bar{R} \cong \bar{k}[X_1, X_2, Y]/(X_1 - (c-\lambda), X_1X_2 - P(Y))$$

is a domain if and only if  $c \neq \lambda$ . This proves (7).

Let  $\theta \in \operatorname{Gal}(\bar{\mathbf{k}}/\mathbf{k})$ . Then  $\theta$  extends to some  $\Theta \in \operatorname{Aut}_R(\bar{R})$  and  $\Theta$  determines a ring isomorphism

$$\bar{R}/(f-\lambda)\bar{R} \cong \bar{R}/\Theta(f-\lambda)\bar{R} = \bar{R}/(f-\theta(\lambda))\bar{R}.$$

So  $\bar{R}/(f-\theta(\lambda))\bar{R}$  is not a domain and it follows from (7) that  $\theta(\lambda) = \lambda$ . As this holds for every  $\theta \in \operatorname{Gal}(\bar{\mathbf{k}}/\mathbf{k})$ , (3) implies that  $\lambda \in \mathbf{k}$ . To summarize, if we define  $x_1 = f - \lambda$  then

$$x_1, s \in R$$
 and there exists  $x_2 \in \bar{R}$  such that  $(x_1, x_2, s) \in \Gamma_{\bar{k}}(\bar{R})$ .

We now show that  $x_2$  can be chosen in R. Consider the ideals  $J = \mathbf{k}[s] \cap x_1 R$  of  $\mathbf{k}[s]$  and  $\bar{J} = \bar{\mathbf{k}}[s] \cap x_1 \bar{R}$  of  $\bar{\mathbf{k}}[s]$ , and choose  $\varphi(Y) \in \mathbf{k}[Y]$  such that  $J = \varphi(s)\mathbf{k}[s]$ . Let  $\Phi(s)$  be any element of  $\bar{J}$  (where  $\Phi(Y) \in \bar{\mathbf{k}}[Y]$ ). Then  $\Phi(s) = x_1 G$  for some  $G \in \bar{R}$ . As  $\mathcal{B}$  is a basis of the R-module  $\bar{R}$  and also of the  $\mathbf{k}[Y]$ -module  $\bar{\mathbf{k}}[Y]$ , we may write  $G = \sum_{\lambda \in \mathcal{B}} G_{\lambda}\lambda$  (where  $G_{\lambda} \in R$ ) and  $\Phi = \sum_{\lambda \in \mathcal{B}} \Phi_{\lambda}\lambda$  (where  $\Phi_{\lambda} \in \mathbf{k}[Y]$ ). Then  $\sum_{\lambda \in \mathcal{B}} (x_1 G_{\lambda})\lambda = \Phi(s) = \sum_{\lambda \in \mathcal{B}} \Phi_{\lambda}(s)\lambda$ , so for every  $\lambda \in \mathcal{B}$  we have  $\Phi_{\lambda}(s) = x_1 G_{\lambda}$ , i.e.,  $\Phi_{\lambda}(s) \in J = \varphi(s)\mathbf{k}[s]$ . We obtain that  $\Phi(s) \in \varphi(s)\bar{\mathbf{k}}[s]$ , so:

$$\bar{J} = \varphi(s)\bar{\mathbf{k}}[s].$$

On the other hand, [5, 2.4] asserts that  $\bar{J} = x_1 x_2 \bar{\mathbf{k}}[s]$ , so  $x_1 x_2 = \mu \varphi(s)$  for some  $\mu \in \bar{\mathbf{k}}^*$ . It is clear that if  $(x_1, x_2, s)$  belongs to  $\Gamma_{\bar{\mathbf{k}}}(\bar{R})$  then so does  $(x_1, \mu^{-1} x_2, s)$ ; so there exists  $x_2 \in \bar{R}$  such that  $(x_1, x_2, s) \in \Gamma_{\bar{\mathbf{k}}}(\bar{R})$  and  $x_1 x_2 = \varphi(s)$ . As  $x_2 = \varphi(s)/x_1 \in \operatorname{Frac} R$ , (1) implies that  $x_2 \in R$ . Thus

$$(x_1, x_2, s) \in \Gamma_{\bar{\mathbf{k}}}(\bar{R}), \text{ where } x_1, x_2, s \in R.$$

