

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 387 (2004) 361-368

www.elsevier.com/locate/laa

Jordan maps of nest algebras

Zhengchu Ling, Fangyan Lu*

Department of Mathematics, Suzhou University, Suzhou 215006, China Received 4 November 2003; accepted 23 February 2004

Submitted by C.-K. Li

Abstract

In this paper, we prove that a bijective map ϕ from \mathscr{A} , a standard subalgebra of a nest algebra on a Hilbert space, onto an algebra that satisfies

 $\phi(r(AB + BA)) = r(\phi(A)\phi(B) + \phi(B)\phi(A)) \quad (A, B \in \mathcal{A}),$

where r is a fixed nonzero rational number, is additive. © 2004 Elsevier Inc. All rights reserved.

AMS classification: 47L35; 47L20; 46H10

Keywords: Jordan maps; Standard subalgebras; Additivity; Standard arguments

Let \mathscr{A} and \mathscr{B} be associative algebras over the field \mathbb{Q} of rational numbers. Let *r* be a rational number. If a bijective map $\phi : \mathscr{A} \to \mathscr{B}$ satisfies

 $\phi(r(AB + BA)) = r(\phi(A)\phi(B) + \phi(B)\phi(A))$

for all $A, B \in \mathscr{A}$, we call it a *r*-Jordan map. In [3,4], Hakeda and Saitŏ proved that every $\frac{1}{2}$ -Jordan map ϕ from a unital C*-algebra with a system of matrix units onto a *-algebra satisfying $\phi(a^*) = \phi(a)^*$ is additive. In [9], Molnár showed that every $\frac{1}{2}$ -Jordan map between standard operator algebras is additive. In the theory of operator algebras the Jordan product of *A* and *B* is usually defined by $A \circ B = \frac{1}{2}(AB + BA)$ while in ring theory the definition is modified to $A \circ B = (AB + BA)$ because of obvious reasons. Therefore, from the ring theoretical point of view, it is more natural to consider 1-Jordan maps than $\frac{1}{2}$ -Jordan maps. Molnár asked in [9]: "Is every $\frac{1}{2}$ -Jordan map between standard operator algebras additive?" This question

0024-3795/\$ - see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2004.02.031

^{*} Corresponding author .

E-mail addresses: zclingwang@163.com (Z. Ling), fylu@pub.sz.jsinfo.net (F. Lu).

was affirmatively answered in [6]. Recently, it was shown in [7] that all results in [3,4,9] are also true for all *r*-Jordan maps.

Among all papers mentioned above algebras considered contain idempotents. It is our aim in this paper to find a class of operator algebras of which any Jordan map is additive but in which there are no idempotents.

Let \mathscr{H} be a Hilbert space. Denote by $B(\mathscr{H})$ the algebra of all bounded linear operators on \mathscr{H} and by I the identity operator on \mathscr{H} . A chain \mathscr{N} of projections on \mathscr{H} is called a nest if it contains 0 and I and it is closed in the strong operator topology. The nest algebra denoted by $\mathscr{T}(\mathscr{N})$ corresponding to the \mathscr{N} is defined by

$$\mathcal{T}(\mathcal{N}) = \{ T \in B(\mathcal{H}) : TE = ETE \text{ for all } E \in \mathcal{N} \}.$$

If \mathcal{N} is trivial, i.e. $\mathcal{N} = \{0, I\}$, then $\mathcal{T}(\mathcal{N}) = B(\mathcal{H})$. The algebra of all finite rank operators in $\mathcal{T}(\mathcal{N})$ is denoted by $\mathcal{F}(\mathcal{N})$. The Erdos Density Theorem says that $\mathcal{F}(\mathcal{N})$ is dense in $\mathcal{T}(\mathcal{N})$ under the strong operator topology [2]. A subalgebra of $\mathcal{T}(\mathcal{N})$ is called a standard subalgebra if it contains $\mathcal{F}(\mathcal{N})$. In particular, $\mathcal{F}(\mathcal{N})$ is a standard subalgebra. If $x, y \in \mathcal{H}$, then the rank one operator $x \otimes y$ is defined by

$$(x \otimes y)z = (z, y)x, (z \in \mathscr{H}).$$

362

It is well known that $x \otimes y$ belongs to $\mathcal{T}(\mathcal{N})$ if and only if there is an element $E \in \mathcal{N}$ such that $x \in E\mathcal{H}$ and $y \in (I - E)\mathcal{H}$. For more information on nest algebras, we refer to [1].

