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Abstract In this study, two optimal terminal guidance (OTG) laws, one of which takes into

account the final velocity vector constraint, are developed for exoatmospheric interception using

optimal control theory. In exoatmospheric interception, because the proposed guidance laws give

full consideration to the effect of gravity, they consume much less fuel than the traditional guidance

laws while requiring a light computational load. In the development of the guidance laws, a unified

optimal guidance problem is put forward, where the final velocity vector constraint can be consid-

ered or neglected by properly adjusting a parameter in the cost function. To make this problem ana-

lytically solvable, a linear model is used to approximate the gravity difference, the difference of the

gravitational accelerations of the target and interceptor. Additionally, an example is provided to

show that some achievements of this study can be used to significantly improve the fuel efficiency

of the pulsed guidance employed by the interceptor whose divert thrust level is fixed.
� 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As the maximum speed of intercontinental ballistic missile
(ICBM) is greater than 7 km/s and sometimes its apogee alti-

tude can be up to 2000 km, currently only the ground-based
midcourse defense (GMD) system equipped with ground-
based interceptor (GBI) missile has the capability of intercept-
ing ICBM. The flight of GBI generally has three phases: boost,
coast, and terminal guidance phases. After launch, the booster

tries to put its warhead, which is commonly called kinetic kill
vehicle (KKV) and destroys its intended target by direct colli-
sion, on a collision course, which means that if the KKV and

target are only governed by gravity, the KKV can just hit the
target directly. After the booster is turned off, the KKV is sep-
arated from the booster and enters the coast phase in which the

KKV flies to the predicted intercept point (PIP) without con-
trol. When the distance between the KKV and target reduces
to a specified value, the terminal guidance phase begins. At this

phase, the KKV uses the divert thrusters to perform lateral
maneuvers in order to eliminate the PIP error. When these
thrusters work, they consume much fuel. Therefore, one main
concern of designing the terminal guidance law is to minimize

the maneuvering energy so as to save fuel. Additionally, some-
times it is desired that the KKV collides head-on with the tar-
get to increase the chances of success. Therefore, the paper is

https://core.ac.uk/display/82775049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cja.2016.04.019&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yangliang.buaa@hotmail.com
http://dx.doi.org/10.1016/j.cja.2016.04.019
http://www.sciencedirect.com/science/journal/10009361
http://dx.doi.org/10.1016/j.cja.2016.04.019
http://creativecommons.org/licenses/by-nc-nd/4.0/


Optimal terminal guidance for exoatmospheric interception 1053
aimed at designing two fuel-saving terminal guidance laws for
exoatmospheric interception, one of which further considers
the final velocity vector constraint.

The most widely used guidance law is proportional naviga-
tion (PN) because of its simplicity, effectiveness, and ease of
implementation.1 Yuan first put forward the basic principle

of PN:2 if the interceptor turns at a rate proportional to that
of the line of sight (LOS), the interceptor can successfully hit
the target travelling in uniform linear motion, and the angular

velocity of the LOS will become zero finally. Adler extended
PN to a 3D one using the tool of solid geometry.3 Bryson
and Ho demonstrated the optimality of PN.4 Zarchan evalu-
ated the performance of PN thoroughly and deeply.1 In

Refs.5–11, the variants of PN and their closed form solutions
were presented. Graber developed the so-called augmented
proportional navigation (APN) by adding an extra term to

PN to account for the constant maneuvering acceleration of
target.12 In Ref.13, the guidance law considering the response
lags was presented. Turetsky and Shinar proposed the guid-

ance laws based on pursuit-evasion game formulations.14 Ge
et al. developed a head-pursuit guidance law for 3D hyperve-
locity interception using Lyapunov stability theory.15

For some special missions, the guidance laws capable of
shaping trajectory are needed. These guidance laws are collec-
tively referred to as trajectory shaping guidance (TSG). Cherry
proposed a simple and effective TSG, called explicit guidance

(E Guidance), for the first time by assuming that the com-
manded acceleration is a polynomial function of time.16 E
Guidance can be treated as an extension of PN because its

expression consists of two terms: one is PN used to steer mis-
sile to destination, the other is used to control the final velocity
vector. Ohlmeyer and Phillips obtained a series of the E Guid-

ance coefficients by solving an optimal control problem with
time-to-go weighted cost function.17 Yu and Chen obtained
the generalized closed form solutions of E Guidance where

the closing speed can be an arbitrary positive function of
time.18 Further, by analyzing these generalized solutions, the
stability domain of the guidance coefficients was obtained, in
which E Guidance is stable and the commanded accelerations

tend to be zero finally. Wang et al. improved E Guidance by
considering the constant maneuvering acceleration of target.19

In Refs.20–24, other types of TSG were presented. Yu and Chen

proposed a novel guidance law for guiding missile against a
maneuvering target while satisfying a circular no-fly-zone con-
straint.7 In this guidance law, the real space is distorted such

that the boundary of the no fly zone becomes a straight line,
and then PN is used to steer the missile to the virtual target
in the distorted space.

The widely-used terminal guidance laws for exoatmospheric

interception are PN, APN, and predictive guidance (PG).
Here, PG1 is a guidance law that conducts the trajectory sim-
ulation once in each guidance cycle to predict the zero-effort

miss (ZEM), and then uses the predicted ZEM to generate
acceleration command. Zarchan evaluated their performance.1

Simulation results show that PG consumes the least fuel

because PG uses the accurate gravity model, but requires the
heaviest computational load due to the real-time onboard tra-
jectory simulations. PN and APN cause the interceptor to per-

form unnecessary maneuvers even if the interceptor has
already been on a collision course. This is because they use
the inaccurate gravity models: PN implies that the gravity dif-
ference is zero, whereas APN assumes that the gravity differ-
ence is constant. Simulation results show that the amount of
the wasted fuel of APN is about half that of PN.