In particular we have  $\bar{R} = \bar{\mathbf{k}}[x_1, x_2, s]$ , so (2) gives  $R = \mathbf{k}[x_1, x_2, s]$ . As  $x_1x_2 = \varphi(s)$  where  $\varphi(Y) \in \mathbf{k}[Y]$  is nonconstant, it follows that  $(x_1, x_2, s) \in \Gamma_{\mathbf{k}}(R)$  and hence that  $R \in \mathfrak{D}(\mathbf{k})$ .  $\square$ 

#### 3. On a result of Bandman and Makar-Limanov

In this paper we adopt the following:

**3.1. Definition.** Let R be an affine algebra over a field  $\mathbf{k}$  and let  $q = \dim R$ . We say that R is a *complete intersection over*  $\mathbf{k}$  if  $R \cong \mathbf{k}[X_1, \dots, X_{p+q}]/(f_1, \dots, f_p)$  for some  $p \geqslant 0$  and some  $f_1, \dots, f_p \in \mathbf{k}[X_1, \dots, X_{p+q}]$ .

We refer to [18, 28.D] for the definition of a *smooth*  $\mathbf{k}$ -algebra and to [18, 26.C] for the definition of the R-module  $\Omega_{R/\mathbf{k}}$  (the module of differentials of R over  $\mathbf{k}$ ), where R is a  $\mathbf{k}$ -algebra.

- **3.2. Theorem.** Let  $\mathbf{k}$  be a field of characteristic zero and R a smooth affine  $\mathbf{k}$ -domain of dimension 2 such that  $\mathrm{ML}(R) = \mathbf{k}$ . Then the following are equivalent:
- (a)  $R \in \mathfrak{D}(\mathbf{k})$ ;
- (b) R is generated by 3 elements as a k-algebra;
- (c) R is a complete intersection over k;
- (d)  $\bigwedge^2 \Omega_{R/\mathbf{k}} \cong R$ .

We shall prove this by reducing to the case  $\mathbf{k} = \mathbb{C}$ , which was proved by Bandman and Makar-Limanov in [1]. That reduction makes essential use of Theorem 2.3.

**3.3. Remark.** Let **k** be a field of characteristic zero. According to the definition of "Danielewski surface over **k**" given in [10], one has the following situation:



where DANML( $\mathbf{k}$ ) is the class of Danielewski surfaces S over  $\mathbf{k}$  satisfying ML(S) =  $\mathbf{k}$ , SML( $\mathbf{k}$ ) is the larger class of smooth affine surfaces S over  $\mathbf{k}$  satisfying ML(S) =  $\mathbf{k}$ , and  $\mathfrak{D}(\mathbf{k})$  is the class of surfaces corresponding to the already defined class  $\mathfrak{D}(\mathbf{k})$  of  $\mathbf{k}$ -algebras. Among other things, paper [10] classifies the elements of DANML( $\mathbf{k}$ ) and characterizes those which belong to  $\mathfrak{D}(\mathbf{k})$ . In contrast, Theorem 3.2 characterizes the elements of SML( $\mathbf{k}$ ) which belong to  $\mathfrak{D}(\mathbf{k})$ .

- **3.4. Remark.** Let R be a q-dimensional smooth affine domain over a field  $\mathbf{k}$  of characteristic zero. Then  $X = \operatorname{Spec} R$  is in particular an irreducible regular scheme of finite type over the perfect field  $\mathbf{k}$ ; so, by [15, ex. 8.1(c), p. 187], the sheaf of differentials  $\Omega_{X/\mathbf{k}}$  is locally free of rank q; so the canonical sheaf  $\omega_X = \bigwedge^q \Omega_{X/\mathbf{k}}$  is locally free of rank 1, i.e., is an invertible sheaf on X. As  $\omega_X$  and the structure sheaf  $\mathcal{O}_X$  are respectively the sheaves associated to the R-modules  $\bigwedge^q \Omega_{R/\mathbf{k}}$  and R, the condition  $\bigwedge^q \Omega_{R/\mathbf{k}} \cong R$  is equivalent to  $\omega_X \cong \mathcal{O}_X$  (one says that X has trivial canonical sheaf). This is also equivalent to the canonical divisor of X being linearly equivalent to zero (because  $\operatorname{Pic}(X) \cong \operatorname{Cl}(X)$  by [15, 6.16, p. 145]).
- **3.5. Remark.** Let A' and B be algebras over a ring A and let  $B' = A' \otimes_A B$ . Then  $\Omega_{B'/A'} \cong B' \otimes_B \Omega_{B/A}$  (cf. [18, p. 186]) and, for any B-module M,  $\bigwedge^n (B' \otimes_B M) \cong B' \otimes_B \bigwedge^n M$  for every n [3, Chapter 3, §7, No. 5, Proposition 8]. Consequently,  $\bigwedge^n \Omega_{B'/A'} \cong B' \otimes_B \bigwedge^n \Omega_{B/A}$ .
- **3.6. Lemma.** Let R be an algebra over a field  $\mathbf{k}$ . If R is a complete intersection over  $\mathbf{k}$  and a smooth  $\mathbf{k}$ -algebra, then  $\bigwedge^q \Omega_{R/\mathbf{k}} \cong R$  where  $q = \dim R$ .