The main result in this paper is the following.

Theorem. Let \mathbb{F} be the real number field or the complex number field. Let \mathscr{A} be a standard subalgebra of a nest algebra $\mathscr{T}(\mathscr{N})$ on a Hilbert space \mathscr{H} over \mathbb{F} of dimension greater than 1 and \mathscr{R} be an algebra over the field of rational numbers. Let r be a nonzero rational number. Suppose $\phi : \mathscr{A} \to \mathscr{R}$ is a bijective map satisfying

$$\phi(r(AB + BA)) = r(\phi(A)\phi(B) + \phi(B)\phi(A))$$

for all $A, B \in \mathcal{A}$. Then ϕ is additive.

The main technique we will use is the following argument which will be termed a "standard argument". Suppose $A, B, S \in \mathcal{A}$ are such that $\phi(S) = \phi(A) + \phi(B)$. Multiplying this equality by $\phi(T)(T \in \mathcal{A})$ from the left and the right respectively, we get $\phi(T)\phi(S) = \phi(T)\phi(A) + \phi(T)\phi(B)$ and $\phi(S)\phi(T) = \phi(A)\phi(T) + \phi(B)\phi(T)$. Summing them, we have that

$$\phi(T)\phi(S) + \phi(S)\phi(T) = \phi(T)\phi(A) + \phi(A)\phi(T) + \phi(T)\phi(B) + \phi(B)\phi(T).$$

Since ϕ is a *r*-Jordan map, it follows that

$$\phi(r(ST + TS)) = \phi(r(AT + TA)) + \phi(r(BT + TB)).$$

Moreover, if $\phi(r(AT + TA)) + \phi(r(BT + TB)) = \phi(r(AT + TA + BT + TB))$, then by injectivity of ϕ , we have that ST + TS = AT + TA + BT + TB.

The proof is purely algebraic and will be organized in a series of lemmas. We begin with the following trivial one.

Lemma 1. $\phi(0) = 0$.

Proof. Since ϕ is surjective, then we can find an $A \in \mathscr{A}$ such that $\phi(A) = 0$. Therefore $\phi(0) = \phi(r(0A + A0)) = r(\phi(0)\phi(A) + \phi(A)\phi(0)) = 0$. \Box

In the next several lemmas we will assume that $\mathcal{N} \neq \{0, I\}$. Fix an element E in \mathcal{N} with 0 < E < I. For the sake of simplicity, we write $\mathcal{B} = F(\mathcal{N})$ and $\mathcal{T} = \mathcal{T}(\mathcal{N})$. We borrow the idea of [8]. Set $\mathcal{B}_{11} = E\mathcal{B}E$, $\mathcal{B}_{12} = E\mathcal{B}(I - E)$ and $\mathcal{B}_{22} = (I - E)\mathcal{B}(I - E)$. Then we can write $\mathcal{B} = \mathcal{B}_{11} \oplus \mathcal{B}_{12} \oplus \mathcal{B}_{22}$ since \mathcal{B} is an ideal of \mathcal{T} . Similarly, we write $\mathcal{T} = \mathcal{T}_{11} \oplus \mathcal{T}_{12} \oplus \mathcal{T}_{22}$. The following lemma can be found in [5].

Lemma 2. With the notation as above, we have that

(i) If $T_{11} \in \mathcal{T}_{11}$ is such that $T_{11}\mathcal{B}_{12} = 0$, then $T_{11} = 0$; (ii) If $T_{22} \in \mathcal{T}_{22}$ is such that $\mathcal{B}_{12}T_{22} = 0$, then $T_{22} = 0$; (iii) If $T_{12} \in \mathcal{T}_{12}$ is such that $\mathcal{B}_{11}T_{12} = 0$, then $T_{12} = 0$; (iv) If $T_{12} \in \mathcal{T}_{12}$ is such that $T_{12}\mathcal{B}_{22} = 0$, then $T_{12} = 0$.

Lemma 3. Let $i \in \{1, 2\}$ and $T_{ii} \in \mathcal{T}_{ii}$. If $T_{ii}\mathcal{B}_{ii} = 0$ or $\mathcal{B}_{ii}T_{ii} = 0$, then $T_{ii} = 0$.

