71.002

Analysis of Ocular Disease by Laboratory Surveillance from May to September 2007 in Incheon, Korea

M.Y. Lee1, *, H.Y. Kim1, Y.W. Kong1, B.Y. Oh1, K.M. Whang1, Y.J. Koh1, J.H. Kim1, S. Jegal1, J.M. Lee1, J.M. Go1, Y.H. Kim1, Y.S. Chung2

1 Incheon Institute of Health & Environment, Incheon, Republic of Korea
2 Korea Center for Disease Control & Prevention, Seoul, Republic of Korea

The study carried out a molecular biological character of Epidemic Kerato-Conjunctivitis (EKC) and Acute Hemorrhagic Conjunctivitis (AHC) virus which used 52 specimens of 3 ophthalmic clinics in Incheon between May 2007 and September 2007.

This study confirmed CPE (Cytopathic Effect) from conjunctival specimen of ophthalmic patients after inoculating A549 cell and HeP2 cell and observing for 7 days. we extracted DNA and RNA from CPE confirmed cell soups and carried out reverse transcription-PCR.

From a total 52 specimens, 29(55.8%) were virus-positive and the isolated viruses were found to be 12 adenoviruses (41.4%), which were serotype 8 (11 isolates) and serotype 37 (1 isolates) and 17 enteroviruses (32.7%), which were confirmed Coxackievirus A 24 serotypes.

This research confirmed that Adv 8 and 37 caused the prevalence of adenoviral conjunctivitis and Coxackievirus A 24 caused the prevalence of Acute Hemorrhagic Conjunctivitis during May 2007 to September 2007 in Incheon.

doi:10.1016/j.ijid.2008.05.1331

71.003

Detection and Identification of Human Metapneumovirus Infection in ShenZhen, China

X.D. Lu, C.D. Lu, Q. Wang, Y.H. Lu, J. Liu

The Affiliated Shenzhen Futian Hospital of the Medical College of Guangdong, ShenZhen, China

Background: Human metapneumovirus (HMPV) is a newly discovered and identified negative-sense RNA virus thought to be associated with respiratory disease in 2001. Acute respiratory tract infections with HMPV have been reported in Europe, America, Australia, Japan, China, Canada, Tailand, HangKong. The clinical syndrome of the infected children ranges from mild respiratory problems to bronchiolitis and pneumonitis. In this study, for rapid, multiplex detection of respiratory tract virus in clinical specimens with respiratory infections caused by HMPV. HMPV was identified by molecular biology technique.

Methods: 7 respiratory tract virus (11 typing) were detected by using multiplex PCR technology and a flexible Multi-Analyte Profiling (suspension array). Human Metapneumovirus was identified by using a real-time reverse transcriptase PCR (RT-PCR) assay and RNA sequences

Results: The virus were detected in 40.23% (19/47) of. 47 samples collected from clinical respiratory tract infections, including 8 (42.11%) HRSV, 36.84%) Influenza virus, 1 (5.26%) Parainfluenza virus, Rhinovirus, Coxackievirus and Human Metapneumovirus infections. This hMPV was the first detected from clinical samples in ShenZhen. The N genes amplified of hMPV from specimens was identified by sequencing and was compared with GenBank. The ShenZhen hMPV N genes nucleotides similarities were over 98% with JPS03–187, JPS03–176, JPS03–240, JPS03–178, BJ1887, NED01–22, NED01–17.

Conclusion: Multiplex PCR technology and flexible Multi-Analyte Profiling were high sensitive and throughput and increased assay speed for multiplex detecting respiratory pathogens in clinical specimens. It is useful tool for epidemiology yet.

doi:10.1016/j.ijid.2008.05.1332

71.004

Viral Hepatitis-Serologic Patterns

S. Bisinova-Eftimova*, S. Miskova, S. Trajkova, R. Stojanova, T. Nedelkova, M. Alceva

General Hospital, Veles, Former Yugoslav Republic of Macedonia

Background of the study: There is a high incidence of viral hepatitis in our region, especially hepatitis A, but the other types of hepatitis are also important because of their course and prognosis. The serological markers have great and important place in determination, following and treatment of the viral hepatitis. The aim of this study is to accent the point of these investigations. We will present serologic patterns of viral hepatitis cases treated in the Department of infectious diseases, General hospital-Veles, during the five years. Methods used: We analyzed 155 viral hepatitis patients with these parameters: age, profession, epidemiological characteristics and serologic patterns. Immunological detection was performed by ELISA test, VIDAS-viomerieux and PCR

Results: Positive antiHAV IgM was found in 94 patients (60,6%), that suggests the highest prevalence of acute hepatitis A. HBV markers were detected in 41 patients (26,4%), while HCV markers were detected in 7 patients (4,5%). Viral hepatitis serologic markers were not detected in the samples from 13 patients (8,5%). Four of them were HBsAg carriers with acute hepatitis A, while in three of them both HBcIgM and antiHAV total were detected, that suggests previous hepatitis A. AntiHCV positive patients in our study are drug addicts and HBI patients with an undergoing haemodialysis.

Conclusion: Detection of the serologic markers of viral hepatitis enables early diagnosis and management, as well as progression to chronicity and carriers identification. The exact and on time usage of these detectors cancels the epidemiological circle of viral hepatitis.

doi:10.1016/j.ijid.2008.05.1333