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SUMMARY

Dendritic spines are postsynaptic compartments of
excitatory synapses that undergo dynamic changes
during development, including rapid spinogenesis in
early postnatal life and significant pruning during
adolescence. Spine pruning defects have been
implicated in developmental neurological disorders
such as autism, yet much remains to be uncovered
regarding its molecular mechanism. Here, we show
that spine pruning and maturation in the mouse
somatosensory cortex are coordinated via the cad-
herin/catenin cell adhesion complex and bidrection-
ally regulated by sensory experience. We further
demonstrate that locally enhancing cadherin/cate-
nin-dependent adhesion or photo-stimulating a con-
tactingchannelrhodopsin-expressingaxonstabilized
the manipulated spine and eliminated its neigh-
bors, an effect requiring cadherin/catenin-dependent
adhesion. Importantly, we show that differential cad-
herin/catenin-dependent adhesion between neigh-
boring spines biased spine fate in vivo. These results
suggest that activity-induced inter-spine competition
forb-cateninprovidesspecificity for concurrent spine
maturation and elimination and thus is critical for
the molecular control of spine pruning during neural
circuit refinement.
INTRODUCTION

By virtue of their bulbous heads and constricted necks (Cajal,

1911), dendritic spines provide important biochemical and

electrical compartmentalization within neurons, housing the

postsynaptic density of excitatory synapses and associated or-

ganelles (Harris and Weinberg, 2012; Higley and Sabatini, 2012;

Murakoshi and Yasuda, 2012; Sheng and Kim, 2011; Yuste,

2013). Previous studies demonstrated that rapid spinogenesis

during early postnatal life (McAllister, 2007; Tada and Sheng,

2006; Yuste and Bonhoeffer, 2004) is followed by significant

reduction in spine density during the transition through adoles-
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cence, suggesting substantial synapse/spine pruning (Elston

et al., 2009; Huttenlocher, 2002; Rakic et al., 1986, 1994). In vivo

imaging in the mouse sensory cortices further demonstrated

that during brain maturation, the rate of spine elimination sub-

stantially exceeded that of spine formation (Grutzendler et al.,

2002; Holtmaat et al., 2005; Zuo et al., 2005a). This high rate of

spine elimination, together with its regulation by sensory experi-

ence (Trachtenberg et al., 2002; Xu et al., 2009; Yang et al., 2009;

Zuo et al., 2005b), suggested that the pruning of existing con-

nections between neurons likely serve as an important process

in the refinement of neural circuits (Alvarez and Sabatini, 2007;

Bhatt et al., 2009; Fu and Zuo, 2011; Holtmaat and Svoboda,

2009).

In addition to dynamics in number, spines also show diversity

in morphology, with thin spines being more motile and mush-

room spines being more stable and containing larger postsyn-

aptic densities (Harris et al., 1992; Holtmaat et al., 2005; Zuo

et al., 2005a). Local increase in neural activity or induction of

long-term potentiation (LTP) has been shown to induce the for-

mation of new spines and/or the enlargement of existing spines,

while spine shrinkage is associated with long-term depression

(LTD) (Engert and Bonhoeffer, 1999; Maletic-Savatic et al.,

1999; Matsuzaki et al., 2004; Murakoshi and Yasuda, 2012;

Nägerl et al., 2004; Zhou et al., 2004). Based on these observa-

tions, it has been proposed that new spines (mostly thin) underlie

memory acquisition, while stable spines (mostly mushroom and

stubby) contribute tomemory consolidation and storage (Bourne

and Harris, 2007; Kasai et al., 2003).

The total excitatory input of a neuron is determined by the

combined parameters of spine density and spine size/shape.

Interestingly, while activity-dependent changes in spine density

and shape have been extensively investigated independently (Al-

varez and Sabatini, 2007; Bhatt et al., 2009; Bourne and Harris,

2008; Harris et al., 1992; Holtmaat and Svoboda, 2009; Segal,

2005; Spacek and Harris, 1997; Tada and Sheng, 2006), they

have rarely been examined simultaneously in the context of

spine pruning. Furthermore, since spine pruning during adoles-

cence is temporally and phenotypically distinct from the degen-

erative and global loss of spines due to aging or pathological dis-

orders such as Alzheimer’s disease (Penzes et al., 2011; Sheng

et al., 2012), different molecular mechanisms are likely to be

employed. Importantly, in post-mortem human samples and an-

imal models of neurodevelopmental disorders, including autism
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spectrum disorders (ASD), intellectual disability, and schizo-

phrenia, alterations in spine density and/or shape, possibly

attributing to defects in spine pruning, have been reported

(Glausier and Lewis, 2013; He and Portera-Cailliau, 2013;

Penzes et al., 2011; Tang et al., 2014; Zoghbi and Bear, 2012).

Thus, identification of mediators of spine pruning is critical to

our understanding of the mechanism underlying neural circuit

refinement.

Since neural activity is a driving force in development, we first

investigated the effect of sensory experience on spine density

and maturation. We found highly correlated, experience-depen-

dent spine pruning andmaturation in themouse primary somato-

sensory cortex. Using live imaging, we further demonstrated that

locally elevating neural activity or cadherin/catenin-dependent

cell adhesion led to enlargement of the stimulated spine and

concurrent pruning of its neighbor, an effect dependent on in-

ter-spine distance and N-cadherin motility. Furthermore, selec-

tive enrichment of b-catenin in a small proportion of spines in vivo

through pre-synaptic manipulations promoted the survival

and maturation of b-catenin-enriched spines, at the expense of

neighboring spines with lower b-catenin levels. Finally and

importantly, acceleration of spine pruning induced by environ-

mental enrichment was abolished in the absence of endogenous

b-catenin. Together, these results demonstrate a critical role of

the cadherin/catenin complex in mediating coordinated spine

pruning and maturation during neural circuit refinement.