Proof. By the Erdos Density Theorem, there exists a net $\{F_{\alpha}\}$ of finite rank operators in \mathscr{T} such that SOT-lim_{α} $F_{\alpha} = I$. Set $E_1 = E$ and $E_2 = I - E$. Then we have that $T_{ii}E_iF_{\alpha}E_i = 0$ or $E_iF_{\alpha}E_iT_{ii} = 0$. Note that $T_{ii} = E_iT_{ii} = T_{ii}E_i$. Taking the limit, we get that $T_{ii}E_i = 0$ or $E_iT_{ii} = 0$, that is $T_{ii} = 0$. \Box

Lemma 4. Suppose that $S = S_{11} + S_{12} + S_{22} \in \mathscr{T}$.

(i) If ST₁₁ + T₁₁S = 0 for every T₁₁ ∈ ℬ₁₁, then S₁₁ = S₁₂ = 0.
(ii) If ST₂₂ + T₂₂S = 0 for every T₂₂ ∈ ℬ₂₂, then S₁₂ = S₂₂ = 0.

Proof. (i) Arguing as in the proof of Lemma 3, we get that SE + ES = 0. It follows that $2S_{11} = E(SE + ES)E = 0$ and $S_{12} = (SE + ES)(I - E) = 0$. (ii) can be proved similarly. \Box

Lemma 5. Let $B_{ij} \in \mathscr{B}_{ij}$, $1 \le i \le j \le 2$. Then $\phi(B_{11} + B_{12}) = \phi(B_{11}) + \phi(B_{12})$ and $\phi(B_{22} + B_{12}) = \phi(B_{22}) + \phi(B_{12})$.

Proof. Since ϕ is surjective, we may find an element $S = S_{11} + S_{12} + S_{22} \in \mathscr{A}$ such that

$$\phi(S) = \phi(B_{11}) + \phi(B_{12}). \tag{1}$$

For $T_{22} \in \mathscr{B}_{22}$, applying a standard argument to (1), we have that

$$\phi(r(T_{22}S + ST_{22})) = \phi(r(T_{22}B_{11} + B_{11}T_{22})) + \phi(r(T_{22}B_{12} + B_{12}T_{22}))$$

= $\phi(0) + \phi(rB_{12}T_{22}) = \phi(rB_{12}T_{22}).$

It follows that $T_{22}S + ST_{22} = B_{12}T_{22}$. Hence $T_{22}(S - B_{12}) + (S - B_{12})T_{22} = 0$ for every $T_{22} \in \mathscr{B}_{22}$. Thus by Lemma 4(ii), we get $S_{22} = 0$, $S_{12} = B_{12}$. For $T_{12} \in \mathscr{B}_{12}$, applying a standard argument to (1), we get

$$\begin{split} \phi(r(T_{12}S + ST_{12})) &= \phi(r(T_{12}B_{11} + B_{11}T_{12})) + \phi(r(T_{12}B_{12} + B_{12}T_{12})) \\ &= \phi(rB_{11}T_{12}) + \phi(0) \\ &= \phi(rB_{11}T_{12}). \end{split}$$

Therefore, $T_{12}S + ST_{12} = B_{11}T_{12}$ for every $T_{12} \in \mathscr{B}_{12}$. Equivalently, $T_{12}S_{22} + S_{11}T_{12} = B_{11}T_{12}$ for all $T_{12} \in \mathscr{B}_{12}$. But we have shown that $S_{22} = 0$, it follows that $S_{11}T_{12} = B_{11}T_{12}$ for all $T_{12} \in \mathscr{B}_{12}$. Thus by Lemma 2(i), $S_{11} = B_{11}$. Consequently, $S = B_{11} + B_{12}$. This proves the first equality. The second can be proved similarly. \Box

The next goal is to prove that ϕ is additive on \mathscr{B}_{12} . If $E \in \mathscr{B}$, this can be shown easily. But *E* does not necessarily belongs to \mathscr{B} . The following lemma bridges this gap.

