
JOURNAL OF ALGEBRA 10, 31O-320 (1968) 

On Simple Anti-Flexible Rings* 

C. T. ANDERSON AND D. L. OUTCALT 

University of British Columbia, University of California, Santa Barbara, California 

Received February 15, 1968 

1. INTRODUCTION 

Anti-flexible algebras were introduced by Kosier [3], and a subclass of 
anti-flexible rings was studied eariier by Kleinfeld [I]. Subsequent investiga- 
tions into the structure of these algebras were made in [2] and [4]. But the 
classification of the simple algebras is yet to be determined. 

The purpose of this paper is to show that if R is a simple, not associative, 
anti-flexible, power-associative ring of characteristic not 2 or 3, then R is 
obtained by introducing a “commutator” in an appropriate commutative 
associative ring P, and the identity ((x, y), z) = 0 holds in R. 

While, in some sense, this result characterizes simple anti-flexible rings, 

it also shows that a complete determination of even the simple finite- 
dimensional algebras will be most difficult. Indeed, the corresponding 
associative commutative algebras turn out to be somewhat “mixed,” that is, 
they are neither nilpotent nor separable. 

The result of Rodabaugh that a simple, anti-flexible, power-associative, 
finite-dimensional, algebra of characteristic not 2 has a unit element provided 
it is not nil [4] is extended by showing that such an algebra with the additional 
assumption of characteristic not 3 cannot be nil. 

2. PRELIMINARY DEFINITIONS AND IDENTITIES 

The associator (x, y, z) and commutator (x, y) are defined by: 

(x,y,z) =xy*z--x~yz and (x, y) = xy - yx. 
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The ring R is said to be anti-flexible if 

&,Y, 4 = (X,Y, -4 - (.&Y, 4 = 0 (2.1) 

is an identity in R. 
Throughout the remainder of this paper we assume that R is anti-flexible, 

2x = 0 implies x = 0 in R, and that 

(x, x, x) = 0 (2.2) 
is an identity in R. 

With the aid of (2. l), we obtain, as a linearization of (2.2), the identity 

W>Y, 4 = (X>Y, 4 + (Y, z, 4 + (% X,Y) = 0. (2.3) 

We shall also require the Teichmiiller identity (which holds in any ring): 

C(w, X,Y, z> = (WY, 4 - @, xy, z) 

+(~,~,Y~)--w(~,Y,~)-(~,x,Y)~=o (2.4) 
In any ring 

from which we subtract A(x, a, y) + B(x, y, .a) = 0 to obtain 

W,Y, 4 = (XY, 4 - X(Y,Z) -(x,z)y + 2(x,z,y) = 0. (2.5) 

We let x o y  = xy + yx; then it can be verified that in any ring, 

(x OY) 0 x - x 0 (Y 0 2) = (%Y> z) + (x, GY) + (Y, x, z> 

- (Y, z, x) - (? x3 Y) - (% Y! x) + (Y, (x, z)), 

so that from (2.1) we get 

(x 0 Y> 0 2 - x 0 (Y 0 x) = (Y, (x7 z)). (2.6) 

I f  we retain the additive group of R but replace the product xy of R by the 
product x o y, then we obtain a commutative ring R+, and it follows from 
(2.2) and (2.6) that R+ is a Jordan ring. Equally, we could get an 
anti-commutative ring R- by replacing the product xy by the commutator 

product (x, y), and from 0 = D(x, y, a) - D(y, X, a) and 0 = A(x, a,~), 
it would follow that 

((x9 Y), 4 + KY> ax> + (k 4, Y> = 0, 

so that R- would be a Lie ring. 

(2.7) 

48r/10/3-4 
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Expanding 0 = C(w, x,y, z) - C(z, y, X, w), and using 

0 = A(& y, xw) = A(z, yx, w) = A(zy, x, w) = zA(y, x, w) = A(z,y, x) w, 

we get 

0 = Jqwu, x, y, z) = ((w, 4, Y, 4 - (w, (x9 Y), 4 

+ (w, x9 (Y, z>> - (w, (4 Y, 4) - ((WY x7 Y>, 4. cw 

Then we expand 

0 = Qw, x, y, 4 + qx, y, 2, w) + qy, x, w, x) + qz, w, x, Y) 