RESULTS

Activity-Dependent Spine Pruning in the Maturing Brain
We used environmental enrichment from birth (EE), a paradigm

that increased sensory stimulation via multiple modalities (He

et al., 2010; Zheng et al., 2014), to investigate the in vivo effects

of neural activity on spinedensity andmorphology over thedevel-

opmental period of 1 to 3 months (m). Using Golgi staining, we

found significant reduction in spine density in basal dendrites of

layer 2/3 pyramidal neurons in the barrel field of the primary so-

matosensory cortex (S1BF), the primary motor cortex (M1), the

piriform cortex (Pir), and the primary visual cortex (V1), as well

as in medium spiny neurons of the dorsal striatum (CPu), both

in mice reared under control and enriched conditions (Figures

1A, 1B, and S1A–S1D). These results suggest that spine pruning

is a general phenomenon occurring inmultiple sensory/motor re-

gions, as the organism matures from adolescence to adulthood.

Interestingly, brain regions primarily thought to be responsible for

learning and memory, including the prefrontal cortex (PFC) and

the hippocampal CA1 region, demonstrated complex changes

in spine density over this period, suggesting that they either did

not undergo spine pruning at the population level or did so with

different time courses (Figures S1E and S1F). This difference

may reflect requirement of the hippocampus and PFC to learn

throughout life, rather than en masse within a critical period

(Hensch, 2004), as is typical for sensory and motor cortices.

Of brain regions undergoing spine pruning, S1BF demon-

strated the most striking developmental- and activity-depen-

dence. In control mice, the reduction in spine density was

most significant between 2 and 3 m, while in EE-reared mice, it

was completed between the younger age of 1 and 2 m, despite
significantly elevated spinogenesis before 1 m (Figures 1B and

S1G). The enrichment-induced acceleration of spine pruning

was specific to basal dendrites of layer 2/3 pyramidal neurons

(Figures 1B and S1H–S1J), which mostly receive within-column

excitatory inputs from layer 4 and layer 2/3 neurons (Petersen,

2007). Based on these observations, we focused on spines on

the basal dendrites of S1 layer 2/3 neurons.

To assess developmental changes in spine maturation, we

classified the spines into four categories according to their

morphology (Harris et al., 1992; Zagrebelsky et al., 2005), under

the general understanding that mushroom and stubby spines

representedmoremature spines, while thin and branched spines

tended to be more plastic and immature (Bourne and Harris,

2008; Harris et al., 1992; Spacek and Harris, 1997; Tada and

Sheng, 2006). We found that the proportion of mature spines

increased with age, a process accelerated by EE-rearing (Fig-

ure 1C). We note that this acceleration of spine maturation

temporally coincided with that of spine pruning, suggesting the

EE-rearing effects on spine maturation and pruning were coordi-

nated. Importantly, we observed a significant inverse correlation

between the percentage of mature spines (mushroom and

stubby spines) and spine density for all data from Ctrl and EE

mice (Figure 1D, R2 = 0.30, p < 000.1).We note that at 3m, spines

from EE-reared mice were more clustered (Govindarajan et al.,

2006; Kleindienst et al., 2011; Larkum and Nevian, 2008), as

demonstrated by a shift of the distribution to shorter inter-spine

distances (Figure 1E). The mature spines from EE-reared mice

were also bigger (Figure 1F, see also Figure 7C). These results

are similar to the effects of motor learning (Fu et al., 2012) and

ocular dominance shift (Chen et al., 2012) and consistent with

potentially increased synaptic strength and/or more refined local

circuitry in EE-reared mice.

To investigate whether sensory experience was required for

spine pruning, we trimmed one side of the whiskers in mice

reared under standard conditions from 2 to 3m.While significant

spine pruning and maturation occurred over this period in the

ipsilateral S1BF, corresponding to the intact whiskers, both pro-

cesseswere effectively blocked in the contralateral cortex, corre-

sponding to the trimmed whiskers (Figures 1G–1J). Thus, spine

pruning and maturation in S1BF occurred concurrently and are

bidirectionally regulatedbysensory experience through thewhis-

kers, demonstrating tight coupling between these processes.

A Requirement for the Cadherin/Catenin Complex in
Spine Pruning
The above observations suggested a model in which neural

activity locally induced differentiation of spine fates, with some

spines being eliminated while others matured. We hypothesize

that this fate differentiation is mediated by redistribution of

limited resources with the following characteristics: (1) enriched

in spines, (2) regulated by neural activity, and (3) ‘‘motile’’ and re-

distributable between spines. Synaptic cell adhesion molecules

fulfill all criteria, with the added advantage of being trans-synap-

tic and thus capable of coordinating pre- and post-synaptic

changes (Giagtzoglou et al., 2009; Hirano and Takeichi, 2012;

Südhof, 2008). We started by testing important cell adhesion

molecules identified in post-synaptic densities, namely N-cad-

herin and b-catenin (Sheng and Kim, 2011). N-cadherin is a
Cell 162, 808–822, August 13, 2015 ª2015 Elsevier Inc. 809
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Figure 1. Activity-Dependent Spine Pruning in S1BF

(A) Representative inverted Golgi staining images showing spines in basal dendrites of layer 2/3 pyramidal neurons in S1BF, categorized as mushroom (red),

stubby (blue), thin (green), and branched (orange) subtypes.

(B and C) EE accelerated spine pruning (B, n = 30–50/group) and maturation (C) in S1BF.

(D) An inverse correlation between spine density and the percentage of mature spines from all data in (B) and (C) (n = 155, R2 = 0.30, p < 0.001).

(E) Cumulative distribution of inter-spine distances in Ctrl and EE mice at 3 m (n = 975, 950 segments in Ctrl, EE, p = 0.001).

(F) The length and head diameter of mushroom and stubby spines were increased in EE mice at 3 m (n = 169, 179 spines in Ctrl, EE).

(G and H) Representative inverted Golgi staining images showing spines in S1BF (G) and whisker deprivation protocol (H).

(I and J) Whisker deprivation blocked spine pruning (I, n = 36–40/group) and maturation (J) in contralateral S1BF.

Scale bars, 5 mm. Data are presented as mean ± SEM. In this and all subsequent figures, *p < 0.05; **p < 0.01; ***p < 0.001; n.s.: p > 0.05. See also Figure S1.
homophilic, calcium-dependent transmembrane cell adhesion

molecule present at high levels pre- and post-synaptically.