This is the well-known fact that a smooth complete intersection has trivial canonical sheaf, but we do not know a suitable reference so we sketch a proof.

**Proof of 3.6.** Let  $R = \mathbf{k}[X_1, \dots, X_{p+q}]/(f_1, \dots, f_p)$  and let  $\varphi_{ij} \in R$  be the image of  $\frac{\partial f_j}{\partial X_i}$ . Because R is smooth over  $\mathbf{k}$ , [18, 29.E] implies that the matrix  $(\varphi_{ij})$  satisfies:

the 
$$p \times p$$
 determinants of  $(\varphi_{ij})$  generate the unit ideal of  $R$ . (8)

By [15, 8.4A, p. 173], there is an exact sequence  $R^p \xrightarrow{\varphi} R^{p+q} \to \Omega_{R/k} \to 0$  of R-linear maps where  $\varphi$  is the map corresponding to the matrix  $(\varphi_{ij})$ . Now if R is a ring and  $R^p \xrightarrow{\varphi} R^{p+q} \to M \to 0$  is an exact sequence of R-linear maps such that  $\varphi$  satisfies (8), then  $\bigwedge^q M \cong R$ .  $\square$ 

- **3.7. Lemma.** Let R be an integral domain containing a field  $\mathbf{k}$  of characteristic zero. If R is normal and  $\mathrm{ML}(R) = \mathbf{k}$ , then for any field extension K of  $\mathbf{k}$  we have:
- (a)  $K \otimes_{\mathbf{k}} R$  is an integral domain;
- (b)  $ML(K \otimes_{\mathbf{k}} R) = K$ .

**Proof.** As  $\mathbf{k} = \mathrm{ML}(R)$  is algebraically closed in R (2.4(a)) and R is normal, it follows that  $\mathbf{k}$  is algebraically closed in  $L = \mathrm{Frac}\,R$ . By [22, Corollary 2, p. 198],  $K \otimes_{\mathbf{k}} L$  is an integral domain. As K is flat over  $\mathbf{k}$  and  $R \to L$  is injective,  $K \otimes_{\mathbf{k}} R \to K \otimes_{\mathbf{k}} L$  is injective and (a) is proved.

Let  $\xi \in \operatorname{ML}(K \otimes_{\mathbf{k}} R)$ . Consider a basis  $\mathcal{B}$  of K over  $\mathbf{k}$ ; note that  $\mathcal{B}$  is also a basis of the free R-module  $R' = K \otimes_{\mathbf{k}} R$  and write  $\xi = \sum_{\lambda \in \mathcal{B}} x_{\lambda} \lambda$  (where  $x_{\lambda} \in R$ ). If  $D \in \operatorname{LND}(R)$  then D extends to an element  $D' \in \operatorname{LND}(R')$  and the equation  $0 = D'(\xi) = \sum_{\lambda \in \mathcal{B}} D(x_{\lambda}) \lambda$  shows that  $D(x_{\lambda}) = 0$  for all  $\lambda \in \mathcal{B}$ . As this holds for every  $D \in \operatorname{LND}(R)$ , we have  $x_{\lambda} \in \operatorname{ML}(R) = \mathbf{k}$  for all  $\lambda$ , so  $\xi \in K$ .  $\square$ 

**Proof of Theorem 3.2.** Implications (a)  $\Rightarrow$  (b)  $\Rightarrow$  (c) are trivial and (c)  $\Rightarrow$  (d) is Lemma 3.6, so only (d)  $\Rightarrow$  (a) requires a proof. Assume for a moment that  $\mathbf{k} = \mathbb{C}$  and suppose that R satisfies (d). Then Lemmas 4 and 5 of [1] imply that  $R \in \mathfrak{D}(\mathbb{C})$ , so the theorem is valid in the case  $\mathbf{k} = \mathbb{C}$ .