- W(w, 4, y, 4 - mx, Y), z, 4 - B((Y, 4, w> 4 - B((? 4, % Y> 

to get 

0 = F(w, x, Y, 4 

= (WY (%Y), 4 + (x, (Y, 474 + (Y, (x, WI, 4 + (G (w, 4,Y). 
(2.9) 

Now we are able to derive the important identity 

Expanding 

(w, (%Y), 4 = 0. (2.10) 

0 = qx, x, y, x) + qy, x, x, x) - B(-% x, (Y, 4) + (B(x, x9 Y), x)9 

we get 0 = (x, (x, y, x)), hence from 0 = (x, B(x, y, x)) and 0 = (x, A@, x,Y)), 
we have 

0 = (x3 (X,Y, 4) = (x, (x, X,Y)) = (x, (Y, 2, x)>. (2.11) 

Then it follows from (2.11) and 0 = E(y, X, X, X) that ((y, x), X, X) = 0, 

hence (x, X, (y, x)) = 0 by (2.1), and then from 0 = B(x, X, (y, x)), 

0 = (x, (Y, x),4. (2.12) 

Substituting x + z for x in (2.12) and subtracting 

0 = 45 (Y, x),x> + 45 (Y, 44, 

we obtain 

2(x, (Y, x),4 + 2(x, (Y, 44 + (x, (Y, 44 + (z, (Y, 44 = 0. (2.13) 

Substituting --z for z in (2.13) and then adding to (2.13) yields 

w, (Y, 49 4 + (z, (Y, 44 = 0. (2.14) 
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Next, linearize (2.14) and add A(w, (y, x), z) = 0 to get 

G(w> X,Y, 4 = (x, (Y, $4 + lx, (y, 4,~) + (w, (Y, x),.4 = 0. 

Computing 

o = F(w, x, y, x) + G&u, x, Y, x) + G(x, Y, w, 4 - A@> (w, 4, Y>, 

we get 

f&4 x,y, 4 = (x, (Y, z), wu) + (Y, (w, x), z) = 0 

Now, identity (2.10) follows from the expansion of 

0 = H(w, x, y, z) + fqx, w, y, z> - -qw, (Y, z), x). 

With the aid of (2.10), we can improve (2.8) to obtain 

0 = mu, X,Y, 4 = ((w, X),Y, 4 + (f-4 x, (Y, a>) 

- (wu, (x, Y, 4) - ((w, % Y), 4. (2.15) 

Finally, applying (2.10) to 0 = B((w, x), y, z) - A(y, z, (w, x)), we have 

0 = qw, x,y, z) = ((w, X),Y, z) + ((w, x), %Y). (2.16) 

3. SIMPLE RINGS 

LEMMA 3.1. If R is simple and not associative, then R has no proper one-sided 
ideals. 

Proof. Suppose, for example, that I is a non-zero right ideal of R. Then 
(I, R, R) C I; hence from 0 = A(I, R, R), we have (R, R, I) C I, and then 
(R, I, R) C I because of 0 = B(I, R, R). Now we can show that I + RI is a 
two-sided ideal of R; 

(I+RI)RCIR+(RI)RCI+R(IR)+(R,I,R)CI+RI, 

and 

R(I+RI)_CRI+R(RI)CRI+(RR)I+(R,R,I)CRI+I. 

Since If 0 and R is simple, R = I + RI. Then from the identity 
(w, (x,y), z) = 0, we have 

(R, R, R) C (R, I + RI, R) C (RI, R) + (R RI, R) 

C (R, I, R) + (RR, IR, R) C (R, I, R) C I. 
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Since IR C I, (R, R, R) + (R, R, R) R G1. But it is known [I] that 
(R, R, R) + (R, R, R) R is a two-sided ideal of R, hence it is equal to R since 
R is not associative. Therefore I = R. 

A similar argument shows R has no proper left ideals as well. 
The middle nucleus M of R is defined as 

It follows from the linearity of the associator and from (2.4) that M is a 
subring of R. We note (2.10) expresses (Ii, R) C M. 

LEMMA 3.2. If R is simple, not associative, and if T is a subset of M such that 
(T, R, R) C T, then (T, R) = 0. 

Proof. We show first that (T, R) + (T, R) R is a right ideal of R. 
Evidently, it is sufficient to sow that ((T, R), R, R) C (T, R), since 

(T, R) R + R C (T, R)(RR) + ((T, RI, R R) C (T, R) R + ((T, R), R, R). 