Lemma 6. Let $T_{11} \in \mathcal{B}_{11}$, P_{12} , $Q_{12} \in \mathcal{B}_{12}$, $S_{22} \in \mathcal{B}_{22}$. Then

$$\phi(T_{11}P_{12} + Q_{12}S_{22}) = \phi(T_{11}P_{12}) + \phi(Q_{12}S_{22}).$$

Proof. Compute

364

$$T_{11}P_{12} + Q_{12}S_{22} = (T_{11} + Q_{12})(P_{12} + S_{22})$$

= $(T_{11} + Q_{12})(P_{12} + S_{22}) + (P_{12} + S_{22})(T_{11} + Q_{12}).$

Thus, we have that

$$\begin{split} \phi(T_{11}P_{12} + Q_{12}S_{22}) \\ &= \phi \left(r \left(\frac{1}{r} (T_{11}P_{12} + Q_{12}S_{22}) \right) \right) \\ &= \phi \left(r \left(\left(\frac{1}{r} T_{11} + \frac{1}{r} Q_{12} \right) (P_{12} + S_{22}) + (P_{12} + S_{22}) \left(\frac{1}{r} T_{11} + \frac{1}{r} Q_{12} \right) \right) \right) \\ &= r \phi \left(\frac{1}{r} T_{11} + \frac{1}{r} Q_{12} \right) \phi(P_{12} + S_{22}) + r \phi(P_{12} + S_{22}) \phi \left(\frac{1}{r} T_{11} + \frac{1}{r} Q_{12} \right) \right) \\ &= r \left(\phi \left(\frac{1}{r} T_{11} \right) + \phi \left(\frac{1}{r} Q_{12} \right) \right) (\phi(P_{12}) + \phi(S_{22})) \\ &+ r (\phi(P_{12}) + \phi(S_{22})) \left(\phi \left(\frac{1}{r} T_{11} \right) + \phi \left(\frac{1}{r} Q_{12} \right) \right) \end{split}$$

$$= r\left(\phi\left(\frac{1}{r}T_{11}\right)\phi(P_{12}) + \phi(P_{12})\phi\left(\frac{1}{r}T_{11}\right)\right) \\+ r\left(\phi\left(\frac{1}{r}Q_{12}\right)\phi(S_{22}) + \phi(S_{22})\phi\left(\frac{1}{r}Q_{12}\right)\right) \\+ r\left(\phi\left(\frac{1}{r}T_{11}\right)\phi(S_{22}) + \phi(S_{22})\phi\left(\frac{1}{r}T_{11}\right)\right) \\+ r\left(\phi\left(\frac{1}{r}Q_{12}\right)\phi(P_{12}) + \phi(P_{12})\phi\left(\frac{1}{r}Q_{12}\right)\right) \\= \phi\left(r\left(\left(\frac{1}{r}T_{11}\right)P_{12} + P_{12}\left(\frac{1}{r}T_{11}\right)\right)\right) \\+ \phi\left(r\left(\left(\frac{1}{r}Q_{12}\right)S_{22} + S_{22}\left(\frac{1}{r}Q_{12}\right)\right)\right) \\+ \phi\left(r\left(\left(\frac{1}{r}Q_{12}\right)P_{12} + P_{12}\left(\frac{1}{r}T_{11}\right)\right)\right) \\+ \phi\left(r\left(\left(\frac{1}{r}Q_{12}\right)P_{12} + P_{12}\left(\frac{1}{r}Q_{12}\right)\right)\right) \\= \phi(T_{11}P_{12}) + \phi(Q_{12}S_{22}). \Box$$

Lemma 7. ϕ is additive on \mathcal{B}_{12} .

Proof. Let
$$A_{12}, B_{12} \in \mathscr{B}_{12}$$
 and choose $S = S_{11} + S_{12} + S_{22} \in \mathscr{A}$ such that
 $\phi(S) = \phi(A_{12}) + \phi(B_{12}).$ (2)

For $T_{22} \in \mathcal{B}_{22}$, applying a standard argument to (2) we get that

$$\phi(r(T_{22}S + ST_{22})) = \phi(rA_{12}T_{22}) + \phi(rB_{12}T_{22}).$$
(3)

For $T_{11} \in \mathcal{B}_{11}$, applying a standard argument to the equation (3), we have that

$$\phi(r^2((T_{22}S + ST_{22})T_{11} + T_{11}(T_{22}S + ST_{22})))) = \phi((r^2T_{11}A_{12})T_{22}) + \phi(T_{11}(r^2B_{12}T_{22})) = \phi((r^2T_{11}A_{12})T_{22} + T_{11}(r^2B_{12}T_{22}))$$

making use of Lemma 6, from which we have that

$$(T_{22}S + ST_{22})T_{11} + T_{11}(T_{22}S + ST_{22}) = T_{11}(A_{12} + B_{12})T_{22}$$

and hence

$$T_{11}S_{12}T_{22} = T_{11}(A_{12} + B_{12})T_{22}.$$

Thus by Lemma 2, we conclude that $S_{12} = A_{12} + B_{12}$.