Let **k** be a field of characteristic zero, consider a smooth affine **k**-domain R of dimension 2 such that  $ML(R) = \mathbf{k}$ , and suppose that R satisfies (d).

We have  $R \cong \mathbf{k}[X_1, \dots, X_n]/(f_1, \dots, f_m)$  for some  $m, n \geqslant 0$  and some  $f_1, \dots, f_m \in \mathbf{k}[X_1, \dots, X_n]$ . Also consider  $D_1, D_2 \in \text{LND}(R)$  such that  $\ker D_1 \cap \ker D_2 = \mathbf{k}$ . Each  $D_i$  can be lifted to a (not necessarily locally nilpotent)  $\mathbf{k}$ -derivation  $\delta_i$  of  $\mathbf{k}[X_1, \dots, X_n]$ . Let  $\mathbf{k}_0$  be a subfield of  $\mathbf{k}$  which is finitely generated over  $\mathbb{Q}$  and which contains all coefficients of the polynomials  $f_i$  and  $\delta_i(X_j)$ . Define  $R_0 = \mathbf{k}_0[X_1, \dots, X_n]/(f_1, \dots, f_m)$  and note that  $\mathbf{k} \otimes_{\mathbf{k}_0} R_0 \cong R$ . As  $\mathbf{k}_0 \to \mathbf{k}$  is injective and  $R_0$  is flat over  $\mathbf{k}_0, \mathbf{k}_0 \otimes_{\mathbf{k}_0} R_0 \to \mathbf{k} \otimes_{\mathbf{k}_0} R_0$  is injective and we may regard  $R_0$  as a subring of R. In particular,  $R_0$  is a domain (a 2-dimensional affine  $\mathbf{k}_0$ -domain). Also note that  $D_i(R_0) \subseteq R_0$  for i = 1, 2; if  $d_i : R_0 \to R_0$  is the restriction of  $D_i$  then  $d_1, d_2 \in \text{LND}(R_0)$  and  $\ker d_1 \cap \ker d_2 = \mathbf{k} \cap R_0 = \mathbf{k}_0$  (see (1) for the last equality), showing that  $\text{ML}(R_0) = \mathbf{k}_0$ . As  $\mathbf{k}_0$  is a field and  $\mathbf{k} \to R$  is obtained from  $\mathbf{k}_0 \to R_0$  by base extension, the fact that  $\mathbf{k} \to R$  is smooth implies that  $\mathbf{k}_0 \to R_0$  is smooth (cf. [18, 28.0]).

Consider the *R*-module  $M = \bigwedge^2 \Omega_{R/\mathbf{k}}$  and the  $R_0$ -module  $M_0 = \bigwedge^2 \Omega_{R_0/\mathbf{k}_0}$ . Consider an isomorphism of *R*-modules  $\theta : R \to M$  and let  $\omega = \theta(1)$ . We have  $R \otimes_{R_0} M_0 \cong M$  by 3.5, so there is a natural homomorphism  $M_0 \to R \otimes_{R_0} M_0 \cong M$ ,  $x \mapsto 1 \otimes x$ ; by adjoining a finite subset

of **k** to  $\mathbf{k}_0$ , we may arrange that there exists  $\omega_0 \in M_0$  such that  $1 \otimes \omega_0 = \omega$ . Consider the  $R_0$ -linear map  $f: R_0 \to M_0$ ,  $f(a) = a\omega_0$ . Note that  $R = \mathbf{k} \otimes_{\mathbf{k}_0} R_0$  is faithfully flat as an  $R_0$ -module and that applying the functor  $R \otimes_{R_0}$  to f yields the isomorphism  $\theta$ ; so f is an isomorphism, so  $\bigwedge^2 \Omega_{R_0/\mathbf{k}_0} \cong R_0$ . As  $R \in \mathcal{D}(\mathbf{k})$  would follow from  $R_0 \in \mathcal{D}(\mathbf{k}_0)$ , the problem reduces to proving the case  $\mathbf{k} = \mathbf{k}_0$  of the theorem. Now  $\mathbf{k}_0$  is isomorphic to a subfield of  $\mathbb{C}$ , so it suffices to prove the theorem in the case  $\mathbf{k} \subseteq \mathbb{C}$ .