Thus consider ((t, x), y, z), where t E T, x, y, z E R. We have 

0 = J(t, x, Y, 4 = ((t, 49 YY 4 + (4 x, (Y, 4) 

- (t, (x9 Y> 4) - ((t, x9 Y>, 4, 

and since t, (y, z) EM, it follows from 0 = B(t, X, (y, x)) that 0 = (t, x, (y, x)), 

so that ((t, x), Y, 4 = (4 (x, Y, 4) + ((t, x, Y>, 4 E (T, RI. 
According to Lemma 3.1, either (T, R) = 0 or R = (T, R) + (T, R) R. 

We show that in the latter case, R would be associative. Indeed, let t E T, 
y, z E R. Expanding 0 = D(t, y, x), we get 

(4 4Y = (ty, x) - t(r, z) + 2(t, ?Y). 

Since (R, R) C M and since M is a subring, it follows from our assumption on 
T that (t, x) y  EM. Therefore R = (T, R) + (T, R) R _C M, and R would be 
associative. Hence (T, R) = 0. 

LEMMA 3.3 If in the ring R the mapping x-+ 3x is onto, then 

W, 3, R), R R) C ((4 RI, RI. 

Proof. Since 0 = B((a, b), c, (x,y)), it follows from (2.10) that 
((a, b), c, (x, y)) = 0. Hence from 0 = ]((a, b), c, x, y) we have 

(((a, b), 4, x, Y> = (((a, bh c, 4, Y) + ((a, 4, tc, x, Y)), 
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from which it follows that 

(((a, w, 4 x, Y> = (((% 4, c, 4, Y) (mod T) (3.4) 

where T = ((R, R), R). We obtain 

(((a, 6),4, x, Y) = -(((a, b), 4, c, Y) (mod T) (3.5) 

from 0 = (K(a, b, c, x), y) and (3.4). Also, 

(mod T). (3.6) 

Indeed, expanding 0 = J(a, h, c, x), we see that 

(((a, b), C, ~1, Y) = -((a, b, (c, x)), Y) (mod T), 

and since 0 = (Afa, b, (c, x)), y), we get 

(((a, 61, c, 4, Y) = -(((c, 4, b, a>, Y) (mod T), 

from which (3.6) follows immediately, using (3.4). 
Now we can derive 

(((a, b), C)I x> Y) = (((c, 47 4, x7 Y) (mod T). (3.7) 

Computing, mod T, using (3.5), (3.6), and the properties of the commutator, 

(((a, b)> 4, x, Y) = -MC, x)9 6)7 4 Y> + qc, 4, h 4 Y) 

= (NC> x),4, Y, 4 

= -(((k Y), 4, c, 4 

= (((h Y), c), x, 4 - K((k Y), c, x, a) 

= -w, Y), c), a, x) 

= NY> b), 4, 4 4 

= -NC, 44, y, 4 + f(((c, a), 4 y, 4 

= tttc, 4 4, x, Y). 

Finally, 

3(((% b), 4, X,Y) = 0 (mod T), 

for according to (3.7), (((u, b), c), X, y) remains unchanged mod T when 
a, 6, c are cyclically permuted. Hence 

3w 4, 4 x, Y> = (((a, 4, 4 XT Y) + (((c, 4, 4, x, Y) 

+ (WA 4, 4, x, Y) (mod T). 
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But because of the Jacobi identity, (2.7), 

KG4 4?4 x9 Y) + (((c, 4 4, x9 Y> + (((h 44, x, y) = 0, 

hence (3.8). 
Let a’, b, c, x, y be arbitrary elements of R. Since a’ = 3u for some a E R, 

(((a’, q, c), X,Y> = 3(((a, 4, 4% %Y) = 0 (mod T), 

which completes the proof of the lemma. 

LEMMA 3.9. If R is simple, not associative, and of characteristic f2, 3, 

then 0 = (((4 R), R), R) = ((R, R), (4 R)). 

Proof. Since 3R is an ideal of R, it follows from our assumptions that 
x--t 3x is an onto mapping. Let T = ((R, R), R); from Lemma 3.3 we have 
that (T, R, R) C T. But T is a subset of the middle nucleus because of (2.10), 
hence from Lemma 3.2, we conclude that (((R, R), R), R) = 0, and since 
R- is a Lie ring, (2.7), 0 = ((R, R), (R, R)) as well. 