In this paper, two optimal terminal guidance (OTG) laws

are developed for exoatmospheric interception using the opti-
mal control theory: one considers the final velocity vector con-
straint, whereas the other does not consider it. Because the

developed guidance laws evaluate the effect of gravity more
accurately and need not conduct any onboard trajectory simu-
lation, they almost consume as little fuel as PG while having a

light computational load. In the development of the OTG
laws, a unified optimal guidance problem is put forward, of
which the developed guidance laws are the two special solu-
tions. Because the real gravity is a complex nonlinear function

of position, it is impossible to obtain the exact analytical solu-
tions of the problem. However, by observing the simulation
trials, it can be found that the gravity difference almost varies

linearly with time. Therefore, the problem is made analytically
solvable by the innovative use of a linear gravity difference
model. Additionally, as the angular velocity of LOS can be

measured by seeker directly, the OTG laws are reformulated
in terms of the angular velocity of LOS using a novel 3D trans-
formation method based on vector operations, which considers

the effect of gravity difference.
To implement the OTG laws, the position information is

needed. However, the onboard infrared seeker can only pro-
vide the LOS orientation information and has a limited detec-

tion distance. Thus, in practice, the information on the states
of motion is mainly provided by the external detection system
such as X-band radar. When the interceptor gets close enough

to the target, the infrared seeker becomes activated, and the
data detected by the infrared seeker and external detection sys-
tem are fused by Kalman filter to improve the accuracy of

data.
It should be mentioned that some kinds of KKV cannot be

throttled. For these KKVs, every time the thruster is turned

on, the thrust will reach a fixed level and cannot be adjusted.
In such a case, the pulsed guidance laws1,25,26 are commonly
employed, which use the predicted ZEM to determine the
duration time of thrust. However, these guidance laws neglect

the effect of gravity when predicting the ZEM. Therefore, they
will also result in a great waste of fuel in the long-range exoat-
mospheric interception. In fact, the formula of predicting

ZEM proposed in this paper can be applied to the pulsed guid-
ance laws. In Section 6.3, an example is given to demonstrate
that this can significantly improve the fuel efficiency of the

pulsed guidance laws.

2. Equations of motion

Fig. 1 depicts the 3D engagement geometry outside the atmo-
sphere of Earth. In this figure, the center of Earth is assumed
to be stationary in the inertial space. An inertial frame of ref-
erence with origin at the center of Earth is created and called

frame FE. As the engagement is outside the atmosphere, the
interceptor missile uses the divert thrusters to perform lateral
maneuvers where the thrust acceleration vector is denoted as

aM ¼ ½aMx; aMy; aMz�T. The target is only governed by gravity

and thus flies ballistically. In frame FE, the position vectors

of the interceptor missile and target are denoted as

XM ¼ ½xM; yM; zM�T and XT ¼ ½xT; yT; zT�T respectively, their

velocity vectors are denoted as VM ¼ ½VMx;VMy;VMz�T and



Fig. 2 Nominal trajectories of missile and target.

Fig. 1 Exoatmospheric interception geometry.
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VT ¼ ½VTx;VTy;VTz�T respectively, and their gravitational

acceleration vectors are denoted as gM and gT respectively.
The equations of motion are

_XM ¼ VM ð1Þ

_VM ¼ aM þ gM ð2Þ

_XT ¼ VT ð3Þ

_VT ¼ gT ð4Þ
where gM and gT are determined by

gM ¼ � lXM

jjXMjj3
; gT ¼ � lXT

jjXTjj3
ð5Þ

where l is a constant of about 3:96272� 1014 m3=s2, and the

symbol ‘‘jj � jj” means the Euclidean norm of vector.

3. Optimal guidance problem

To develop the fuel-efficient guidance laws for exoatmospheric
interception, the optimal guidance problem is posed where the
cost function is

J ¼ 1

2
k VTMf � V�

TMf

� �T
VTMf � V�

TMf

� �
þ
Z tf

0

aTMaM
2tngo

dt
ð6Þ

subject to the dynamic constraints

_XTM ¼ VTM ð7Þ

_VTM ¼ �aM þ gTM ð8Þ
and the final condition

XTMf ¼ 0 ð9Þ
Here, k is a constant. tf represents the end time or flight time
and will be discussed in detail in Section 5. tgo ¼ tf � t is the

time to go. XTM ¼ XT � XM and VTM ¼ VT � VM are the posi-

tion and velocity vectors of the target relative to the missile,
respectively. XTMf is the final value of XTM, and Eq. (9) makes
the missile collide with the target. VTMf is the final value of
VTM. V

�
TMf is the desired value of VTMf. gTM ¼ gT � gM is the

gravity difference.
The cost function is designed with specific purposes. The

first term on the right side of Eq. (6) is proposed for achieving
the desired final velocity vector. In this term, the parameter k is
used to adjust the contribution of VTMf to the cost function.

After obtaining the general analytical solution of the optimal
guidance problem, if one lets k= 0, the guidance law without
constraint on VTMf can be obtained, but if one lets k go to
infinity, the guidance law will be obtained, which makes the

missile collide with its target while satisfying VTMf ¼ V�
TMf.

The second term on the right side of Eq. (6) comes from

Ref.17 and is used to minimize the lateral divert requirement
so as to save fuel. In this term, as t goes to tf, the weight
ð1=tngoÞ tends to infinity. This makes aM converge to zero

finally, and greater exponent n tends to accelerate the conver-

gence speed. It is emphasized again that different from the pre-
vious studies4,12,17,19, the effect of the gravity difference, which
varies with position, is considered here. Thus, the proposed

guidance laws require much less fuel than the traditional ones
in exoatmospheric interception.

4. Optimal terminal guidance laws

As gTM is a complex nonlinear vector function of position, the
analytical solution of the posed optimal guidance problem can-

not be obtained. However, by observing the simulation trials
where both the missile and target are only governed by gravity,
it can be found that if the missile is just on a collision course,

gTM varies almost linearly with time, and at the collision point,
there is gTM ¼ 0. As an example, one of these simulation trials
is presented in Figs. 2 and 3. Here, Fig. 2 shows the trajectories
of the missile and target, and Fig. 3 shows the histories of gTM.

Further, it is concerned about whether the missile’s maneu-
ver will seriously worsen the degree of linearity of gTM. There-
fore, it is needed to analyze the influence of the trajectory

adjustment on gTM quantificationally. Define X�
M and X�

T as

the nominal trajectories of the missile and target respectively

where the missile flies without control and can just hit the tar-
get. Define g�TM as the gravity difference corresponding to the

nominal trajectories. Define DXM as the difference of the
actual and nominal trajectories of the missile. Thus, the actual
missile trajectory is XM ¼ X�

M þ DXM. Then, there is

gTM ¼ lðX�
M þ DXMÞ

jjX�
M þ DXMjj3

� lX�
T

jjX�
Tjj3

ð10Þ

The first order Taylor approximation of Eq. (10) is

gTM � lX�
M

jjX�
Mjj3

þ lDXM

jjX�
Mjj3

� 3lX�
M

jjX�
Mjj4

X�
M

� �T
DXMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X�
M

� �T
X�

M

q � lX�
T

jjX�
Tjj3

¼ g�TM þ l

jjX�
Mjj2

I� 3X�
M X�

M

� �T
jjX�

Mjj2
 !