For $T_{12} \in \mathscr{B}_{12}$, applying a standard argument to (3), we get that

$$\phi(r^2(T_{12}(T_{22}S + ST_{22}) + (T_{22}S + ST_{22})T_{12})) = 0.$$

It follows that $T_{12}(T_{22}S + ST_{22}) + (T_{22}S + ST_{22})T_{12} = 0$. Hence, $T_{12}(T_{22}S_{22} + S_{22}T_{22}) = 0$ for all $T_{12} \in \mathscr{B}_{12}$ and $T_{22} \in \mathscr{B}_{22}$. Thus by Lemma 2(ii) and Lemma 4(ii), $S_{22} = 0$.

For $T_{12} \in \mathscr{B}_{12}$, applying a standard argument to (2), we get that $\phi(r(T_{12}S + ST_{12})) = 0$, and so $T_{12}S + ST_{12} = 0$, from which we get that $T_{12}S_{22} + S_{11}T_{12} = 0$ for every $T_{12} \in \mathscr{B}_{12}$. It follows from the fact $S_{22} = 0$ and Lemma 2(i) that $S_{11} = 0$. Consequently, $S = A_{12} + B_{12}$. \Box

Lemma 8. ϕ is additive on \mathcal{B}_{11} .

366

Proof. Let $A_{11}, B_{11} \in \mathscr{B}_{11}$ and choose $S = S_{11} + S_{12} + S_{22} \in \mathscr{A}$ such that

$$\phi(S) = \phi(A_{11}) + \phi(B_{11}). \tag{4}$$

For $T_{22} \in \mathscr{B}_{22}$, by a standard argument to (4), we have that $T_{22}S + ST_{22} = 0$. It follows from Lemma 4(ii) that $S_{22} = S_{12} = 0$.

Now there remains to prove that $S_{11} = A_{11} + B_{11}$. For $T_{12} \in \mathcal{B}_{12}$, applying a standard argument to (4) again, we get

$$\phi(r(T_{12}S + ST_{12})) = \phi(rA_{11}T_{12}) + \phi(rB_{11}T_{12})$$

Hence by Lemma 7, we have that

 $T_{12}S + ST_{12} = (A_{11} + B_{11})T_{12}$

for every $T_{12} \in \mathscr{B}_{12}$. Since $S_{22} = S_{12} = 0$, it follows that $S_{11}T_{12} = (A_{11} + B_{11})T_{12}$ for every $T_{12} \in \mathscr{B}_{12}$. Therefore by Lemma 2(i) we have that $S_{11} = A_{11} + B_{11}$. \Box

Similarly, we can prove the following.

Lemma 9. ϕ is additive on \mathcal{B}_{22} .

Lemma 10. Let $A_{ij} \in \mathcal{B}_{ij}$, $1 \le i \le j \le 2$. Then $\phi(A_{11} + A_{12} + A_{22}) = \phi(A_{11}) + \phi(A_{12}) + \phi(A_{22})$.

Proof. Choose $S = S_{11} + S_{12} + S_{22} \in \mathscr{A}$ such that $\phi(S) = \phi(A_{11}) + \phi(A_{12}) + \phi(A_{22})$. Then for $T_{11} \in \mathscr{B}_{11}$ we have that

$$\begin{split} \phi(r(T_{11}S + ST_{11})) &= r\phi(T_{11})\phi(S) + r\phi(S)\phi(T_{11}) \\ &= r\phi(T_{11})(\phi(A_{11}) + \phi(A_{12}) + \phi(A_{22})) \\ &+ r(\phi(A_{11}) + \phi(A_{12}) + \phi(A_{22}))\phi(T_{11}) \\ &= \phi(r(T_{11}A_{11} + A_{11}T_{11})) + \phi(r(T_{11}A_{12} + A_{12}T_{11})) \\ &+ \phi(r(T_{11}A_{22} + A_{22}T_{11})) \\ &= \phi(r(T_{11}A_{11} + A_{11}T_{11})) + \phi(r(T_{11}A_{12})) \\ &= \phi(r(T_{11}A_{11} + A_{11}T_{11}) + T_{11}A_{12})) \end{split}$$