Together with its intracellular binding partners b-catenin and

aN-catenin, it forms the cadherin/catenin complex, which has

been shown to play important roles in synapse formation and

plasticity (Arikkath and Reichardt, 2008; Benson and Huntley,

2012; Brigidi and Bamji, 2011; Hirano and Takeichi, 2012; Tai

et al., 2008). To investigate requirement for the cadherin/catenin

complex in spine pruning in vivo, we conditionally knocked out
810 Cell 162, 808–822, August 13, 2015 ª2015 Elsevier Inc.
endogenous b-catenin in excitatory neurons of the cerebral cor-

tex and hippocampus using inducible CaMKCreERT2 (b-catfl/fl;

CaMKCreERT2+/�; b-cat cKO) from 1m, after the peak of synap-

togenesis (Figures S2A–S2F). By 3m, b-cat cKOmice had signif-

icantly higher spine density (Figures 2A and 2B) as well as less

mature spines (Figure 2C), as compared with LoxP littermates

(b-catfl/fl; LoxP Ctrl), suggesting impaired spine pruning and

maturation. These concurrent defects were very similar to the

effects of whisker trimming (Figures 1G–1J), suggesting a
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Figure 2. Appropriate Spine Pruning and Maturation Require the Cadherin/Catenin Complex

(A) Representative inverted Golgi staining images of spines in S1BF of b-catfl/fl; CaMKCreERT2+/� (b-cat cKO) mice and LoxP littermates injected with

tamoxifen at 1 m.

(B and C) Spine pruning (B, n = 27–40/group) and maturation (C) were impaired in b-cat cKO mice.

(D and E) Representative examples of spines in S1BF of CamK2a-Ncad(intra) mice and wild-type (WT) littermates (D), as well as cdf/cdf mice and control

littermates (E).

(F and G) Spine pruning (F, n = 30–50/group) and maturation (G, 3 m) were impaired in CamK2a-Ncad(intra) mice.

(H and I) 3 m cdf/cdf mice showed higher spine density (H, n = 25–30/group) and less mature spines (I).

Scale bars, 5 mm. Data are presented as mean ± SEM. See also Figure S2.
requirement of b-catenin during experience-dependent spine

pruning. Similar pruning and maturation defects were also found

in the CamK2a-Ncad(intra) transgenic mice (Figures 2D, 2F, and

2G), in which overexpression of the intracellular domain of

N-cadherin sequestered endogenous b-catenin and interfered

with normal functioning of the complex (Yu and Malenka,

2003). In homozygous cerebellar deficient folia (cdf) mice, in

which the Catna2 gene encoding aN-catenin is deleted, spine

density was normal at 1 and 2 m, but significantly higher at

3 m, accompanied by significant reduction in the proportion of

mature spines (Figures 2E, 2H, 2I, S2H, and S2I). Thus, in three

independent genetic manipulations interfering with the function

of the cadherin/catenin complex, we observed concurrent de-

fects in spine pruning and maturation, implicating an important

role of this complex in mediating these processes.

Locally Enhancing Cadherin/Catenin-Dependent
Adhesion Induces b-Catenin Redistribution and Spine
Fate Differentiation In Vitro
Having shown that b-catenin is required for spine pruning

and maturation, we next asked if local changes in cadherin/cat-
enin-dependent adhesion were sufficient to induce the pro-

cess. To track activity- or b-catenin-dependent changes at the

single spine level, cultured neurons were co-transfected with

GFP-b-catenin and tdTomato and imaged every hour upon local

induction of cadherin-dependent adhesion using N-cad-Fc-

coated beads. Using a paired spines analysis (PSA) (see Exper-

imental Procedures), we compared spine pairs on the same

dendritic branch, one in close contact with a N-cad-Fc bead

(bead+ spine) and a neighboring spine not contacted by beads

(bead� spine). During a 4-hr imaging period, we found that

both GFP-b-cat intensity and spine size gradually increased in

bead+ spines and were concurrently reduced in neighboring

bead� spines, sometimes disappearing all together (Figures

3A, 3B, 3D, and 3E). As control, we showed that coating beads

with human Fc did not significantly affect GFP-b-cat distribution

or spine size (Figures 3C, 3F, and 3G). The likelihood of the

bead� spine disappearing was not related to initial spine size

(Figure 3H).

Consistent with the GFP-b-cat result, N-cad-Fc bead appli-

cations enriched surface N-cadherin, indicated by increased

pHluorin-N-cadherin (pH-N-cad) intensity in the bead+ spines
Cell 162, 808–822, August 13, 2015 ª2015 Elsevier Inc. 811
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Figure 3. Locally Enhancing Cadherin/Catenin-

Dependent Adhesion Differentiates Spine Fates

In Vitro

(A) Schematic showing bead-contacting (bead+) and

non-contacting (bead�) spines selected for PSA.

(B and C) Time-lapse images showing spine pairs ex-

pressing GFP-b-cat in contact with N-cad-Fc beads (B) or

Fc control beads (C, bead+, arrow; bead�, arrowhead). Last

row of each image set is in glow scale.

(D and E) PSA results showing changes in GFP-b-cat

intensity (D) and spine size (E) between spine pairs in con-

tact with N-cad-Fc beads (n = 90; bead+ versus bead�: D,

0 hr, n.s., 1 hr, p < 0.01, all others, p < 0.001; E, 0 hr, n.s., all

others, p < 0.001).

(F and G) PSA results showing changes in GFP-b-cat in-

tensity (F) and spine size (G) between spine pairs in contact

with Fc beads (n = 82; bead+ versus bead�: n.s. for all time

points).

(H) Plots of the size of 90 spine pairs analyzed in (D) and (E)

before and after 4 hr-contact with N-cad-Fc beads. Paired

t test, bead+ versus bead� at 0 hr, p = 0.69.

Scale bars, 5 mm. Data are presented as mean ± SEM.
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and concurrent loss of pH-N-cad signal and reduced size of

neighboring bead� spines (Figures 4A–4C). When all spine pairs

were sorted into groups according to their survival status

(both present, bead+ present only, bead� present only, both dis-

appeared, Figure 4D), it was clear that contact with N-cad-Fc

beads significantly enhanced the survival of bead+ spines, while

simultaneously reducing that of neighboring bead� spines (Fig-

ures 4D and 4E).

