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Abstract

In this paper, we prove that a bijective map ¢ from .7, a standard subalgebra of a nest
algebra on a Hilbert space, onto an algebra that satisfies

¢(r(AB+ BA)) =r(¢p(A)¢(B) + ¢(B)p(A)) (A, B € ),

where 7 is a fixed nonzero rational number, is additive.
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Let o7 and 4 be associative algebras over the field @ of rational numbers. Let r
be a rational number. If a bijective map ¢ : .o/ — 4 satisfies

¢(r(AB + BA)) =r(¢(A)¢(B) + ¢(B)p(A))

for all A, B € .o/, we call it a r-Jordan map. In [3,4], Hakeda and Saitd proved that
every %—Jordan map ¢ from a unital C*-algebra with a system of matrix units onto
a *-algebra satisfying ¢ (a*) = ¢ (a)* is additive. In [9], Molndr showed that every
%-Jordan map between standard operator algebras is additive. In the theory of oper-
ator algebras the Jordan product of A and B is usually defined by A o B = %(AB +
B A) while in ring theory the definition is modified to A o B = (AB + BA) because
of obvious reasons. Therefore, from the ring theoretical point of view, it is more
natural to consider 1-Jordan maps than %—Jordan maps. Molnar asked in [9]: “Is

every %-Jordan map between standard operator algebras additive?”” This question
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was affirmatively answered in [6]. Recently, it was shown in [7] that all results in
[3,4,9] are also true for all r-Jordan maps.

Among all papers mentioned above algebras considered contain idempotents. It
is our aim in this paper to find a class of operator algebras of which any Jordan map
is additive but in which there are no idempotents.

Let & be a Hilbert space. Denote by B(’) the algebra of all bounded linear
operators on # and by I the identity operator on #. A chain ./ of projections
on J is called a nest if it contains 0 and / and it is closed in the strong operator
topology. The nest algebra denoted by .7 (/") corresponding to the ./ is defined by

T N)={T e B(HK):TE =ETE forall E € /}.

If A" is trivial, i.e. A7 = {0, I}, then 7 (AN") = B(). The algebra of all finite rank
operators in 7 (/") is denoted by % (/"). The Erdos Density Theorem says that
F (AN") is dense in 7 (") under the strong operator topology [2]. A subalgebra of
T (N) is called a standard subalgebra if it contains .7 (A"). In particular, 7 (") is
a standard subalgebra. If x, y € 5, then the rank one operator x ® y is defined by

(x®y)z=(z,y)x, (z€H).

It is well known that x ® y belongs to .7 () if and only if there is an element E €
A" such that x € E& and y € (I — E) . For more information on nest algebras,
we refer to [1].

The main result in this paper is the following.

Theorem. Let | be the real number field or the complex number field. Let </ be
a standard subalgebra of a nest algebra 7 (N") on a Hilbert space # over F of
dimension greater than 1 and R be an algebra over the field of rational numbers. Let
r be a nonzero rational number. Suppose ¢ : .o/ — R is a bijective map satisfying

¢(r(AB + BA)) = r(¢(A)¢(B) + ¢(B)p(A))
forall A, B € of. Then ¢ is additive.

The main technique we will use is the following argument which will be termed
a “standard argument”. Suppose A, B, S € .o/ are such that ¢(S) = ¢(A) + ¢(B).
Multiplying this equality by ¢ (T)(T € .o/) from the left and the right respectively,

we get ¢(T)P(S) = d(T)p(A) +¢(T)p(B) and ¢ (S)d(T) = ¢(A)e(T) +
¢ (B)¢(T). Summing them, we have that

d(M)P(S)+o(S)P(T)=¢d(T)p(A)+¢(A)p(T)+¢(T)p(B)+¢(B)p(T).
Since ¢ is a r-Jordan map, it follows that
(ST +TS)) =9 (AT +TA))+¢(r (BT +TB)).

Moreover, if ¢ (r (AT +TA)) + ¢(r(BT +TB)) =¢(r(AT +TA+ BT +TB)),
then by injectivity of ¢, we have that ST + TS = AT +TA+ BT + TB.
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The proof is purely algebraic and will be organized in a series of lemmas. We
begin with the following trivial one.

Lemma 1. ¢(0) =0.

Proof. Since ¢ is surjective, then we can find an A € .o/ such that ¢ (A) = 0. There-
fore ¢(0) = ¢ (r(0A + A0)) = r(¢(0)¢p(A) + ¢(A)¢(0)) =0. U

In the next several lemmas we will assume that A" = {0, I'}. Fix an element E
in A4 with 0 < E < I. For the sake of simplicity, we write # = F (/") and . =
T (N"). We borrow the idea of [8]. Set #1| = EAE, #1» = EA(I — E) and %2 =
(I — E)#(I — E). Then we can write 4 = %11 © %12 © H since 4 is an ideal
of 7. Similarly, we write 7 = 7 11 & 9 12 @ 7 22. The following lemma can be
found in [5].