DXM

jjX�
Mjj

ð11Þ



Fig. 3 gTM almost changes linearly with time in nominal case.
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In fact, the PIP error due to the boost guidance will not
exceed 50 km. So the terminal guidance only needs to adjust
the trajectory slightly but accurately, and jjDXMjj is generally
less than 50 km. By contrast, jjX�

Mjj is greater than the Earth’s

radius of about 6356 km. Therefore, jjDXMjj=jjX�
Mjj < 0:01.

Meanwhile, l=jjX�
Mjj2 has the same order of magnitude as

g�TM. Thus, the change in gTM due to the trajectory adjustment

is almost two orders of magnitude smaller than g�TM. Thereby,
it can be concluded that gTM still varies almost linearly with
time even if the missile trajectory is adjusted by the divert

thrusts. Thus, it is reasonable to use the following linear
model27 to approximate the gravity difference

gTM ¼ gTM0

tf � t

tf
ð12Þ

where gTM0 is the initial value of gTM. This linear model was
first proposed by Newman and used to develop an iterative
guidance law for steering booster.27 However, compared with

traditional guidance laws such as Lambert guidance, the devel-
oped guidance has a poor performance. For instance, if the ini-
tial distance is about 4000 km, the miss distance can be up to
5 km. Therefore, Newman further used two more complicated

but more accurate models to improve the guidance law. Differ-
ent from the boost case, the linear model is very suitable for
designing the terminal guidance, because (1) the linear model

will not result in missing the target since the trajectory correc-
tion is always conducted until the collision occurs; (2) the lin-
ear model makes the optimal guidance problem analytically

solvable, even though the problem-solving process is compli-
cated and full of mathematic tricks; (3) the developed terminal
guidance laws are expressed as explicit functions of current

states, which are elegant in form and easy to implement; (4)
compared with traditional terminal guidance laws, the new
guidance laws can significantly reduce the fuel consumption.

According to optimal control theory4, using the linear

model, the Hamiltonian is

H ¼ aTMaM
2 tf � tð Þn þ kT1VTM

þkT2 �aM þ gTM0

tf
ðtf � tÞ

� � ð13Þ

where k1 and k2 are Lagrange multiplier vector functions. To

facilitate writing, a new notation for partial derivative is
defined as follows.

If there is a multivariable function z ¼ fðX;YÞ where

X ¼ ½x1; x2; � � � ; xn�T and Y ¼ ½y1; y2; � � � ; ym�T, then define the
partial derivatives of z with respect to X and Y as
@z

@X
¼ @z

@x1

;
@z

@x2

; � � � ; @z
@xn

� �T
@z

@Y
¼ @z

@y1
;
@z

@y2
; � � � ; @z

@ym

� �T
8>>><
>>>:

ð14Þ

Consequently, the co-state equations are

_k1 ¼ � @H

@XTM

¼ 0 ð15Þ

_k2 ¼ � @H

@VTM

¼ �k1 ð16Þ

The stationarity condition is

@H

@aM
¼ 1

ðtf � tÞn aM � k2 ¼ 0 ð17Þ

Denote the first term on the right side of the cost function
(Eq. (6)) as

/ ¼ 1

2
kðVTMf � V�

TMfÞTðVTMf � V�
TMfÞ ð18Þ

As VTMf is not specified in the posed optimal guidance
problem, the final value of k2 should satisfy the following con-
dition to minimize the cost function

k2f ¼ @/
@VTMf

¼ k VTMf � V�
TMf

� � ð19Þ

Integrating Eqs. (15) and (16) and then using Eq. (19), we
obtain

k1 ¼ C1 ð20Þ

k2 ¼ C1ðtf � tÞ þ k VTMf � V�
TMf

� � ð21Þ
where C1 is a undetermined constant vector. Substituting
Eq. (21) into Eq. (17) yields

aM ¼ C1ðtf � tÞnþ1 þ kðVTMf � V�
TMfÞðtf � tÞn ð22Þ

Substituting Eqs. (12) and (22) into Eq. (8) and then integrat-
ing Eq. (8), we obtain

VTM ¼ VTM0 þ 1

2
gTM0tf �

1

nþ 2
C1t

nþ2
f

� k VTMf � V�
TMf

� �
tnþ1
f

nþ 1
� gTM0

2tf
ðtf � tÞ2

þC1 tf � tð Þnþ2

nþ 2
þ k VTMf � V�

TMf

� �ðtf � tÞnþ1

nþ 1

ð23Þ

Substituting Eq. (23) into Eq. (7) and then integrating Eq. (7),
we obtain

XTM ¼ XTM0 þ VTM0tþ 1

2
gTM0tft�

1

6
gTM0t

2
f

� 1

nþ 2
C1t

nþ2
f t� 1

nþ 1
kðVTMf � V�

TMfÞtnþ1
f t

þ gTM0

6tf
ðtf � tÞ3 � C1ðtf � tÞnþ3

ðnþ 2Þðnþ 3Þ

þ C1t
nþ3
f

ðnþ 2Þðnþ 3Þ þ
kðVTMf � V�

TMfÞtnþ2
f

ðnþ 1Þðnþ 2Þ

� kðVTMf � V�
TMfÞðtf � tÞnþ2

ðnþ 1Þðnþ 2Þ

ð24Þ

According to the final condition that XTMf ¼ 0, from Eq. (24),
there is
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tnþ3
f