Is the ability to induce spine fate differentiation specific to the

cadherin/catenin complex? We thus tested a pair of heterophilic

cell adhesion molecules well-known for their synaptogenesis

functions, namely Neuroligin (NL) andNeurexin (NRXN) (Giagtzo-

glou et al., 2009; Südhof, 2008). Consistent with their synapto-

genic abilities, spines contacting NRXN-1b-Fc-coated beads

accumulated NL1-GFP and grew in size. However, the neigh-

boring bead� spine did not shrink and even started to accumu-

late small amounts of NL1-GFP (Figures 4F–4H). Thus, the ability

to simultaneously induce enlargement of one spine and pruning

of its neighbor is specific to the cadherin/catenin complex.

Further fluorescence recovery after photobleaching (FRAP) ex-

periments showed that N-cadherin traveled in and out of spines

faster than NL1 or the AMPA receptor subunit GluA2, as sug-

gested by a shorter recovery half-time, a smaller time constant

t, and a larger rate constant K (Figures S3A–S3F), though NL1

had a larger mobile fraction (Figure S3G). Interestingly, the re-

covery curve of GluA2 fluorescence, similar to a previous report

(Ashby et al., 2006), closely resembled that of N-cadherin,

consistent with the reported physical interaction between

GluA2 and N-cadherin (Saglietti et al., 2007).

Activity Induces Distance-Dependent Spine Fate
Differentiation In Vitro
Are local differences in activity sufficient to induce redistribution

of the cadherin/catenin complex and changes in spine fate? To

address this question, we electroporated teal fluorescent pro-

tein (TFP)-tagged channelrhodopsin (ChR) into 10%–30% of

neurons at time of plating and then co-transfected Venus-b-cat

and tdTomato into another neuronal population (<1%) at

9 days in vitro (DIV), thereby allowing identification of juxtaposed

pre-synaptic ChR axons and post-synaptic Venus-b-cat/tdTo-

mato spines (Figure S4A). During live imaging at DIV 16, neurons

were stimulated with blue light at 4 Hz (10 pulses of 10 ms, every

60 s), in the presence of tetrodotoxin to prevent recurrent activ-

ity. PSA was carried out between spine pairs, comparing a spine

contacted by ChR axons (ChR+ spines, Figures 5A and 5C) with

a neighboring spine not in contact with any ChR axons (ChR�

spines). We found that photostimulation induced enlargement

of ChR+ spines, as well as their accumulation of Venus-b-cat.

Importantly, neighboring ChR� spines lost Venus-b-cat and

shrank in size, sometimes disappearing all together (Figures

5A, 5D, and 5E; TFP Ctrl: Figures S4B and S4C).

To better quantitate these changes, we calculated a competi-

tion index (CI) (see Experimental Procedures) between ChR+ and

ChR� spines, with a CI toward ‘‘1’’ indicating that the ChR+ spine

is winning, toward ‘‘�1’’ indicating that the ChR� spine is win-

ning, and a CI of ‘‘0’’ indicating no differences between ChR+

and ChR� spines (Figure 5F). Use this simplified parameter, we

found that activity-induced increase in CI was inversely corre-
lated with inter-spine distance (Figures 5G, S4G, and S4H) and

independent of the number of in between spines (Figure S4I),

further supporting a model of local competition for limited

resources.

Activity-Induced Spine Fate Differentiation Requires
Cadherin/Catenin-Dependent Adhesion but Not Protein
Synthesis or Degradation
To further examine requirement for the cadherin/catenin com-

plex in activity-induced spine fate differentiation, we imaged

spines in neurons expressing GFP and in contact with ChR-tdTo-

mato axons, with or without b-catenin RNAi. We found that

photostimulation-induced spine fate differentiation was abol-

ished in neurons with reduced endogenous b-catenin, (Figures

5B, 5H, and S4E). This effect was fully rescued by co-expression

of Ncad-AD (Figures 5H and S4F), a chimeramolecule consisting

of the extracellular and transmembrane domain of N-cadherin

fused with the actin-binding domain of aN-catenin and capable

of restoring function of the cadherin/catenin complex in the

absence of b-catenin (Tan et al., 2010). Together, these results

demonstrate that b-catenin, specifically through its function as

a component of the cadherin/catenin complex, is required for ac-

tivity-induced spine fate differentiation.

Consistently, we showed in cross cell comparisons in fixed

neuronal cultures that redistribution of b-catenin and differ-

entiation of spine fate still occurred in the presence of the protein

synthesis inhibitor cycloheximide (CHX) (Figures S5A and S5C).

Interfering with proteasome-dependent protein degradation

using MG132 or lactacystin (Lacta) also did not block either

process, while application of tetanus toxin (TeTx) (Figures S5A

and S5C) to inhibit synaptic transmission did. Importantly, inter-

fering with N-cadherin surface mobility by crosslinking surface

N-cadherin with an antibody against its surface epitope (N-cad

Ab cross) or using N-cad-Fc-coated beads to sequester N-cad-

herin along dendritic shafts (N-cad-Fc sequester) (Figures S5A–

S5D) effectively blocked both processes. The requirement of

actin reorganization and Ca2+/calmodulin-dependent protein

kinase II (CaMKII) activity, but not protein synthesis, for coordi-

nated spine fate differentiation and b-catenin redistribution was

further confirmed by live imaging within the first hour of photosti-

mulation (Figures S5E–S5L). Together, these results strongly

suggest a critical role of inter-spine competition for the cad-

herin/catenin complex in local, activity-induced differentiation

of spine fates.

Inter-SpineCompetition forb-CateninBiases Spine Fate
In Vivo
Does inter-spine competition for b-catenin also mediate spine

pruning in vivo? To investigate this, we injected AAV-Cre-GFP

into the S1BF of 1-month-old Ai34D; b-catDex3/Dex3 mice, where

Cre expression (Cre+) induced expression of a truncated and

stabilized form of b-catenin (b-catOvp) (Harada et al., 1999) (Fig-

ures 6A, S6A, and S6B), as well as synaptophysin-tdTomato

(Ai34D) to mark presynaptic axonal termini (pre. b-cat Ovp,

Figures 6A, 6C, and 6D); Ai34D mice injected with AAV-Cre-

GFP were used as controls (pre. Ctrl, Figures 6A, 6C, and 6D).

