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Consider a Hamiltonian action of a compact Lie group on a compact symplectic
manifold. A theorem of Kirwan's says that the image of the momentum mapping
intersects the positive Weyl chamber in a convex polytope. I present a new proof
of Kirwan's theorem, which gives explicit information on how the vertices of the
polytope come about and on how the shape of the polytope near any point can be
read off from infinitesimal data on the manifold. It also applies to some interesting
classes of noncompact or singular Hamiltonian spaces, such as cotangent bundles
and complex affine varieties. � 1998 Academic Press
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1. INTRODUCTION

Let K be a compact Lie group acting smoothly on a compact symplectic
manifold M and suppose there exists a moment(um) map for the action.
This map has a host of interesting properties, one of the most important
of which is the fact that the intersection of its image with any Weyl cham-
ber is a convex polytope, referred to as the momentum polytope of M. This
theorem, which is due to Kirwan, has a long history, which can be briefly
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summarized as follows. Kostant proved a convexity theorem for torus
actions on conjugacy classes and flag manifolds in [16]. Atiyah in [2] and
Guillemin and Sternberg in [5] dealt with the case of general Hamiltonian
torus actions. In their paper, Guillemin and Sternberg further proved a
convexity theorem for Hamiltonian actions of arbitrary compact Lie groups
on integral Ka� hler manifolds (or projective manifolds), which was also
proved by Mumford in [26]. Kirwan subsequently extended this result to
Hamiltonian actions on arbitrary compact symplectic manifolds in [14].
Many useful refinements in the projective-algebraic case were made later by
Brion in [3]. See [4], [11] and [22] for other results and more references.
See [9] and [19] for some developments subsequent to the present paper.

A striking difference between Kirwan's general convexity theorem and
the abelian convexity theorem of Atiyah�Guillemin�Sternberg lies in the
fact that the latter offers far more quantitative information on the shape of
the momentum polytope. For example, in the abelian case one knows that
the vertices of the polytope are images of fixed points in M, and that the
shape of the polytope near a vertex can be read off from the isotropy action
on the tangent space at a corresponding fixed point. This follows from a
combination of the equivariant Darboux Theorem and Morse theory
applied to the components of the momentum map.

The goal of this paper is to obtain such information in the nonabelian
case as well. The main result is Theorem 6.7, which is a sharpened version
of Kirwan's convexity theorem. Given a point m in M mapping to a point
+ in the momentum polytope, it provides a description of the shape of the
polytope near + in terms of the action of the stabilizer of m on polynomials
on the tangent space at m. It also states a necessary criterion for + to be
a vertex, which generalizes the criterion for the abelian case referred to
above. Other results include convexity theorems for actions on affine
varieties, Theorem 4.9, and cotangent bundles, Theorem 7.6. Theorem 4.8
describes the relation between the momentum cone of an affine variety and
the momentum polytopes of its projective closure and the divisor at
infinity.

These results are inspired by Brion's treatment of Kirwan's theorem for
projective varieties. It came as a surprise to me how well Brion's algebro-
geometric techniques can be adapted to a C� setting essentially without
sacrificing any of their power. The main reason why this is possible is that every
point in M possesses an invariant neighbourhood that is isomorphic as a
Hamiltonian K-manifold to (a germ of) a complex quasi-projective variety.

In the language of the orbit method, the momentum polytope of M is the
``classical'' analogue of the set of highest weights of the unitary irreducible
representations occurring in the ``quantization'' of M. There is also a
classical analogue of the space of highest-weight vectors. This will be the
subject of a forthcoming paper.
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The paper is organized as follows. Section 2 is a review of some basic
facts concerning representations and momentum maps. Section 3 is a review
of the convexity theorem for complex projective varieties, where I have
presented the argument in such a manner that it can be applied to non-
compact varieties. In Sections 4 and 5 I prove convexity theorems for
complex affine and Stein varieties. In Section 6 I apply these results to
prove local convexity properties of arbitrary momentum maps, whence I
derive the main result, Theorem 6.7. The local description of the
momentum polytope given by this theorem, although explicit, is unwieldy
in practice, and one often has to revert to ad hoc methods to calculate
momentum polytopes. In Section 7 I illustrate this in a number of
examples, such as actions on cotangent bundles and projective spaces.

I thank Sheldon Xu�Dong Chang, Yael Karshon and Eugene Lerman
for their help and encouragement. I am grateful to Laurent Laeng,
Domingo Luna and the referee for correcting a number of errors.

2. PRELIMINARIES

In this section I introduce notation and review basic material to be
referred to later.

2.1. Groups, Representations

Throughout this paper K will be a compact connected Lie group with a
fixed maximal torus T. The complexification of K is denoted by G and the
complexification of T by H. Let us fix a Borel subgroup B of G containing
H. Its unipotent radical [B, B] is denoted by N, and the corresponding
positive Weyl chamber in t* by t*+ . The lattice ker(exp| t ) is denoted by 4.
Its dual lattice

4*=HomZ (4, Z)/t*

is the lattice of (real) weights and 4*+=4* & t*+ is the monoid of dominant
weights. To a real weight * corresponds a character `* of T defined by
`*(exp !)=exp(2? - &1 (*, !) ) for ! # t.

The complex reductive group G=KC has a unique complex affine
structure. Let R=C[G]N be the algebra of polynomial functions on G
which are N-invariant on the right, that is to say, f # R if f (gn)= f (g) for
all g # G and n # N. Then G acts on R by left multiplication and, since H
normalizes N, H acts on R by right multiplication. Under the right
H-action, R has a weight space decomposition

R= �
* # 4*+

R* , (2.1)
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and it follows from the Borel�Weil Theorem that R* is an irreducible
G-module with highest weight *. (See [17], Chapt. III.) This implies that
the algebra R is of finite type and, hence, that the scheme G��N=Spec R
``is'' an affine variety. (I shall not distinguish between an affine variety and
the scheme associated to it.)