nþ 3
C1 þ ktnþ2

f

nþ 2
VTMf ¼ XTM0 þ VTM0tf

þ 1

3
gTM0t

2
f þ

1

nþ 2
kV�

TMft
nþ2
f

ð25Þ

Additionally, when t= tf, from Eq. (23), there is

tnþ2
f

nþ 2
C1 þ 1þ ktnþ1

f

nþ 1

� �
VTMf ¼

VTM0 þ 1

2
gTM0tf þ

k

nþ 1
V�

TMft
nþ1
f

ð26Þ

Solving Eqs. (25) and (26) for C1 and VTMf yields

C1 ¼ C2

tnþ3
f

ðnþ 3Þ þ
kt2nþ4

f

ðnþ 1Þðnþ 2Þ2ðnþ 3Þ

" #,
ð27Þ

VTMf ¼ C3

tf
ðnþ 3Þ þ

ktnþ2
f

ðnþ 1Þðnþ 2Þ2ðnþ 3Þ

" #,
ð28Þ

where

C2 ¼ 1þ ktnþ1
f

nþ 1

� �
XTM0 þ 1þ ktnþ1

f

ðnþ 1Þðnþ 2Þ
� �

VTM0tf

þ 1

3
þ ð1� nÞktnþ1

f

6ðnþ 1Þðnþ 2Þ
� �

gTM0t
2
f þ

k

nþ 2
V�

TMft
nþ2
f

ð29Þ
Fig. 4 ZEM prediction considering the effect of gravity.

Fig. 5 Divert thrust is almost normal to LOS.
C3 ¼ � 1

ðnþ 2ÞXTM0 � 1

ðnþ 2Þðnþ 3ÞVTM0tf

þ ngTM0t
2
f

6ðnþ 3Þðnþ 2Þ þ
kV�

TMft
nþ2
f

ðnþ 1Þðnþ 3Þðnþ 2Þ2
ð30Þ

Consider two cases: (1) VTMf is unconstrained; (2) VTMf is
constrained.

(1) Optimal terminal guidance without constraint on VTMf

If k= 0, then VTMf has no effect on the cost function and is

thus unconstrained. Therefore, let k = 0 here. By substituting

Eqs. (27) and (28) into Eq. (22) and letting t= 0, we obtain

aM0 ¼ ðnþ 3ÞðXTM0 þ VTM0tfÞ
t2f

þ nþ 3

3
gTM0 ð31Þ

(2) Optimal terminal guidance with constraint on VTMf

If one lets k go to positive infinity, then VTM tends to V�
TMf

finally. Otherwise, the cost function would go to infinity. Use
Eqs. (27) and (28) to calculate the following two limits related
to aM.

lim
k!1

C1 ¼ ðnþ 2Þ2ðnþ 3Þ
tnþ3
f

XTM0

þðnþ 2Þðnþ 3Þ
tnþ2
f

VTM0 þ ðnþ 2Þðnþ 3Þð1� nÞ
6tnþ1

f

gTM0

þðnþ 1Þðnþ 2Þðnþ 3Þ
tnþ2
f

V�
TMf

ð32Þ

lim
k!1

kðVTMf � V�
TMfÞ ¼ � ðnþ 1Þðnþ 2Þðnþ 3Þ

tnþ2
f

XTM0

�ðnþ 1Þðnþ 2Þ
tnþ1
f

VTM0 þ nðnþ 1Þðnþ 2Þ
6tnf

gTM0

�ðnþ 1Þðnþ 2Þ2
tnþ1
f

V�
TMf

ð33Þ
By substituting Eqs. (32) and (33) into Eq. (22) and letting

t= 0, we obtain

aM0 ¼ ðnþ 2Þðnþ 3Þ
t2f

XTM0 þ 2ðnþ 2Þ
tf

VTM0

þðnþ 2Þð3� nÞ
6

gTM0 þ
ðnþ 1Þðnþ 2Þ

tf
V�

TMf

ð34Þ

Note that the second term on the right side of Eq. (34) can
be rewritten as

2ðnþ 2Þ
tf

VTM0 ¼ ðnþ 3Þðnþ 2Þ
tf

VTM0

� ðnþ 1Þðnþ 2Þ
tf

VTM0 ð35Þ

To facilitate the subsequent derivation, by substituting Eq.
(35) into Eq. (34), Eq. (34) can be rewritten as

aM0 ¼ ðnþ 2Þðnþ 3Þ
t2f

ðXTM0 þ VTM0tfÞ

þ ðnþ 1Þðnþ 2Þ
tf

ðV�
TMf � VTM0Þ þ ðnþ 2Þð3� nÞ

6
gTM0

ð36Þ
5. Flight time

As shown in Fig. 4, a non-rotating frame is created with origin
at the center of mass of the missile and called frame FM. Now
we observe the motion of the target from frame FM. If the mis-

sile flies without control, i.e. aM = 0, then the missile is only
governed by gravity and will miss the target. For this case,
the corresponding trajectory of the target in frame FM is rep-

resented by the curve passing through the target and point
P. Thereby, the ZEM is equal to the distance between the mis-
sile and point P. Denote the segment between the missile and

point P as SMP, and the segment between the missile and target
as SMT. The following explains that SMP is perpendicular to
SMT. As shown in Fig. 5, since the engagement is outside the
atmosphere, the missile uses the divert thrusters to perform lat-

eral maneuvers in order to eliminate the ZEM, and uses the
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attitude control thrusters to adjust its attitude such that the
longitudinal axis of the seeker always follows the LOS.
Because the divert thrust is normal to the longitudinal axis

which approximately coincides with the LOS, the divert thrust
is approximately perpendicular to the LOS. Meanwhile, it is
assumed that the direction of the LOS remains unchanged

throughout the engagement. In fact, the LOS always rotates
due to the effect of gTM, even if the missile is just on a collision
course. However, the angular displacement of LOS is very

small, essentially because gTM is too small to result in a signif-
icant change in VTM. The above analysis and assumption indi-
cate that the displacement of the missile due to aM (i.e., the
vector from the missile to the point P) is perpendicular to

the initial LOS. Thereby, under these assumptions, the flight
time tf can be determined by analyzing the movement along
the initial LOS.

Denote the components of VTM along and perpendicular to
the initial LOS as Vr

TM and Vn
TM, respectively, and denote the

components of gTM along and perpendicular to the initial
LOS as grTM and gnTM, respectively. Define x̂TM as the unit vec-

tor of XTM. x̂TM0 is the initial value of x̂TM. Let
RTM ¼ XTM � x̂TM0;V

r
TM ¼ VTM � x̂TM0, and grTM ¼ gTM � x̂TM0.