Two weeks after viral injection, uninfected layer 2/3 pyramidal

neurons near the injection site were filled with the green
Cell 162, 808–822, August 13, 2015 ª2015 Elsevier Inc. 813
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Figure 4. The Ability to Induce Spine Fate

Differentiation Is Specific to the Cadherin/

Catenin Complex

(A and F) Time-lapse images showing spine pairs ex-

pressing pH-N-cad in contact with N-cad-Fc beads

(A) or spines expressing NL1-GFP in contact with

NRXN-1b-Fc beads (F, bead+, arrow; bead�, arrow-

head), last row in glow scale.

(B and C) PSA results showing changes in pH-N-cad

intensity (B) and spine size (C) between spine pairs in

contact with N-cad-Fc beads (n = 41; bead+ versus

bead�: B, 0 hr, n.s., 1 hr, p < 0.05, all others,

p < 0.001; C, 0 hr, n.s. all others, p < 0.001).

(D and E) Schematics (D) and distributions (E) of

4 types of spine pairs at the end of imaging (n = 7

experiments in Fc, 9 in N-cad-Fc).

(G and H) PSA results showing changes in NL1-

GFP intensity (G) and spine size (H) between spine

pairs in contact with NRXN-1b-Fc beads (n = 81;

bead+ versus bead�: G, n.s. for all time points; H,

0–2 hr, n.s., 3 hr, p < 0.05, 4 hr, p < 0.01).

Scale bars, 5 mm. Data are presented as mean ±

SEM. See also Figure S3.
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Figure 5. Activity Induces In Vitro Spine Fate Differentiation Mediated by b-Catenin

(A and B) Time-lapse images showing spine pairs (A, red; B, green) contacting ChR-TFP (A, cyan) or ChR-tdTomato (B, red) axons (ChR+, arrow; ChR�,
arrowhead).

(C) Schematics of ChR+/� spine pairs selected for PSA.

(D–F) PSA results showing changes in Venus-b-cat intensity (D), spine size (E), and competition indices (CIs, F) between the paired spines (n = 58–64, ChR+ versus

ChR�: D, 0 hr, n.s., 1 hr, p < 0.05, all others, p < 0.001; E, 0 hr, n.s., 1 hr, p < 0.01, all others, p < 0.001).

(G) An inverse correlation between CIs (spine size) and inter-spine distances at 6 hr (n = 105).

(H) The increase of CI in ChR spine pairs (red, n = 56) was abolished by b-catenin RNAi (blue, n = 23), and restored by co-expression of N-cad-AD (green, n = 34).

Scale bars, 5 mm. Data are presented as mean ± SEM. See also Figures S4 and S5.
fluorescent dye Alexa 488 to visualize their spine morphology.

PSA was carried out for green spines contacting pre-synaptic

Ai34D puncta (Ai+ spines) via recurrent layer 2/3 connections

and adjacent spines on the same dendrite not contacting
Ai34D puncta (Ai� spines). In control Ai34D mice, all neurons

are genetically wild-type for b-catenin, both pre- and post-syn-

aptically, and no differences were observed in the relative sizes

of Ai+ and Ai� spines (Figures 6D and 6E; Movie S1). In
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CA B

I
pre. β-cat Ovp pre. Ctrl

merge

GFP-β-cat

Ai34D

GFP-β-cat

?-
ca

te
ni

n
In

te
ns

ity
pe

r s
pi

n e
( n

or
m

a l
iz

ed
)

Ctrl
Ai+

Ctrl
Ai-

?-ca
t Ovp

Ai+

?-ca
t Ovp

Ai-
0.0

0.5

1.0

1.5

2.0

n.s.
***

**
**

β

β β

J

AAV-Cre-GFP

10μm

Ai+ spine
Ai- spineAlexa488

AAV-Cre-GFP

AAV-GFP-β-cat Ai+ spine

Ai- spine

R
el

at
iv

e
sp

in
e

si
ze

Ctrl
Ai+

Ctrl
Ai-

?-ca
t Ovp

Ai+

?-ca
t Ovp

Ai-
0

1

2

3

4 n.s.
***

***
**

β β

D E

A
i+

s p
in

e
de

ns
ity

(p
er

? m
)

Ctrl ?-cat Ovp
0.0

0.5

1.0

1.5

2.0

2.5

n.s.

μm

β

G

Ai34/Cre/Alexa488

Ai34D
pre. β-cat Ovp

Alexa488

 pre. Ctrl

merge

A
i-

sp
in

e
de

ns
ity

(p
er

?m
)

Ctrl ?-cat Ovp
0.0

0.5

1.0

1.5

2.0

2.5
*

β

μm
A

ip
un

ct
a

co
nt

ac
te

d

Ctrl ?-cat Ovp
0

5

10

15

20

n.s.

β

F

H

Figure 6. Inter-Spine Competition for b-Catenin Differentiates Spine Fates In Vivo

(A and B) Schematics of viral injection and dye microinjection experiments in floxed Ai34D; b-catDex3/Dex3 mice or Ai34D mice for in vivo PSA of spine size (A) and

b-catenin level (B).

(C) Merged image showing Cre-GFP (green nuclear fluorescence, upper right corner), Ai34D (red), and Alexa 488 dye-fill (green neurons with clear morphology,

bottom left).

(D) Representative deconvolved images showing spine pairs (green) contacting Ai34D (red) puncta (Ai+, arrow; Ai�, arrowhead) in Ctrl (pre. Ctrl) and presynaptic

b-catenin overexpressing (pre. b-cat Ovp) mice. The magnified and 3D-rendered views of spines in the boxed region (white box in third row) are shown in the

bottom row.

(E) PSA results showing changes in relative spine size between spine pairs (n = 26–27). Dotted line indicates the average size of all spines within 10 mm radius of

the Ai+ spine.

(F–H) The densities of Ai� (F) and Ai+ spines (G), as well as the number of Ai34D puncta contacted by filled dendrite/spines (H) within 10 mm radius of the Ai+ spine.

(I) Representative deconvolved images showing spine pairs expressing GFP-b-cat (green) and contacting Ai34D (red) puncta (Ai+, arrow; Ai�, arrowhead) in pre.

Ctrl and pre. b-cat Ovp mice.