Assume that  $\mathbf{k} \subseteq \mathbb{C}$ . As R is smooth over  $\mathbf{k}$ , the local ring  $R_{\mathfrak{p}}$  is regular for every  $\mathfrak{p} \in \operatorname{Spec} R$  (by [18, 28.E, F, K]) so in particular R is a normal domain. Then it follows from 3.7 that  $R' = \mathbb{C} \otimes_{\mathbf{k}} R$  is an integral domain and that  $\operatorname{ML}(R') = \mathbb{C}$ . By [18, 28.G], R' is smooth over  $\mathbb{C}$ . It is clear that dim R' = 2 (for instance see the proof of 2.5) and 3.5 gives  $\bigwedge^2 \Omega_{R'/\mathbb{C}} \cong R' \otimes_R \bigwedge^2 \Omega_{R/\mathbf{k}} \cong R' \otimes_R R \cong R'$ . As the theorem is valid over  $\mathbb{C}$ , it follows that  $R' \in \mathcal{D}(\mathbb{C})$ . As  $\operatorname{ML}(R) = \mathbf{k} \neq R$ , Theorem 2.3 implies that  $R \in \mathcal{D}(\mathbf{k})$ .  $\square$ 

**3.8. Corollary.** Let R be a 2-dimensional affine domain over a field  $\mathbf{k}$  of characteristic zero. If R is a UFD and a smooth  $\mathbf{k}$ -algebra satisfying  $\mathrm{ML}(R) = \mathbf{k}$ , then  $R \in \mathfrak{D}(\mathbf{k})$ .

**Proof.** Since R is a UFD, the scheme  $X = \operatorname{Spec} R$  has a trivial divisor class group [15, 6.2, p. 131]. By Remark 3.4, it follows that  $\bigwedge^2 \Omega_{R/k} \cong R$  and the desired conclusion follows from Theorem 3.2.  $\square$ 

## 4. Localizations of nice rings

Throughout this section we fix a field **k** of characteristic zero and we consider the class  $\mathcal{N}(\mathbf{k})$  of **k**-algebras *B* satisfying the following conditions:

*B* is a geometrically integral affine  $\mathbf{k}$ -domain which is smooth over  $\mathbf{k}$  and satisfies at least one of the following conditions:

- B is a UFD; or
- B is a complete intersection over k.

Note that  $\mathbf{k}^{[n]} \in \mathcal{N}(\mathbf{k})$  for every n.

- **4.1. Theorem.** Suppose that R is a localization of a ring belonging to the class  $\mathcal{N}(\mathbf{k})$ . If  $\mathrm{ML}(R) = K$  for some field  $K \subset R$  such that  $\mathrm{trdeg}_K R = 2$ , then  $R \in \mathfrak{D}(K)$ .
- **4.2. Lemma.** Let  $B \in \mathcal{N}(\mathbf{k})$ , let E be a finitely generated  $\mathbf{k}$ -subalgebra of B and let  $S = E \setminus \{0\}$ . Then  $S^{-1}B$  is a smooth algebra over the field  $S^{-1}E$ .

**Proof.** Let  $\bar{\mathbf{k}}$  be an algebraic closure of  $\mathbf{k}$  and define  $\bar{E} = \bar{\mathbf{k}} \otimes_{\mathbf{k}} E$  and  $\bar{B} = \bar{\mathbf{k}} \otimes_{\mathbf{k}} B$ . Note that  $\bar{B}$  is a domain because B is geometrically integral, and  $\bar{E} \to \bar{B}$  is injective because  $\bar{\mathbf{k}}$  is flat over  $\bar{\mathbf{k}}$ . Let  $K = \operatorname{Frac} E$  and  $L = \operatorname{Frac} \bar{E}$ . As  $\bar{B}$  is smooth over  $\bar{\mathbf{k}}$ , applying [15, 10.7, p. 272] to  $\operatorname{Spec} \bar{B} \to \operatorname{Spec} \bar{E}$  implies that  $L \to L \otimes_{\bar{E}} \bar{B}$  is smooth. It is not difficult to see that  $L \to L \otimes_{\bar{E}} \bar{B}$  is obtained from  $K \to K \otimes_E B$  by base extension. As K is a field and  $L \to L \otimes_{\bar{E}} \bar{B}$  is smooth, it follows from [18, 28.0] that  $K \to K \otimes_E B$  is smooth.  $\square$ 

**4.3. Lemma.** Let  $B \in \mathcal{N}(\mathbf{k})$ , let S be a multiplicative subset of B and suppose that K is a field such that  $\mathbf{k} \cup S \subseteq K \subseteq S^{-1}B$ . Then  $S^{-1}B$  is a smooth K-algebra and some transcendence basis of  $K/\mathbf{k}$  is a subset of B.