Note that since the missile always closes in the target, there
is Vr

TM < 0.

Due to the assumption that the direction of the LOS
remains unchanged, from Eq. (12), there is

grTM ¼ grTM0

tf � t

tf
ð37Þ

where grTM0 is the initial value of grTM. Because it is assumed

that aM does not affect the movement along the initial LOS,
integrating the above equation yields

Vr
TM ¼ Vr

TM0 þ
1

2
grTM0tf �

grTM0

2tf
ðtf � tÞ2 ð38Þ

where Vr
TM0 is the initial value of Vr

TM. Integrating the above

equation yields

RTM ¼ RTM0 þ Vr
TM0tþ

1

2
grTM0tft

þ grTM0

6tf
ðtf � tÞ3 � 1

6
grTM0t

2
f

ð39Þ

where RTM0 is the initial value of RTM. When t= tf, there is
RTMf ¼ 0, i.e.

RTM0 þ Vr
TM0tf þ

1

3
grTM0t

2
f ¼ 0 ð40Þ

The above equation has two roots as

tf1 ¼ 3

2

�Vr
TM0 þ

ffiffiffiffi
D

p� �
grTM0

; tf2 ¼ 3

2

�Vr
TM0 �

ffiffiffiffi
D

p� �
grTM0

ð41Þ

where

D ¼ ðVr
TM0Þ2 �

4

3
RTM0g

r
TM0 ð42Þ

In practice, due to the careful planning of mission before
launch, the engagement geometry generally meets the require-

ment for successful interception, i.e., the magnitude of Vr
TM0 is

large enough to satisfy D P 0. To determine which root is the
flight time and facilitates further derivation, the two roots are
rewritten using a mathematical trick as follows:
tf1 ¼ 3

2

�Vr
TM0 þ

ffiffiffiffi
D

p� �
grTM0

�Vr
TM0 �

ffiffiffiffi
D

p� �
�Vr

TM0 �
ffiffiffiffi
D

p� �
¼ 2RTM0

�Vr
TM0 �

ffiffiffiffi
D

p
ð43Þ

and similarly,

tf2 ¼ 2RTM0

�Vr
TM0 þ

ffiffiffiffi
D

p ð44Þ

Now determine which root is the flight time. According to

Eq. (42), if grTM0 P 0, then D 6 ðVr
TM0Þ2. Thus, it can be con-

cluded from Eqs. (43) and (44) that 0 < tf2 < tf1. This means

that at t ¼ tf2;RTM ¼ 0 is met for the first time. Therefore,

the flight time is tf2. If g
r
TM0 < 0, then D > ðVr

TM0Þ2. Substitut-
ing this into Eqs. (43) and (44), we obtain tf1 < 0 < tf2. Thus,

the flight time is still tf2. All in all, the flight time is

tf ¼ 2RTM0

�Vr
TM0 þ

ffiffiffiffi
D

p ð45Þ

Using Eq. (45), the formulas of aM (Eqs. (31) and (36)) can
be rewritten in terms of the angular velocity of LOS. Substitut-
ing Eq. (45) into an expression related to aM yields

XTM0 þ VTM0tf
t2f

¼ �Vr
TM0 þ

ffiffiffiffi
D

p� �2
4R2

TM0

XTM0 þ
�Vr

TM0 þ
ffiffiffiffi
D

p� �
2RTM0

VTM0

¼ Vr
TM0

� �2 � Vr
TM0

ffiffiffiffi
D

p

2R2
TM0

XTM0 � grTM0

3RTM0

XTM0

þ �Vr
TM0 þ

ffiffiffiffi
D

p� �
2RTM0

VTM0

¼ 1

2
1�

ffiffiffiffi
D

p

Vr
TM0

 !
�

Vr
TM0

� �2
XTM0 � Vr

TM0RTM0

� �
VTM0

R2
TM0

� 1

3
grTM0

ð46Þ

Using some mathematical tricks that Vr
TM0

� �2 ¼
VTM0 � Vr

TM0;V
r
TM0RTM0 ¼ Vr

TM0 � XTM0, and R2
TM0 ¼ XTM0�

XTM0, we obtain

XTM0 þ VTM0tf
t2f

¼ 1

2
1�

ffiffiffiffi
D

p

Vr
TM0

 !
�

VTM0 � Vr
TM0

� �
XTM0 � Vr

TM0 � XTM0

� �
VTM0

XTM0 � XTM0

� 1

3
grTM0

ð47Þ

Using the triple product expansion, i.e.
ða� bÞ � c ¼ ða � cÞb� ðb � cÞa, we obtain

XTM0 þ VTM0tf
t2f

¼

� 1

2
1�

ffiffiffiffi
D

p

Vr
TM0

 !
xLOS0 � Vr

TM0 �
1

3
grTM0

ð48Þ

where xLOS is the angular velocity of LOS and its 3-D formula
is

xLOS ¼ �VTM � XTM

XTM � XTM

ð49Þ



Table 1 Comparisons of simulation results in Case 1.

Guidance law DV (m/s) Computing time (s)

OTG 1.032 0.0844

PN 91.510 0.0813

APN 46.950 0.0744

PG 0 12.7356
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In practice, xLOS is extracted from the data detected by the

infrared seeker.1,28,29 Substituting Eq. (45) into another expres-
sion related to aM yields

V�
TMf � VTM0

tf
¼ � 1

2
1�

ffiffiffiffi
D

p

Vr
TM0

 !

� XTM � VTMð ÞðV�
TMf � VTM0Þ

XTM � XTM

ð50Þ

Using Eqs. (48) and (50), the OTG laws can be expressed in
terms of the angular velocity of LOS, as follows:

(1) Optimal terminal guidance without constraint on VTMf

Substituting Eq. (48) into Eq. (31) yields

aM0 ¼ � nþ 3

2
1�

ffiffiffiffi
D

p

Vr
TM0

 !
xLOS0 � Vr

TM0

þ nþ 3

3
gnTM0

ð51Þ

(2) Optimal terminal guidance with constraint on VTMf

Substituting Eqs. (48) and (50) into Eq. (36) yields

aM0 ¼ ðnþ 2Þðnþ 3Þ�

� 1

2
1�

ffiffiffiffi
D

p

Vr
TM0

 !
xLOS0 � Vr

TM0 þ
1

3
gnTM0

" #

þðnþ 1Þðnþ 2Þ � 1

2
1�

ffiffiffiffi
D

p

Vr
TM0

 !"
�

ðXTM0 � VTM0ÞðV�
TMf � VTM0Þ

XTM0 � XTM0

� 1

2
gTM0

�
ð52Þ

Because Vr
TM0 < 0, there is

�
ffiffiffiffi
D

p

Vr
TM0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

3

RTM0g
r
TM0

Vr
TM0

� �2
s

ð53Þ

If RTMg
r
TM=ðVr

TMÞ2 � 0, the formulas of aM can be further sim-

plified by assuming that � ffiffiffiffi
D

p
=Vr

TM0 � 1.