(legend continued on next page)

816 Cell 162, 808–822, August 13, 2015 ª2015 Elsevier Inc.



Ai34D; b-catDex3/Dex3 mice, the post-synaptic filled neurons

did not express Cre and thus had wild-type b-catenin level,

while pre-synaptic Ai34D puncta contacting Ai+ spines had

higher levels of presynaptic b-catenin and thus could recruit

more cadherin/catenin complexes into the contracting spine.

In other words, presynaptic b-cat Ovp by Cre expression in

Ai34D; b-catDex3/Dex3 mice achieved the in vivo equivalent of

the N-cad-Fc beads (Figures 3 and 4). PSA showed that Ai+

spines in pre. b-catOvpmicewere larger in size than neighboring

Ai� spines and both also respectively larger and smaller than

their counterparts in pre. Ctrl mice (Figures 6D and 6E; Movie

S2). We also found that within a 10 mm radius of each Ai+ spine,

the density of Ai� spines was significantly lower in pre. b-catOvp

mice, as compared with pre. Ctrl mice (Figure 6F), while no sig-

nificant changes were found in Ai+ spine density (Figure 6G). This

reduction in Ai� spine density was not induced by alterations

in the probability of spines contacting Ai34D puncta, since the

total number of Ai puncta in contact with the dendritic segment

was not significantly different between Ctrl and b-cat Ovp mice

(Figure 6H). Together, these results suggest that enhancing

cadherin/catenin-dependent adhesion on an individual spine

in vivo was sufficient to make it more mature and at the same

time destabilizes and/or eliminates neighboring spines.

In a complementary set of experiments, we injected AAV-Cre-

GFP and AAV-GFP-b-cat (Figure S6C) into two different but

close sites in the S1BF of Ai34D; b-catDex3/Dex3mice. Neurons in-

fectedwith the two constructs were highly distinguishable: those

expressing Cre showing strong nuclear Cre-GFP signals, as well

as Ai34 puncta at their axonal termini, while those expressing

GFP-b-cat had GFP-tagged b-catenin in their dendrites and

spines (Figures 6B and 6I). PSA results showed that in Ctrl

mice, 2 weeks after viral injection, GFP-b-cat was equally

distributed between Ai+ and Ai� spines (Figures 6I and 6J). How-

ever, in pre. b-cat Ovp mice, the Ai+ spines possessed a higher

level of GFP-b-cat while neighboring Ai� spines generally lost

GFP-b-cat (Figures 6I and 6J). Together these results demon-

strate that differential levels of cadherin/catenin-dependent

adhesion between neighboring spines are sufficient to induce

in vivo redistribution of b-catenin between spines and direct

them into the distinct fates of becoming more mature or being

eliminated.

In the experiments above, differences between spines within

the same neuron were induced. There is an alternative scenario

where local differences in post-synaptic b-catenin level between

spines of different neurons could bias their competition for a

common pre-synaptic axonal terminus (Holtmaat and Svoboda,

2009; Knott et al., 2006; Lee et al., 2013). Deducing from our in-

ter-spine competition model, we would expect that between

such neighboring neurons, the one with higher total b-catenin

level would be advantaged and thus have a higher spine density.

We induced differential b-catenin expression between neigh-

boring neurons by sparsely infecting S1BF in one cerebral hemi-

sphere of b-catfl/flmice (b-cat cKO) with AAV-Cre-GFP (�30% of
(J) PSA results showing GFP-b-cat level in spine pairs (n = 76–102). Dotted line in

dendrite.

Scale bars, 100 mm in (C), 5 mm in third row of (D), 2 mm in the bottom row of (D)

Data are presented as mean ± SEM. See also Figure S6 and Movies S1 and S2.
all glutamatergic neurons infected) at 1 m and the other hemi-

sphere with AAV-GFP as control (Figure S6D). At 2 or 3 m, three

types of neurons were analyzed: Cre+ neurons with reduced

b-catenin level, Cre� neurons within 50 mm radius of Cre+ neu-

rons (wild-type b-catenin level), and GFP control neurons from

the other hemisphere (wild-type b-catenin level). At both ages,

Cre+ neurons had lower spine density and at 3 m also a lower

proportion of mature spines as compared with neighboring

Cre� neurons or control GFP neurons (Figures S6E and S6G–

S6J). These results support the notion that intracellular b-catenin

provided ‘‘competence’’ for spine survival and maturation.

When similar experiments were performed in b-catDex3/Dex3

mice, b-cat Ovp Cre+ neurons had a higher spine density and

accelerated spine maturation (Figures S6F and S6K–S6N).

Importantly, Cre� neurons neighboring Cre+ b-cat Ovp neurons

had significantly lower spine density and less mature spines as

compared with GFP neurons, even though they genetically

both have wild-type b-catenin levels (Figures S6F and S6K–

S6N). Thus, the fates of individual spines depend not only on

their own b-catenin level, but also on their relative level with

neighboring ‘‘competitor’’ spines sharing similar axonal inputs.

Acceleration of Spine Pruning by Enrichment Requires
b-Catenin
To examine if the cadherin/catenin complex was required for

enrichment-induced acceleration of spine pruning, we densely

infected S1BF of 1-month-old b-catfl/flmice reared under control

or EE conditions with AAV-Cre-GFP (�90% glutamatergic neu-

rons infected) and with AAV-GFP in the opposite hemisphere

as a control. Consistent with our Golgi staining data (Figures

1A–1C and 2A–2C), EE yielded significant acceleration of spine

pruning and maturation in LoxP control neurons, while both pro-

cesses were significantly blocked in b-cat cKO neurons (Figures

7A–7D; neurons with severe dendrite blebbing, termed Type II

neurons, were excluded from analyses, see Figures S7A–S7D).

In EE-reared mice, although b-cat cKO neurons still underwent

some level of pruning, their spine densities at 2 and 3 m were

significantly higher than those of LoxP control neurons and

similar to that of b-cat cKO neurons in Ctrl mice (Figures 7A

and 7B). More importantly, spine maturation was completely

blocked in b-cat cKO neurons under EE conditions (Figure 7D).

These results demonstrated that experience-induced accel-

eration of spine pruning and maturation required b-catenin func-

tion, although enrichment may partially compensate the pruning

defects in b-cat cKO neurons, probably through activation of

alternative mechanisms. In support of the limited resource hy-

pothesis, enrichment did not significantly affect N-cadherin

and b-catenin levels (Figures S7E–S7G).