THEOREM 3.10. If R is a simple, not associative ring of characteristic 
not 2 or 3, then ((x, y), z) = 0 is an identity in R, and R+ is a commutative 
associative ring. 

Proof. The fact that R+ is associative will follow from (2.6) and the 
identity ((x, y), z) = 0. 

First we prove that ((R, R), R)(R, R) c((R, R), R). Indeed if 
w E ((R, R), R)(R, R), then w = C tiui , where ti E ((R, R), R) and ui E (R, R). 
Hence it would be sufficient to prove that ((a, 6), c)(r, s) E ((R, R), R) for all 
u, b, c, r, s E R. Since 

0 = D(c, (7, s), (a, b)) = (c(r, 4, (a, b)) - c((r, 4, (a, 0 

- (c, (a, b))(r, s> + W, (4 6 (r, s>h 

we have from (2.10) and Lemma 3.9 that 

((a, b), c)(r, s) = (c(r, s>, (a, b)) E ((R Rh 3. 

Next, we note that W = ((R, R), R) + ((R, R), R) R is a right ideal of R: 

WR c W + ((R, R), R) R - R C W + ((R, R), R)(RR) 

+ (((R R), RI, R> RI C W 
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because of Lemma 3.3. According to Lemma 3.1, W = 0 or W = R. Suppose 
W = R. Then 

(R R) C (W, R) C (((R R), R) R R) 

because of Lemma 3.9. Now we prove that (((R, R), R) R, R) C ((R, R), R). 
Evidently, it is sufficient to show that if x, y, x, 6, c are arbitrary elements in R, 

then (((x, y), z) b, c) E ((R, R), R). Thus, set a = ((x, y), z). Now 

0 = qa, b, c) = (ub, c) - a(b, c) - (a, c) b + 2(u, c, b). 

But (a, c) b = 0 because of Lemma 3.9, and 2(u, c, b) E ((R, R), R) because 
of Lemma 3.3. Therefore 

(4 4 E ((4 W, R) + (CR, 4, R)(R, R) C ((4 R), R). 

because of the paragraph above. Altogether we have (R, R) C ((R, R), R). 
But then 

((R R), R) C (((4 R), R), R) = 0 

because of Lemma 3.9. Therefore W = 0, and this completes the proof of 
the theorem. 

We should like to point out that Kosier’s main result on the structure of 
simple anti-flexible rings [3] can be obtained as a consequence of 
Theorem 3.10. Kosier proved that if e is an idempotent of an anti-flexible 
ring R, then R has a Peirce decomposition R = RI1 + R,, + R,, + R, 
relative to e, and that if R is simple and not associative, then R,, = R,, = 0. 
This result will follow from Theorem 3.10 in the following way. Let xl,, E R,, . 

Then xl,, = (e, xrs) = (e, (e, xIO)) = 0. Similarly, R,, = 0. 

THEOREM 3.11. Let P be a commutative, associative, nontrivial ring in 
which 2x = 0 implies x = 0 and in which there is defined a bilinear map 

(x, y): P X P - P satisfying for all x, y, z E P 

(1) (x, x> = 0, 
(2) (x2, x) = 0, 
(3) <<X,Y>, z> = 0, 

(4) (x, y) f  Ofor some x, y  in P, 

(5) (I, P> g I for each proper ideal I of P. 
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Then the ring R obtained by taking the additive group of P and replacing the 

product xy in P by the new product 

XOY =xY+(x,Y> (3.12) 

is a simple, not associative, anti-flexible ring satisfying (x, x, x) = 0. Conversely, 
each simple, not associative, anti-flexible ring of characteristic not 2 or 3 
satisfying (x, x, x) = 0 may be obtained in this way. 

Proof. The converse is just Theorem 3.10. Let (x, y) be the commutator 
in R. We take P = R+ and $(x, y) for our bilinear map. (Since R is simple and 
of characteristic not 2, $(x, y) is a well-defined element.) Condition (2) is just 

(x, x, X) = 0 and (5) follows from the fact that R is simple. 
Now, condition (1) is equivalent to (x,y) = -(y, x). Moreover, linearizing 

condition (2) yields 

(XY, z> + (Y? x> + <=, Y> = 0. 