In practice, the guidance command is generated in real time
by substituting the current states of motion into Eq. (51) or
Eq. (52).

Note that Eqs. (51) and (52) are more suitable for practice

than Eqs. (31) and (36); because (1) due to the help of the infra-
red seeker, the estimation accuracy of the angular velocity of
LOS is much higher than that of the remaining flight time

(i.e. time to go), especially when the missile is very close to
the target; (2) since the time to go appears in the denominators
of the guidance formulas, the miss distance is highly sensitive

to the estimation error of the time-to-go, especially if there is
a bias error in the estimated time-to-go.1,30 In addition,
because XTM0 also appears in a denominator of Eq. (52), if

there is a measurement error of the relative position, it can
result in a waste of fuel and may even cause the missile to miss
the target. Section 6.2 gives an example to show the influence
of the measurement error.

In Ref.1, Zarchan demonstrated that the 2D PN expressed
in terms of ZEM and tgo is equivalent to that expressed in
terms of the angular rate of LOS by geometrically analyzing

the relationship between ZEM and the angular rate of LOS.
Different from Ref.1, the transformation method presented
here is proposed for 3D guidance laws and based on vector
operations, rather than geometric analysis. Additionally, the
consideration of gravity greatly increases the difficulty of

transformation and causes the method presented in Ref.1 to
fail to handle the OTG cases.

6. Results and discussion

6.1. OTG without constraint on VTMf

In this subsection, some examples are given where VTMf is
unconstrained. In these examples, the simulation results of
OTG are compared with that of PN, APN, and PG. The com-
mands of OTG, PN, and APN can be expressed uniformly as

aM ¼ �N1xLOS � Vr
TM þN2g

n
TM ð54Þ

where for PN, N1 ¼ 3þ n and N2 ¼ 0. For APN, N1 ¼ 3þ n

and N2 ¼ ð3þ nÞ=2. For OTG, N1 ¼ 0:5ðnþ 3Þ�
1� ffiffiffiffi

D
p

=Vr
TM

� �
and N2 ¼ ð3þ nÞ=3.

Here, the guidance parameter n P 0. The command of PG

can be expressed as

aM ¼ N1XZEM

t2go
ð55Þ

where N1 ¼ 3þ n and XZEM is the zero-effort miss vector. In

each guidance cycle of PG, the onboard computer lets
aM ¼ 0 and then integrates Eqs. (1)–(4) numerically. When
X9m � VTM ¼ 0, the simulation stops. Then, let tgo be equal to
the stop time and let XZEM be equal to the value of XTM at

the stop time. PG uses the component of aM perpendicular
to the LOS as the guidance command.

Consider two cases about the PIP here: Case 1. the PIP has

no error; Case 2. the PIP has an error of about 50 km.
In Case 1, the initial states of the KKV are XM0 =

[786280.91, �1300973.39, 7286277.30]T m and VM0 =

[2837.72, 5409.49, 1553.36]T m/s, and the initial states of the
target are XT0 = [981407.04, �861312.60, 7722585.39]T m
and VT0 = [1725.21, �6831.13, �976.11]T m/s. In this case,
let n = 0 for all the four guidance laws. Define the velocity

increment DV as

DVðtÞ ¼
Z t

0

jjaMjjdt ð56Þ

Because the thrust acceleration is proportional to the mass
flow rate of fuel, DV reflects the fuel consumption.

The simulation results are shown in Table 1 and Figs. 6–9.

As can be seen from Table 1, PG consumes the least fuel, but
requires the heaviest computational load. The velocity incre-
ment of OTG is almost as small as that of PG, but the comput-
ing time of OTG is much shorter than that of PG.

Additionally, the velocity increment of APN is almost half that
of PN. Fig. 6 shows the trajectories and the corresponding



Fig. 6 Engagement trajectories for OTG in Case 1.

Fig. 7 Histories of velocity increments in Case 1.

Fig. 8 Histories of guidance commands in Case 1.

Fig. 9 Histories of gTM and XTM for OTG in Case 1.

Table 2 Comparisons of simulation results in Case 2.

Guidance law DV (m/s) Computing time (s)

OTG 230.93 0.1636

PN 399.67 0.1628

APN 292.87 0.1730

PG 232.60 42.7442
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ground tracks of the missile and target for OTG. Because the
trajectories for the four guidance laws are nearly coincident

and not easily distinguishable, only the trajectories for OTG
are presented here. Fig. 7 shows the histories of the velocity
increments for all the guidance laws. Define plane PEMT as

the plane containing the Earth center, missile, and target.
Define ŷn as the unit vector that is perpendicular to the current
LOS in plane PEMT and has a positive projection on XM.
Define ẑn as the unit vector perpendicular to plane PEMT and

determined by ẑn ¼ x̂TM � ŷn. Fig. 8(a) shows the histories of

the components of aM along ŷn, denoted as aMyn. Fig. 8(b) shows
the histories of the components of aM along ẑn, denoted as aMzn.

From Fig. 8, it can be seen that due to the use of inaccurate
gravity models, PN and APN cause the missiles to perform

unnecessary maneuvers and thus result in an apparent waste
of fuel. Fig. 9 shows the histories of gTM and XTM for OTG.
Here, it can be seen that both gTM and XTM vary almost lin-

early with time. Fig. 9(b) indicates that the direction of LOS
is almost unchanged during the interception.