DISCUSSION

The neural circuitry in the mammalian brain undergoes sub-

stantial remodeling during postnatal development. Here we
dicates the average GFP-b-cat intensity of all spines measured along the same

and in (I).
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Figure 7. Reduction in Endogenous b-Catenin Level Prevents Enrichment-Induced Acceleration of Spine Pruning and Maturation

(A) Representative images of spines of neurons in b-catfl/fl mice infected with AAV-GFP (LoxP) or AAV-Cre-GFP (b-cat cKO) at 1 m.

(B–D) Spine pruning (B, n = 24–38/group) andmaturation (D) in b-cat cKO neuronswere both impaired under Ctrl and EE conditions. The length and head diameter

of mushroom and stubby spines in LoxP neurons are shown in (C; n = 200/group).

(E) A competition-based model of spine pruning.

Scale bars, 5 mm. Data are presented as mean ± SEM. See also Figure S7.
demonstrated that during brain maturation, neural activity

drives neighboring spines to compete for limited cadherin/

catenin complexes, resulting in redistribution of cadherins and

catenins from less active spines to the more active spines,

leading to concurrent maturation of the latter and elimination/

pruning of the former. This activity-driven, cadherin/catenin-

dependent and competition-based model for coordinated spine

pruning and maturation (Figure 7E) provides a molecular

mechanism for specificity during neural circuit refinement. In

light of previous work showing regulation of spine density via

competition between neurons for limited resources (English

et al., 2012; Kwon et al., 2012), this work demonstrates

that the competition can occur at the more subcellular level of

neighboring spines on the same dendritic branch. Thus, it may

represent a basic principle in neuroscience that limited availabil-

ity of specific molecules determines the normal wiring of

the brain and defect of which may result in neuropsychiatric

disorders.
818 Cell 162, 808–822, August 13, 2015 ª2015 Elsevier Inc.
Activity-Dependent Spine Pruning in Multiple Brain
Regions
Spine pruning is a well-characterized phenomenon that occurs

across mammalian species (Alvarez and Sabatini, 2007; Bhatt

et al., 2009; Fu and Zuo, 2011; Holtmaat and Svoboda, 2009).

Here, we demonstrate that spine pruning occurs at the popula-

tion level in multiple sensory-motor regions of the rodent brain,

aswell asmedium spiny neurons of the dorsal striatum (Figures 1

and S1A–S1D). While the causal relationship between spine dy-

namics and memory remains to be demonstrated conclusively

(Hübener and Bonhoeffer, 2010), the observations that sensory

experience, motor learning, and fear conditioning all affected

the rates of both spine formation and elimination (Fu et al.,

2012; Holtmaat et al., 2006; Lai et al., 2012; Trachtenberg

et al., 2002; Xu et al., 2009; Yang et al., 2009; Zuo et al.,

2005b), clearly demonstrate a strong correlation between spine

dynamics and experience-dependent learning. We surmise

that in the sensory/motor cortices, spine pruning occurs at the



population level, likely because development within each region

is relatively synchronized in order to learn ‘‘routines,’’ such as

differentiating shapes, textures, and odors and acquiring motor

skills like walking, climbing, and whisking, abilities that remain

relatively constant throughout adulthood.

In the PFC and hippocampus, in contrast, new memories

are constantly formed and unconsolidated ones removed

throughout life, a few synapses at a time, resulting in individual-

ized spine dynamics and sustained circuit plasticity. In our

experiments, the most significant effect of EE in these regions

was slightly increased spine density at one development time

point (Figures S1E and S1F), possibly generating more potential

for plasticity in adulthood. This result is in contrast to the popu-

lation level spine pruning observed in the PFC of post-mortem

human and non-human primates. Interestingly, both spinogene-

sis and spine pruning are delayed in the PFC, as compared to

sensory cortices, in humans (Huttenlocher, 2002), while in non-

human primates, spinogenesis was similar between different

regions, but spine pruning was more protracted in the PFC

(Elston et al., 2009; Rakic et al., 1986, 1994). This evolutionary

change in PFC spine dynamics likely reflects the increasing

importance of the PFC for higher cognitive tasks in primates

and especially humans.

Cadherin/Catenin-Dependent and Competition-Based
Model for Coordinated Spine Pruning and Maturation
The molecular mechanism by which spines are selectively

pruned during brain maturation has been a long-standing

mystery. Here, we demonstrate that spine pruning is highly coor-

dinated with spine maturation and is an inevitable consequence

of activity-induced inter-spine competition for limited intracel-

lular resource, which we identified to be the cadherin/catenin

complex (Figure 7E).

Thecadherin/catenin complex is synaptically localized andhas

well-described roles in promoting spinogenesis (Arikkath and

Reichardt, 2008; Benson and Huntley, 2012; Brigidi and Bamji,

2011; Tai et al., 2008). Here,wedemonstrate that local redistribu-

tion of b-catenin via inter-spine competition is necessary and

sufficient for mediating spine pruning (Figures 3, 4, 5, 6, and

S6). The dependence of this process on inter-spine distance

(Figure 5G) and N-cadherin motility (Figures S5A–S5D), but not

on protein synthesis or degradation (Figures S5A, S5C, S5H,

and S5L), strongly suggests that competition for surface cad-

herin/catenin complexes is the main driving force underlying

initial spine fate determination. Consistently, activity has been

previously shown to locally regulate N-cadherin endocytosis

(Tai et al., 2007), an important step for relocalizing cadherin/

catenin complexes between spines, and stabilize trans-synaptic

cadherin/catenin complexes (Tanaka et al., 2000). The competi-

tion-based model of spine pruning is further supported by our

in vivo observations that under all conditions where neighboring

neurons had similar b-catenin levels (Figures 1, 2, and 7), as

would occur naturally, spine pruning and maturation are always

coordinated, demonstrating tight coordination between these

processes in vivo.

Is the role of cadherin/catenin complex in mediating coordi-

nated spine maturation and pruning related to its spinogenesis

effects? We believe these to be distinct functions. In its syn-
aptogenesis function, loss of b-catenin at the population level

reduced spine density (Arikkath and Reichardt, 2008; Benson

and Huntley, 2012; Brigidi and Bamji, 2011; Tai et al., 2008).