making use of Lemma 5 in the last equality. It follows that $ST_{11} + T_{11}S = A_{11}T_{11} + T_{11}A_{11} + T_{11}A_{12}$. Equivalently, $(S - A_{11} - A_{12})T_{11} + T_{11}(S - A_{11} - A_{12}) = 0$ for every $T_{11} \in \mathcal{B}_{11}$. Hence by Lemma 4(i), we get that $S_{11} = A_{11}$ and $S_{12} = A_{12}$. Similarly, we can prove that $S_{22} = A_{22}$. \Box

Lemma 11. ϕ is additive on \mathcal{B} .

Proof. Let $A = A_{11} + A_{12} + A_{22}$ and $B = B_{11} + B_{12} + B_{22}$ be in \mathscr{A} . Then Lemmas 7–10 are all used in seeing the equalities

$$\phi(A + B) = \phi((A_{11} + B_{11}) + (A_{12} + B_{12}) + (A_{22} + B_{22}))$$

= $\phi(A_{11} + B_{11}) + \phi(A_{12} + B_{12}) + \phi(A_{22} + B_{22})$
= $\phi(A_{11}) + \phi(B_{11}) + \phi(A_{12}) + \phi(B_{12}) + \phi(A_{22}) + \phi(B_{22})$
= $\phi(A_{11} + A_{12} + A_{22}) + \phi(B_{11} + B_{12} + B_{22})$
= $\phi(A) + \phi(B)$

hold true. That is, ϕ is additive on \mathscr{B} .

We are now in a position to prove our main theorem.

Proof of Theorem. If $\mathcal{N} = \{0, I\}$, then $\mathcal{T}(\mathcal{N}) = B(\mathcal{H})$. Hence the result follows from [7, Theorem 1.6].

We now assume that $\mathcal{N} \neq \{0, I\}$. Then ϕ is additive on \mathscr{B} . Let $A, B, S \in \mathscr{A}$ such that $\phi(S) = \phi(A) + \phi(B)$. Let $T \in \mathscr{B}$ be arbitrary. Noting that AT + TA and BT + TB are both in \mathscr{B} , we get that $\phi(r(ST + TS)) = \phi(r(AT + TA)) + \phi(r(BT + TB)) = \phi(r(AT + TA + BT + TB))$. It follows that (S - (A + B))T + T(S - (A + B)) = 0 for all $T \in \mathscr{B}$. Hence by the Erdos Density Theorem, 2(S - (A + B)) = (S - (A + B))I + I(S - (A + B)) = 0. Thus S = A + B. We are done. \Box

Acknowledgements

The authors would like to thank the referee for very thorough reading of the manuscript and many helpful comments.

References

- K.R. Davidson, Nest Algebras, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific and Technical, Burnt Mill Harlow, Essex, UK, 1988.
- [2] J.A. Erdos, Operators of finite rank in nest algebras, J. London Math. Soc. 43 (1968) 391-397.
- [3] J. Hakeda, Additivity of Jordan *-maps on AW*-algebras, Proc. Amer. Math. Soc. 96 (1986) 413-420.
- [4] J. Hakeda, K. Saitô, Additivity of Jordan *-maps on operators, J. Math. Soc. Jpn. 38 (1986) 403-408.

- [5] F. Lu, Multiplicative mappings of operator algebras, Linear Algebra Appl. 347 (2002) 283–291.
- [6] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002) 123-131.
- [7] F. Lu, Jordan maps on associative algebras, Commun. Algebra 31 (2003) 2273–2286.
- [8] W.S. Martindale III, When are multiplicative mappings additive? Proc. Amer. Math. Soc., 21 (1969) 695–698.
- [9] L. Molnár, Jordan maps on standard operator algebras, in: Z. Daroczy, Z. Pales (Eds.), Functional Equations—Results and Advances, Kluwer Academic Publishers, 2001.