Now Case 2 is considered where there is a large PIP error of

about 50 km in the beginning. To show the influence of the ini-
tial distance on the linearity of the gravity difference, the initial
separation is enlarged to about 4000 km. The initial conditions
are XM0 = [192442.95, �2085138.26, 6726394.99]T m, VM0 =

[3418.94, 5190.08, 3269.23]T m/s, XT0 = [569875.90,
1928987.06, 7526018.77]T m, and VT0 = [2262.74, �6806.83,
834.46]T m/s. In this case, the parameter n of the four guidance

laws is set to 1. The simulation results are shown in Table 2
and Figs. 10–13. From Table 2, it can be seen that the velocity
increments for OTG and PG are still significantly smaller than

the other two, but the computing time for PG is much longer
than the others. Also because the trajectories for the four guid-
ance laws are very similar, Fig. 10 only shows the trajectories

and the corresponding ground tracks for OTG. Fig. 11 shows
the histories of the velocity increments. Fig. 12 shows the his-
tories of the acceleration commands for the four guidance
laws. As can be seen from Fig. 12(a), in PN, because the effect



Fig. 10 Engagement trajectories for OTG in Case 2.

Fig. 11 Histories of velocity increments in Case 2.

1060 W. Yu et al.
of gTM is not considered, the ZEM is underestimated and thus
the commanded acceleration is insufficient in the beginning,

which results in a large lateral divert requirement in the latter
part of the trajectory. On the contrary, APN overestimates the
ZEM since it assumes that gTM is constant throughout the
remaining flight and equal to the current value. Therefore,

the maneuvering acceleration is too large in the beginning.
This causes that the missile has to change the direction of
thrust to the opposite in the latter part of the flight. By con-
Fig. 12 Histories of the guid

Fig. 13 Histories of gTM and
trast, OTG estimates the ZEM accurately and thus control
the missile to perform proper maneuvers. Therefore, as shown
in Fig. 11, OTG requires much smaller velocity increment than

PN and APN. From Fig. 13, it can be seen that although the
initial separation is up to 4000 km, gTM and XTM still vary
almost linearly with time.

Define RTGP as the distance at which the terminal guidance
phase starts. Now observe how RTGP influences the velocity
increments of PN, APN, and OTG. In the simulations con-

ducted here, there are two flight phases. The first phase is
the coast phase where the missile is only governed by gravity
and thus flies along a ballistic trajectory. When the distance
between the missile and target reduces to RTGP, the terminal

guidance phase begins. Here, two cases about the coast phase
are considered: (1) the missile is just on a collision course,
which means that there is no PIP error, and (2) the trajectory

of the missile has a PIP error of about 5 km. By setting RTGP

to different values and then conducting a large number of sim-
ulations, the profiles of the velocity increments with respect to

RTGP can be obtained, as shown in Fig. 14. Here, Fig. 14(a)
shows the profiles corresponding to the case without PIP error,
and Fig. 14(b) shows the profiles corresponding to the case

with PIP error. As shown in Fig. 14(a), it can be seen that
OTG has very high fuel efficiency, compared with PN and
APN. This figure also shows that the amount of the waste fuel
for APN is about half that for PN. As shown in Fig. 14(b),

shorter RTGP tends to increase the required heading correction
and thus increase the lateral divert requirement. Inversely, for
OTG, longer RTGP tends to reduce the lateral divert require-

ment significantly. However, because PN and APN adopt
the inaccurate gravity models and thus cause the missile to per-
form unnecessary maneuvers, longer RTGP tends to increase

the lateral divert requirements for PN and APN.
ance commands in Case 2.

XTM for OTG in Case 2.



Fig. 14 Profiles of DV versus RTGP.

Table 3 Comparisons of simulation results with constraint on

VTMf.

Case DV (m/s) Computing time (s)

OTG 83.66 0.1469

GENEX 164.58 0.1201

Case with measurement error 104.33 0.1571

Fig. 15 Engagement trajectories for OTG with constraint on

VTMf.
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6.2. OTG with constraint on VTMf

Now consider the cases with constraint on VTMf, where it is

desired that the missile collides head-on with the target. As a
comparison, the results of generalized vector explicit guidance
(GENEX)17 are also given here. Although GENEX is origi-

nally expressed in terms of ZEM and tgo, using the transforma-
tion method shown in Section 5, GENEX can also be
reformulated in terms of the angular velocity of LOS as

follows:

aM ¼ �ðnþ 2Þðnþ 3ÞxLOS � Vr
TM

�ðnþ 1Þðnþ 2Þ ðXTM � VTMÞðV�
TMf � VTMÞ

XTM � XTM

ð57Þ

The parameter n appearing in Eqs. (52) and (57) is set to be
1. Before launching the missile, the command and control cen-
ter can figure out the position of the PIP and the velocity vec-

tor of the target at the PIP, where the unit vector of the
velocity vector of the target at the PIP is denoted as v̂Tf. Then,
for a head-on collision, let the desired final relative velocity

vector be

V�
TMf ¼ jjVTMjjv̂Tf ð58Þ
A scenario is considered here that although the intercept

trajectory has been planned perfectly with v̂Tf = [�0.1840,
�0.9720, �0.1462]T, due to the guidance error at the boost
phase, the missile has a heading error of about 0.5� at the

beginning of the terminal guidance phase. For this scenario,
at the terminal guidance phase, the initial conditions are
XM0 = [354390.76, �1468209.45, 6924581.65]T m, VM0 =
[1142.97, 4964.53, 2714.43]T m/s, XT0 = [942888.61,

1633401.66, 7406664.03]T m, and VT0 = [�1168.38,
�6981.35, 680.63]T m/s.

To show the influence of the measurement error of XTM on

OTG, an additional case is considered where it is assumed that
the measured magnitude of XTM is 100 m less than its real
value and OTG is used as control.

The simulation results are shown in Table 3 and Figs. 15–
17, where the solid lines represent the ideal results of OTG,
the dashed lines represent the ideal results of GENEX, and

the dotted lines represent the results of the case with the mea-
surement error of XTM. As can be seen from Table 3, the veloc-
ity increment of OTG is about half that of GENEX, and the
measurement error of XTM leads to more fuel consumption.