Using (I), (3), and (3.13) we obtain 

(3.13) 

(xOr)Oz-XO(Y 04 =(x,Y>~+(~,Y)x-(x~,Y). (3.14) 

Interchanging x and z in (3.14) 1 eaves it unchanged, hence R is anti-flexible. 

Let x = y  = z in (3.14) and apply conditions (1) and (2) to obtain 
(x, x, x) = 0 in R. 

Next, it follows from the assumption that 2x = 0 implies x = 0 in P that 
x---f 2x is an onto mapping. Indeed, 2P is an ideal of P. Moreover, by the 
linearity of (x, y), (2P, P) C 2P; hence 2P is not a proper ideal of P by (5). 
Therefore 2P = P since 2P f  0. Now, (3.12) and condition (1) imply 

2xy=X@y+y@X. (3.15) 

Let I be an ideal of R. Choose y  E I, I E R. Then by (3.15) 2yr E I which 
implies that I is an ideal of P since x --+ 2x is onto. But then (1, P) Cl by 
(3.12) which implies that 1 is not a proper ideal of P by condition (5), and thus 
I is not a proper ideal of R. Hence R is simple. 

Finally, if R were associative, then R would be a simple associative ring 
such that ((R, R), R) = 0. This follows from (3) and the fact that the 
commutator of X, y  in R is precisely 2(x, y). Condition (4) insures the 
existence of an a E R such that (a, x) f  0 for some x E R. Since R is 
associative, D(a, a, x) = 0 yields 

(a2, x) = a(a, x) + (a, x) a = 2a(a, x) 

because of ((R, R), R) = 0. But also, (a2, X) E C, the center of R. Thus 
2a(a, x) E C which implies a(a, x) G C. The center of a simple associative ring 
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is either 0 or a field. Now, C f  0 because of (4). Moreover, if C is a field, then 
(a, x) has an inverse in C, thus a E C which implies (a, x) = 0, is a 

contradiction. Hence R is not associative. 

4. FINITE-DIMENSIONAL ALGEBRAS 

First we remark that if R is a central simple, power-associative, anti- 
flexible, not associative, finite-dimensional algebra over a field Cp of charac- 
teristic not 2 or 3, then the corresponding algebra P is, of course, not a nil 
algebra since R has a unit element. Furthermore, P is not separable. For 
suppose P were semi-simple over @. Then P = PI @ e.0 @ P, , where 
each Pi is an extension of field @. Assume first that each Pi is a separable 

extension of @. Then for each i, Pi = Q(q) for some element wi which 
is algebraic over 0. From power-associativity, we have (q12, q”) = 0 
for all integers n and m, whence (Pi , Pi> = 0. Moreover, if we let x = Ii , 
li the unit of Pi , y  E Pi , z E P, , i +j, in (3.13), then (y, Z) = 0, that is 
(Pi , Pj> = 0 for i # j. Hence (P, P> = 0, which would imply that R = P, 
and in particular, R is associative. On the other hand, suppose PI is not a 
separable extension of @. Then there exists an extention /I of @ such that PI , 
when considered as an algebra over fl, contains a nonzero nilpotent element. 
Since PI is commutative and associative, so PI as an algebra over rl has a 
nonzero radical. Therefore, PA has a nonzero radical. 

Finally the extension of Rodabaugh’s result [4, Theorem 6.11 as mentioned 
in Section 1 is made by 

THEOREM 4.1. If R is a simple, finite-dimensional, power-associative, 
anti-jlexible algebra of characteristic not 2 or 3, then R is not nil. 

Proof. Of course, we may assume that R is not associative so that R+ is 
commutative and associative by (2.6) and Theorem 3.10. Hence if R is nil, 
then R+ is nil from which it follows that Rf is nilpotent. In particular, there 
exists a f  0 in R such that ax + xa = 0 for all x E R. Then (aR, R) = 0, 
Indeed, let x E R. Then by Theorem 3.10 

2(ax, R) = ((a, x), R) + (ax + xa, R) = 0. 

Now, in any ring, 

(XY, 4 + (YX, 4 + (w Y) = qx, Y, 4 = 0, 

hence from (aR, R) = 0 = ax + xa, we obtain (a, R2) = 0. Hence (a, R) = 0 
since R2 = R. But then 0 = aR = Ra since ax + xa = 0 for al1 x E R, 
which is impossible since R is simple. 
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