**Proof.** Note that  $K/\mathbf{k}$  is a finitely generated field extension and write  $K = \mathbf{k}(\alpha_1, \dots, \alpha_m)$ . For each i we have  $\alpha_i = b_i/s_i$  for some  $b_i \in B$  and  $s_i \in S$ ; as  $S \subseteq K$ , we have  $b_i = s_i\alpha_i \in K$ . Define  $E = \mathbf{k}[b_1, \dots, b_m, s_1, \dots, s_m] \subseteq K$  and  $S_1 = E \setminus \{0\}$ , then  $S_1^{-1}E = K$  and hence  $S_1^{-1}B = S^{-1}B$ . By Lemma 4.2,  $S^{-1}B$  is a smooth K-algebra. Moreover,  $\{b_1, \dots, b_m, s_1, \dots, s_m\}$  contains a transcendence basis of  $K/\mathbf{k}$ .  $\square$ 

**Proof of Theorem 4.1.** We have  $R = S^{-1}B$  for some  $B \in \mathcal{N}(\mathbf{k})$  and some multiplicative subset S of B. As  $\mathbf{k}^* \cup S \subseteq R^* \subseteq \mathrm{ML}(R) = K$ , R is smooth over K by Lemma 4.3. By definition of  $\mathcal{N}(\mathbf{k})$ , B is a UFD or a complete intersection over  $\mathbf{k}$ .

If *B* is a UFD then so is *R*; in this case we obtain  $R \in \mathfrak{D}(K)$  by Corollary 3.8, so we are done. From now on, assume that *B* is a complete intersection over **k**. Let  $q = \dim B$  and write  $B = \mathbf{k}[X_1, \dots, X_{p+q}]/(G_1, \dots, G_p)$ . Using Lemma 4.3 again, choose a transcendence basis  $\{f_1, \dots, f_{q-2}\}$  of *K* over **k** such that  $f_1, \dots, f_{q-2} \in B$ ; let  $S_0 = \mathbf{k}[f_1, \dots, f_{q-2}] \setminus \{0\}$  and  $K_0 = \mathbf{k}(f_1, \dots, f_{q-2})$ . We claim:

$$S_0^{-1}B$$
 is a complete intersection over  $K_0$ . (9)

Let us prove this. For  $1 \le i \le q-2$ , choose  $F_i \in \mathbf{k}[X_1,\ldots,X_{p+q}]$  such that  $\pi(F_i)=f_i$  where  $\pi:\mathbf{k}[X_1,\ldots,X_{p+q}]\to B$  is the canonical epimorphism. Also, let  $T_1,\ldots,T_{q-2}$  be extra indeterminates. The **k**-homomorphism  $\mathbf{k}[T_1,\ldots,T_{q-2},X_1,\ldots,X_{p+q}]\to B$  which maps  $T_i$  to  $f_i$  and  $X_i$  to  $\pi(X_i)$  has kernel  $(G_1,\ldots,G_p,F_1-T_1,\ldots,F_{q-2}-T_{q-2})$ , so there is an isomorphism of **k**-algebras

$$B \cong \mathbf{k}[T_1, \dots, T_{q-2}, X_1, \dots, X_{p+q}]/(G_1, \dots, G_p, F_1 - T_1, \dots, F_{q-2} - T_{q-2}).$$

Localization gives an isomorphism of k-algebras

$$S_0^{-1}B \cong \mathbf{k}(T_1, \dots, T_{q-2})[X_1, \dots, X_{p+q}]/(G_1, \dots, G_p, F_1 - T_1, \dots, F_{q-2} - T_{q-2})$$
 (10)

which maps  $K_0$  onto  $\mathbf{k}(T_1, \dots, T_{q-2})$ . As the right-hand side of (10) is a complete intersection over  $\mathbf{k}(T_1, \dots, T_{q-2})$ , assertion (9) is proved. Then we obtain

$$\bigwedge^{2} \Omega_{S_{0}^{-1}B/K_{0}} \cong S_{0}^{-1}B \tag{11}$$

by Lemma 3.6, because  $S_0^{-1}B$  is a smooth  $K_0$ -algebra by Lemma 4.2.