Lemma 2. With the notation as above, we have that

() If 11 € F 11 is such that T\1 %812 = 0, then T1; = 0;
(i) If Tro € T 2 is such that B12T»; = 0, then Trr = 0;
(i) If T2 € T 12 is such that 11T12 = 0, then T1p = 0;
@iv) If T1p € T 13 is such that T12 %2 = 0, then T1, = 0.

Lemma 3. Leti € {1,2}and T;; € ﬁ-ii.IfTii%ii =0o0r%#;;T;; =0, then T;; = 0.

Proof. By the Erdos Density Theorem, there exists a net { F,, } of finite rank operators
in Z such that SOT-limy, Fy, = I. Set E; = E and E, = I — E. Then we have that
TiEiFyEi =0or E; FyE;T;; = 0. Note that T;; = E;T;; = T;; E;. Taking the limit,
we getthat 7;; E; = O0or E;T;; =0, thatis 7;; = 0. O

Lemma 4. Suppose that S = S11 + S12 4+ S» € 7.

@) If STy + T11S = 0 for every T\ € #A11, then S11 = S12 = 0.
(i) If STop + T2 S = O for every Try € %oy, then S13 = Sy = 0.

Proof. (i) Arguing as in the proof of Lemma 3, we get that SE + ES = 0. It fol-
lows that 2511 = E(SE + ES)E =0 and S12 = (SE + ES)({ — E) = 0. (ii) can
be proved similarly. [J

Lemma 5. Let B;j € %, 1 <i < j <2.Then¢(B11 + B12) = ¢(B11) + ¢ (B12)
and ¢(B2y + B12) = ¢(B22) + ¢(B12).

Proof. Since ¢ is surjective, we may find an element S = S1| + Si12 + S22 € &
such that

¢(S) = ¢(B11) + ¢(B12). ey
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For T>, € %57, applying a standard argument to (1), we have that
@ (r(T2S + ST22))=¢ (r(T2B11 + B11122)) + ¢ (r (T2 B12 + B12T22))
=¢(0) + ¢ (rB12T22) = ¢(rB12122).

It follows that T2 S + ST>, = B12T2;. Hence T72(S — Bi2) + (S — Bi2) T2y = 0 for
every Too € %2>. Thus by Lemma 4(ii), we get S»» = 0, S12 = Bja.
For T12 € %12, applying a standard argument to (1), we get

@ (r(T128S + ST12))=¢ (r(T12B11 + B11T12)) + ¢(r(T12B12 + B12T12))
=¢(rB11Ti2) +¢(0)
=¢(rB11T12).

Therefore, T12S + STi2 = B11T12 for every Ti» € #1>. Equivalently, T12S82 +
S11T12 = B11 Ty for all T1p € #1>. But we have shown that S, = 0, it follows
that S11712 = B11T12 for all T2 € #12. Thus by Lemma 2(i), S;; = Bj;. Conse-
quently, S = By + Bjz. This proves the first equality. The second can be proved
similarly. [

The next goal is to prove that ¢ is additive on #1,. If E € 4, this can be shown
easily. But E does not necessarily belongs to 4. The following lemma bridges this gap.

Lemma 6. Let Ty € #11, P12, Q12 € $B12, S22 € HB23. Then
¢ (T11 P12 + Q12822) = ¢(T11 P12) + ¢ (Q12522).

Proof. Compute

T11 P12 + Q12802 =(T11 + Q12)(P12 + S$22)
=(T11 + Q12)(P12 + 822) + (P12 + $22)(T11 + Q12).

Thus, we have that

¢ (T11 P12 + Q12522)

1
= ¢<r<;(T11P12 + Q12522)>>
1 1 1 1
= ¢(r<<;T11 + ;Q12>(P12 + S2) + (P12 + Szz)(;Tn + ;Q12>>>
1 1 1 1
= r¢(;T11 + ;Q12>¢(P12 + 82) +rép (P2 + 522)¢<;T11 + ;Qu)
1 1
V<¢<;T11> +¢(;Q12>>(¢(1’12) + ¢ (522))

1 1
+r(¢p(Pr2) + ¢(522))(¢(;T11) + ¢<;Q12))
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1 1
= r(¢(;T11>¢(P12) +¢(P12)¢(;T11>>

1
T11)¢(522) +¢(Sz2)¢(;T11>>

1
Q12)¢(P12) + ¢(P12)¢<; Q12>>

|
(oufses((en))
() (in)

= ¢(T11 P12) + ¢ (Q12522). O
Lemma 7. ¢ is additive on %1,.

Proof. Let Ay, Bio» € #1> and choose S = S;; + Si2 + S € .o/ such that

#(S) = ¢ (A12) + ¢ (B12). (2)
For T», € %55, applying a standard argument to (2) we get that
G (r(TnS + STx)) = ¢(rAnTrn) + ¢(rBialn). (3)

For T11 € %11, applying a standard argument to the equation (3), we have that

¢ (2 (TS + ST) 11 + T11 (T2 S + ST)))
= ¢((r*T11A12) ) + ¢(T11(r* B12T22))
= ¢((r*T11 A1) T + T11(r* B1aT2))

making use of Lemma 6, from which we have that

(T22S + ST)T11 + T11(T2S + ST22) = T (A2 + Bi2) T2
and hence

T11 812122 = T (A2 + Bi2) Toa.