Also because the trajectories for the three cases are very simi-
lar, Fig. 15 only shows the trajectories and the corresponding
ground tracks for OTG. Define h as the angle between the
velocity vectors of the missile and target. Fig. 16 shows the his-
tories of DV and h. From Fig. 16(a), it can also be seen that the

velocity increment of OTG is much smaller than that of
GENEX. From Fig. 16(b), it can be seen that h goes to 180�
finally, which means that the missile hits the target from the

head-on direction. As can be seen from Fig. 17(a), because
GENEX does not consider the effect of gravity, GENEX
causes the missile to perform some unnecessary maneuvers

and thus results in a waste of fuel. In Fig. 17(b), because
gTM has no component along ẑn, OTG and GENEX are
almost the same in this direction and thus generate the similar
acceleration commands. In the case with measurement error of

XTM, when the missile is close enough to the target where the
distance between them is within hundreds of meters, the mea-
surement error results in rapid changes in the guidance com-

mand, which leads to fuel waste and a large error in h.

6.3. Improved pulsed guidance

An example is given here to show that some achievements of
this paper can be used to improve the fuel efficiency of the
pulsed guidance law employed by the missile with fixed thrust

level.



Fig. 16 Histories of DV and h for the cases with constraint on VTMf.

Fig. 17 Histories of guidance commands for the cases with constraint on VTMf.

Table 4 Comparisons of simulation results for BPG and IPG.

Guidance

law

Miss distance (m) DV (m/s) Computing time (s)

IPG 0.1840 204.91 0.7005

BPG 0.2992 425.69 0.6527
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Zarchan introduced a 2D pulsed guidance law and demon-
strated its performance in the long-range exoatmospheric
interception.1 Here, the guidance is extended to a 3D one

and called the basic pulsed guidance (BPG) law. In general,
KKV has four divert thrusters in a cruciform configuration.
Assume that the axis of a pair of coaxial thrusters remains
along ŷn, while the axis of the other pair of coaxial thrusters

remains along ẑn. The components of XZEM along ŷn and ẑn
are denoted as XZEM

yn and XZEM
zn , respectively.

As shown in Fig. 18, if there is a guidance pulse of magni-

tude aM lasting for Dt seconds, then the profile of the lateral
maneuvering speed DV consists of two segments. In such a
case, the lateral maneuvering range is equal to the area of

the region enclosed by the time axis and lines depicted in
Fig. 18(b).

As the guidance tries to remove the predicted ZEM using
one pulse, let the displacement due to thrust be equal to the

predicted XZEM as

jjXZEM
yn jj ¼ 0:5aMDt

2
yn þ aMDtynðtgo � DtynÞ ð59Þ

jjXZEM
zn jj ¼ 0:5aMDt

2
zn þ aMDtznðtgo � DtznÞ ð60Þ

Here, Dtyn is the commanded duration time for the thrust with

the same direction as XZEM
yn and Dtznthe commanded duration
Fig. 18 Sketch map of pulsed guidance.
time for the thrust with the same direction as XZEM
zn . Solving

the above two equations, we obtain

Dtyn ¼ tgo �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2go �

2jjXZEM
yn jj
aM

s
ð61Þ

Dtzn ¼ tgo �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2go �

2jjXZEM
zn jj
aM

s
ð62Þ

According to Ref.1, in BPG, XZEM and tgo are predicted by

XZEM ¼ XTM þ VTMtgo ð63Þ

tgo ¼ �RTM=V
r
TM ð64Þ
Fig. 19 Engagement trajectories for IPG.



Fig. 20 Histories of DV and predicted ZEM for IPG and BPG.

Fig. 21 Histories of guidance commands for IPG and BPG.
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Note again that Vr
TM < 0. Because the above prediction formu-

las are inaccurate due to the ignorance of gravity, one trajec-

tory correction cannot eliminate all the real ZEM. Therefore,
more trajectory corrections are needed. In Ref.1, these correc-
tions are distributed at equal intervals during the flight. To

reduce the miss distance, this scheme is slightly modified as:
when tgo > 30 s, the trajectory correction is conducted every

30 s, but when tgo 6 30 s, the trajectory correction is conducted

every 5 s.

Using some achievements of this paper, the prediction for-
mulas of XZEM and tgo considering the effect of gravity can be

obtained. From Ref.1, there is aM ¼ N1XZEM=t
2
go where

N1 ¼ 3þ n. By comparing this with Eq. (31), we obtain

XZEM ¼ XTM þ VTMtgo þ 1

3
gTMt

2
go ð65Þ

From Eq. (45), there is

tgo ¼ 2RTM

�Vr
TM þ ffiffiffiffi

D
p ð66Þ

where D ¼ ðVr
TMÞ2 � ð4=3ÞRTMg

r
TM. The modified guidance is

called the improved pulsed guidance (IPG) law. In fact,

because the fuel consumption leads to a reduction in mass,
the thrust acceleration level aM increases gradually during
the flight. However, for simplicity, assume that aM is a con-
stant because the change in aM is small, and has a value of

10 m/s.2

The initial conditions for the current case are the same as
those for Case 2 in Section 6.1. The simulation results are

shown in Table 4 and Figs. 19–21. As can be seen from Table 4
and Fig. 20(a), because IPG gives full consideration to the
effect of gravity, its miss distance and velocity increment are
much smaller than those of BPG. In Fig. 19, only the trajecto-

ries and the corresponding ground tracks for IPG are pre-
sented, also because the trajectories for IPG and BPG are
very similar. As shown in Fig. 20(b), because IPG predicts

the ZEM accurately and controls the missile to perform lateral
maneuvers properly, the predicted ZEM of IPG remains nearly
zero after the first trajectory correction. Fig. 21 shows the his-

tories of the lateral maneuvering accelerations.

7. Conclusions

In this paper, using optimal control theory, two optimal termi-
nal guidance laws are developed for exoatmospheric intercep-
tion: one considers the final velocity vector constraint, whereas
the other does not consider it. Because the developed guidance

laws give full consideration to the effect of gravity and need
not conduct any onboard trajectory simulation, the new guid-
ance laws consume much less fuel than the traditional guidance

laws while demanding a light computational load. To convert
the OTG laws expressed in terms of XTM, VTM and tgo into
that expressed in terms of xLOS, the 3D transformation method

based on vector operations is proposed, which considers the
effect of the gravity difference, especially on the flight time.
Additionally, an example is given to show that if the prediction

formulas of XZEM and tgo proposed in this study are applied to
the pulsed guidance law, the fuel efficiency of the guidance law
can be significantly improved. Different from PN, the imple-
ment of the OTG laws requires the information on the posi-

tions of the missile and target in order to calculate the
gravity difference and guidance coefficients.
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