Each element of K belongs to  $\operatorname{Frac}(S_0^{-1}B)$  and is algebraic over  $K_0$ , hence integral over  $S_0^{-1}B$ ; as  $S_0^{-1}B$  is normal,  $K \subseteq S_0^{-1}B$  and hence  $S_0^{-1}B = R$ . We may therefore rewrite (11) as:

$$\bigwedge^{2} \Omega_{R/K_0} \cong R. \tag{12}$$

Applying [18, 26.H] to  $K_0 \subseteq K \subseteq R$  gives the exact sequence of R-modules

$$\Omega_{K/K_0} \otimes_K R \to \Omega_{R/K_0} \to \Omega_{R/K} \to 0$$
,

where  $\Omega_{K/K_0} = 0$  by [18, 27.B]. So  $\Omega_{R/K} \cong \Omega_{R/K_0}$  and hence (12) gives  $\bigwedge^2 \Omega_{R/K} \cong R$ . So  $R \in \mathfrak{D}(K)$  by Theorem 3.2.  $\square$ 

Let **k** be a field of characteristic zero, let  $B \in \mathcal{N}(\mathbf{k})$  and consider locally nilpotent derivations  $D: B \to B$ . See 1.1 for the definition of  $\mathrm{KLND}(B)$ . It is known that if  $A \in \mathrm{KLND}(B)$  then  $\mathrm{trdeg}_A(B) = 1$ , and if  $A_1$ ,  $A_2$  are distinct elements of  $\mathrm{KLND}(B)$  then  $\mathrm{trdeg}_{A_1 \cap A_2}(B) \geqslant 2$ . We are interested in the situation where  $\mathrm{trdeg}_{A_1 \cap A_2}(B) = 2$ , i.e., when  $A_1$ ,  $A_2$  are distinct and have an intersection which is as large as possible.

- **4.4. Corollary.** Let  $B \in \mathcal{N}(\mathbf{k})$ , where  $\mathbf{k}$  is a field of characteristic zero. If  $A_1, A_2 \in \text{KLND}(B)$  are such that  $\text{trdeg}_{A_1 \cap A_2}(B) = 2$ , then the following hold.
- (a) Let  $R = A_1 \cap A_2$  and  $K = \operatorname{Frac} R$ . Then  $K \otimes_R B \in \mathfrak{D}(K)$ .
- (b) If B is a UFD then there exists a finite sequence of local slice constructions which transforms  $A_1$  into  $A_2$ .

**Remark.** This generalizes results 1.10 and 1.13 of [6]. Local slice construction was originally defined in [12] in the case  $B = \mathbf{k}^{[3]}$ , and was later generalized in [5].

**Proof of Corollary 4.4.** Let  $S = R \setminus \{0\}$ ,  $A_i = S^{-1}A_i$  (i = 1, 2) and  $\mathcal{B} = S^{-1}B = K \otimes_R B$ . If  $D_i \in \text{LND}(\mathcal{B})$  has kernel  $A_i$ , then  $S^{-1}D_i \in \text{LND}(\mathcal{B})$  has kernel  $A_i$ ; thus  $A_1, A_2 \in \text{KLND}(\mathcal{B})$ . Using that  $A_1, A_2$  are factorially closed in B, we obtain  $A_1 \cap A_2 \subseteq K$ , so  $\text{ML}(\mathcal{B}) \subseteq K$ . The reverse inclusion is trivial  $(K^* \subseteq \mathcal{B}^* \subseteq \text{ML}(\mathcal{B}))$ , so  $\text{ML}(\mathcal{B}) = K$ . Then  $\mathcal{B} \in \mathfrak{D}(K)$  by Theorem 4.1, so assertion (a) is proved.

In [5, 3.3], one defines a graph  $\underline{\text{KLND}}(B)$  whose vertex-set is  $\underline{\text{KLND}}(B)$ ; then, given  $A, A' \in \underline{\text{KLND}}(B)$ , one says that A' can be obtained from A "by a local slice construction" if there exists an edge in  $\underline{\text{KLND}}(B)$  joining vertices A and A'. So assertion (b) of the corollary is equivalent to the existence of a path in  $\underline{\text{KLND}}(B)$  going from  $A_1$  to  $A_2$ . Paragraph [5, 3.2.2] also defines a subgraph  $\underline{\text{KLND}}_R(B)$  of the graph  $\underline{\text{KLND}}(B)$ , and clearly  $A_1, A_2$  are two vertices of  $\underline{\text{KLND}}_R(B)$ ; so, to prove (b), it suffices to show that  $\underline{\text{KLND}}_R(B)$  is a connected graph. We have  $R \in \mathcal{R}^{\text{in}}(B)$  (cf. [5, 5.2]) and consequently (cf. [5, 5.3], using that B is a UFD) we have an isomorphism of graphs  $\underline{\text{KLND}}_R(B) \cong \underline{\text{KLND}}_R(B)$ . As  $B \in \mathfrak{D}(K)$  by part (a), we may apply [5, 4.8] and conclude that  $\underline{\text{KLND}}_R(B)$  is connected. Assertion (b) is proved.  $\square$ 