Thus by Lemma 2, we conclude that S;» = A2 + By».
For T2 € %12, applying a standard argument to (3), we get that

¢ (r*(T12(T0S + STx) + (TS + STn)Ti2)) = 0.
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It follows that T12(T22S + ST>) + (1228 + ST»)T1» = 0. Hence, T12(T>282 +
S22T52) = 0 for all Typ € 12 and Tr; € %2,. Thus by Lemma 2(ii) and Lemma
4(ii), Sy = 0.

For Tip € %12, applying a standard argument to (2), we get that ¢ (r(7125 +
ST12)) =0, and so T12S + ST12 = 0, from which we get that 772520 + S11712 =0
for every T2 € #1. It follows from the fact S>p = 0 and Lemma 2(i) that §1; = 0.

Consequently, S = A + Bjp. O

Lemma 8. ¢ is additive on %1,.

Proof. Let Ay, B11 € %11 and choose S = S11 + S12 + S22 € .7 such that

¢(S) = ¢(A11) + ¢ (Bi). “4)

For T>, € #;, by a standard argument to (4), we have that 77,5 + ST», = 0. It
follows from Lemma 4(ii) that S, = S;» = 0.

Now there remains to prove that S;; = A1 + By1. For Ti; € %12, applying a
standard argument to (4) again, we get

Q(r(T128S + 8T2)) = ¢p(rAnTi2) +¢(rB11T12).
Hence by Lemma 7, we have that
T128 + 8Tp = (A1 + BTz

for every Typ € %1». Since Sy = S1p = 0, it follows that S11 712 = (A1 + B11) 112
for every T1» € %1,. Therefore by Lemma 2(i) we have that S;; = Ay + Byp. O

Similarly, we can prove the following.
Lemma 9. ¢ is additive on %»;.

Lemma 10. LetA;; € #;j,1 <i < j<2.Thenp(Aj1 + A+ An) =¢(A1) +
d(A12) + ¢ (An).

Proof. Choose S = Si; + Si2 + S2 € o7 such that ¢(S) = ¢ (A1) + ¢ (A1) +
¢ (A22). Then for T1; € %11 we have that

d(r(T1S + ST1)=ré(T11)d(S) +ré(S)e(T11)
=r¢(T11)(p(A11) + ¢(A12) + §(A22))
+r(@(A1n) + ¢ (A1) + ¢(A22))p(Ti1)
=¢(r(Ti A +AnTi)) + ¢ (Ti1 Az + AaThy))
+ ¢ (r(T11Ax + A2nTi1))
=¢(r(T11 A1 + A Ti)) + ¢ (r(T11A12))
=¢p(r(TiAn +AnTi + T An))
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making use of Lemma 5 in the last equality. It follows that ST11 + 7115 = A1 7111 +
Ti1A11 + Th1Ar2. Equivalently, (S — A1y — A12)T11 + T11(S — A1 — App) = O for
every 111 € #11. Hence by Lemma 4(i), we get that S;; = Ay; and S12 = Aj2.
Similarly, we can prove that Spp = Ayp. O

Lemma 11. ¢ is additive on 4.

Proof. Let A= A+ Aj» + Ay and B = By| + Bis + By be in .«Z. Then Lem-
mas 7-10 are all used in seeing the equalities

d(A+ B)=¢((A11 + B11) + (A2 + B12) + (A2 + B))
=¢ (A1 + B11) + ¢(A12 + Bi2) + ¢ (Axn + Bn)
=¢(A11) + ¢ (B11) + ¢(A12) + ¢(B12) + ¢ (An) + ¢ (B2)
=¢(An + A+ An) + ¢ (B + Biz + Ba)
=¢(A) + ¢(B)

hold true. That is, ¢ is additive on 4. [
We are now in a position to prove our main theorem.

Proof of Theorem. If 4" = {0, I}, then 7 (") = B(#’). Hence the result follows
from [7, Theorem 1.6].

We now assume that ./~ # {0, I}. Then ¢ is additive on . Let A, B, S € </ such
that ¢ (S) = ¢(A) + ¢(B).Let T € % be arbitrary. Noting that AT + T'A and BT +
T B are both in %4, we get that ¢ (r(ST + TS)) = (AT +TA))+ ¢ (BT +
TB) =¢@r(AT + TA+ BT +TB)). It follows that (S—(A+ B)T +
T(S—(A+ B)) =0 forall T € #. Hence by the Erdos Density Theorem, 2(S —
(A+B) =S —(A+B)HI+I1I(S—(A+B))=0. Thus S=A+ B. We are
done. [
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