In contrast, in the concurrent spine maturation and pruning

function we identify here, b-catenin loss at the population level

resulted in pruning defects and higher overall spine density (Fig-

ures 2A–2C and 7A–7D). The behavior of the cadherins/catenins

is distinct from that of the NLs/NRXNs, another well-studied

pair of cell adhesion molecules known for their strong synapto-

genic effects (Giagtzoglou et al., 2009; Südhof, 2008). Locally

clustering NLs induced spine enlargement, without inducing

pruning of its neighbors (Figures 4F–4H). This important

difference distinguishes NL from N-cadherin, with the former

being strictly synaptogenic, and the latter having a weaker syn-

aptogenic role, but later on playing important roles in the refine-

ment of neural circuitry. We note that N-cadherin is homophilic,

which may facilitate coordinated pre- and post-synaptic interac-

tions, as only the expression of one molecule needs to be

regulated.

Abnormal Spine Pruning in Neurodevelopmental
Disorders
Loss- and gain-of-function of a number of molecules have

already been shown to both result in neurological disorders

with developmental origins, including ASD, intellectual disability,

and schizophrenia (Glausier and Lewis, 2013; Penzes et al.,

2011; Zoghbi and Bear, 2012), underscoring the importance of

appropriate gene expression for normal neural circuit develop-

ment. N-cadherin and b-catenin, by virtual of their early expres-

sion in embryonic development, are essential for survival of the

embryo and thus not genetically associated with neuropsychi-

atric disorders. However, other catenins with overlapping func-

tions, includingCtnna2 andCtnnd2, as well as classical cadherin

family members with more restricted expression patterns, such

as Cdh7, Cdh9, Cdh10, Cdh12, Cdh15, and Cdh18, have been

linked to ASD, intellectual disability, bipolar disorder, and schizo-

phrenia (Hirano and Takeichi, 2012; Redies et al., 2012; Turner

et al., 2015).

Increased spine density has been observed in adolescent

postmodern autism patients but not younger ones, suggesting

defects in spine pruning in ASD patients. In contrast to schizo-

phrenia, where spine density abnormalities were restricted to

the PFC (Glausier and Lewis, 2013), spine pruning defects in

ASD patients were found in all brain areas examined, including

temporal, parietal, and frontal regions (Hutsler and Zhang,

2010; Tang et al., 2014). Abnormalities in spine pruning have

also been reported in multiple sensory regions in ASD mouse

models such as Fmr1 KO and MECP2 duplication (He and

Portera-Cailliau, 2013; Penzes et al., 2011; Zoghbi and Bear,

2012). Since ‘‘hypersensitivity and hyposensitivity to sensory

inputs’’ is prevalent among children with ASD (Marco et al.,

2011; Suarez, 2012), defects in spine pruning in sensory cortices

could be a contributing factor to the observed changes in

sensory inputs. Furthermore, given the fundamental roles of den-

dritic spines in shaping neural circuitry and neural plasticity, the

regulation of spine pruning by cadherin/catenin complexes, in

the context of existing literature, may provide the missing link

through which alterations in transcription factors such as
Cell 162, 808–822, August 13, 2015 ª2015 Elsevier Inc. 819



FMRP and MeCP2 can lead to autism, intellectual disability, and

related neurodevelopmental disorders.

EXPERIMENTAL PROCEDURES

Full experimental details can be found in the Supplemental Experimental

Procedures.

Viral Injections, Immunohistochemistry, and Fluorescent Dye

Microinjections

All animal procedures complied with the animal care standards set forth by the

US NIH and have been approved by the Institutional Animal Care and Use

Committee of the Institute of Neuroscience, Chinese Academy of Science

(Shanghai, China). Mice injected with adeno-associated viruses (AAVs,

packaged by Obio Technology) were perfused with PBS, followed by 4%

paraformaldehyde. Coronal sections (30 mm) were used for immunohisto-

chemistry and 250 mm sections for dye microinjections, carried out on a Nikon

FN1 fluorescence microscope using sharp glass pipettes loaded with fluores-

cent dyes.

Image Acquisition and Live Imaging

For in vivo spine analysis, basal dendrites of layer 2/3 pyramidal neurons were

imaged at 1 mm (Golgi staining) or 0.3 mm (dye microinjection) Z intervals.

Live imaging experiments was performed using DIV16 neurons. For beads

experiments, protein-coated beads were applied to the cultures 30 min before

imaging to allow the beads to sink to the bottom of the dish. For photostimu-

lation, a custom-made LED system controlled byMaster-8 (A.M.P.I.) was used

to deliver a train of blue light pulses every 60 s.

Image Analyses

All images were analyzed with no post-acquisition modifications and blinded

to the experimental condition. PSA was performed in ImageProPlus by

randomly selecting neighboring spines (regions of interest) on the same den-

dritic branch from images in the morphology marker channel and thresholded.

A mask was then generated to measure spine area and total intensity of

fluorescently tagged proteins. The competition index (CI) was calculated as:

(pC+ � pC�)/(pC+ + pC�), in which ‘‘p’’ is the parameter of interest, i.e., spine

size or integrated intensity of the labeled molecule and ‘‘C+’’ or ‘‘C�’’ indicates
whether the parameter was measured in a contacting (C+) or non-contacting

(C�) spine, be it bead or ChR axon.

For in vivo comparison of Ai+ and Ai� spines, PSA was performed between

Ai+ spine and the nearest Ai� spine on the same dendrite. A circle of radius

10 mm was drawn around the Ai+ spine and the density of Ai+ and Ai� spine

within that circle measured. The sizes of Ai+/Ai� spine pairs were normalized

to the mean size of all spines in that circle, and GFP-b-cat intensity was

normalized to the mean intensity of all spines analyzed on the same neuron

(usually six to ten spines).

In example images, brightness/contrast adjustment within linear ranges

were made using Fiji/ImageJ when necessary. Images in Figures 6D and 6I

and Movies S1 and S2 were deconvolved using Huygens Essential and 3D

rendered in Imaris. For Golgi staining examples, images were projected atmin-

imal intensity and inverted.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and two movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cell.2015.07.018.
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