The following is a trivial consequence of Corollary 4.4.

- **4.5. Corollary.** Let  $B \in \mathcal{N}(\mathbf{k})$ , where  $\mathbf{k}$  is a field of characteristic zero. Suppose that B has transcendence degree two over  $\mathrm{ML}(B)$ .
- (1) Let  $R = \mathrm{ML}(B)$  and  $K = \mathrm{Frac}\,R$ . Then  $K \otimes_R B \in \mathfrak{D}(K)$ .
- (2) If B is a UFD then, for any  $A_1, A_2 \in KLND(B)$ , there exists a finite sequence of local slice constructions which transforms  $A_1$  into  $A_2$ .

### References

- [1] T. Bandman, L. Makar-Limanov, Affine surfaces with  $AK(S) = \mathbb{C}$ , Michigan Math. J. 49 (2001) 567–582.
- [2] J. Bertin, Pinceaux de droites et automorphismes des surfaces affines, J. Reine Angew. Math. 341 (1983) 32–53.
- [3] N. Bourbaki, Éléments de mathématique. Algèbre, Hermann, Paris, 1970, Chapitres 1 à 3.
- [4] D. Daigle, On locally nilpotent derivations of  $k[X_1, X_2, Y]/(\varphi(Y) X_1X_2)$ , J. Pure Appl. Algebra 181 (2003) 181–208.
- [5] D. Daigle, Locally nilpotent derivations and Danielewski surfaces, Osaka J. Math. 41 (2004) 37-80.
- [6] D. Daigle, On polynomials in three variables annihilated by two locally nilpotent derivations, J. Algebra 310 (2007) 303–324.
- [7] D. Daigle, P. Russell, On log Q-homology planes and weighted projective planes, Canad. J. Math. 56 (2004) 1145– 1189
- [8] A. Dubouloz, Completions of normal affine surfaces with a trivial Makar-Limanov invariant, Michigan Math. J. 52 (2004) 289–308.
- [9] A. Dubouloz, Danielewski-Fieseler surfaces, Transform. Groups 10 (2005) 139-162.
- [10] A. Dubouloz, Embeddings of Danielewski surfaces in affine spaces, Comment. Math. Helv. 81 (2006) 49-73.
- [11] A. van den Essen, Polynomial Automorphisms, Progr. Math., vol. 190, Birkhäuser, 2000.
- [12] G. Freudenburg, Local slice constructions in K[X, Y, Z], Osaka J. Math. 34 (1997) 757–767.
- [13] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations. Invariant Theory and Algebraic Transformation Groups VII, Springer-Verlag, 2006.
- [14] R.V. Gurjar, M. Miyanishi, Automorphisms of affine surfaces with A<sup>1</sup>-fibrations, Michigan Math. J. 53 (2005) 33–55
- [15] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math., vol. 52, Springer-Verlag, 1977.
- [16] L. Makar-Limanov, On groups of automorphisms of a class of surfaces, Israel J. Math. 69 (1990) 250-256.
- [17] K. Masuda, M. Miyanishi, The additive group actions on Q-homology planes, Ann. Inst. Fourier (Grenoble) 53 (2003) 429–464.
- [18] H. Matsumura, Commutative Algebra, 2nd edition, Math. Lecture Note Ser., Benjamin-Cummings, 1980.
- [19] Y. Nouazé, P. Gabriel, Idéaux premiers de l'algèbre enveloppante d'une algèbre de Lie nilpotente, J. Algebra 6 (1967) 77–99
- [20] R. Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris 267 (1968) 384-387.
- [21] D. Wright, On the jacobian conjecture, Illinois J. Math. 25 (1981) 423-440.
- [22] O. Zariski, P. Samuel, Commutative Algebra, vol. 1, Grad. Texts in Math., vol. 28, Springer-Verlag, New York, 1975.