Let W=N(T )�T be the Weyl group of (K, T ) and let w0 be the longest
Weyl group element. Define an involution V : t � t by +*=&w0+. The
complex-linear extension of V to tC and the dual map on (t*)C will also be
denoted by V . It is well-known that V leaves the set of dominant weights
invariant and that for all * # 4*+ the representation R** is isomorphic to
R** , the contragredient representation of R* .

2.2. Cones, Polytopes

Let E be a finite-dimensional vector space over Q and let S be a subset
of E. The Q-convex hull of S is the smallest convex subset of E containing
S and is denoted by hullQ S. The convex hull of S is the smallest convex
subset of E�R containing S and is denoted by hull S. A subset of E (resp.
E�R) is called a cone if it is invariant under multiplication by nonnegative
rational (resp. real) scalars. The convex Q-cone spanned by S is the
smallest convex cone in E containing S and is denoted by coneQ S. In other
words, coneQ S=Q�0 } hullQ S. The convex cone spanned by S is the
smallest convex cone in E�R containing S and is denoted by cone S. That
is, cone S=R�0 } hull S. If S is finite, hull S and cone S are called a
rational convex polytope, resp. a rational convex polyhedral cone in E�R.
A cone is called proper if it does not contain any linear subspaces (apart
from [0]).

2.3. Hamiltonian Actions

Let (M, |) be a symplectic manifold with a K-action defined by a
smooth map { : K_M � M. The action { is called Hamiltonian if there
exists a momentum map, that is, a map 8 : M � k* with the property that
d8!=@(!M) | for all ! # k. Here !M denotes the vector field on M induced
by !, and 8! is the function defined by 8!(m)=(8(m))(!). We may, and
will, assume 8 to be K-equivariant with respect to the coadjoint action
on k*. The quadruple (M, |, {, 8) is called a Hamiltonian K-manifold.
(See e.g., [7].)

If Y is any subset of M, we denote the restriction of 8 to Y by 8Y . The
momentum set 2(Y ) of Y is defined by

2(Y )=8(Y ) & t*+ .
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In ``good'' cases, 2(Y ) is known to be a convex cone or polytope ([5],
[14]), and is then called the momentum cone, resp. polytope of Y.

On every Hamiltonian K-manifold (M, |, {, 8) there exists an almost-
complex structure J that is compatible with the Hamiltonian action, that is
to say, J : TM � TM is a symplectic map, the symmetric bilinear form
|( } , J } ) is positive definite, and J is K-equivariant. If in addition J is
integrable, then M is a Ka� hler manifold with K-invariant metric ds2=
|( } , J } )&- &1 |( } , } ), and K acts holomorphically.

Example 2.1 ([5]). Let (V, |V) be a symplectic vector space and
assume K acts on V by linear symplectic transformations. This action is
Hamiltonian; a momentum map is given by the quadratic map

8!
V (v)= 1

2|V (!v, v), (2.2)

where !v denotes the image of v # V under ! # k (viewed as a linear operator
on V ). Choose a K-invariant |V -compatible complex structure J on V. Let
( } , } ) be the Hermitian inner product whose imaginary part is equal to
&|V . Then the momentum map can also be written as

8!
V (v)=

- &1
2

(!v, v). (2.3)

Now suppose K=T is a torus. Then V is an orthogonal direct sum of
weight spaces V=�& # 4* V& . If V& {0, then & is called a weight of the
symplectic action of T on V. The weight space decomposition depends on
the choice of the complex structure, but the weights do not. (This follows
from the fact that any two K-invariant compatible complex structures on
V are conjugate by a K-equivariant linear symplectic map.) If v is a vector
of weight &, then !v=2? - &1 &(!) v, so 8(v)=&? &v&2& by (2.3), and
therefore

2(V)=&cone[&1 , ..., &l], (2.4)

where &1 , ..., &l are the (real) weights of V.

Example 2.2 ([13], [26], [1]). Let V, J and ( } , } ) be as in the
previous example, and let PV be the space of complex lines in V. The
natural K-action on PV leaves the Fubini�Study symplectic form invariant,
and with the volume of PV normalized to 1, a momentum map is given by

8PV ([v])=
8V (v)
? &v&2=

- &1
2?

(!v, v)
&v&2 , (2.5)
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where [v] denotes the line through v. Consequently, if K is a torus and v
is a weight vector in V with weight &, then 8PV ([v])=&&. Hence,

2(PV)= &hull[&1 , ..., &l], (2.6)

where &1 , ..., &l are the weights of V. See further Section 7.1.

2.4. Coadjoint Orbits

For every + in t*+ the coadjoint orbit K+ with its Kirillov�Kostant
symplectic form |+ is a Hamiltonian K-manifold. The momentum map is
simply the inclusion @+ : K+ � k*. (See [15], [7].) Let P+ be the parabolic
subgroup (K+)C N of G. The K-equivariant diffeomorphism G�P+ � K+
sending the coset 1P+ to the vector + provides K+ with a complex structure
with respect to which |+ is Ka� hler.

Now let + be a dominant weight. Then the cohomology class of the form
|+ on K+ is integral and because K+ is compact, there exists a Hermitian
holomorphic line bundle O+ on K+ with curvature &2? - &1 |+ . The
pullback of O+ to G�P+ is just the homogeneous line bundle G_P+ C, where
P+ acts on C by the character +.

Let +1 and +2 be two points in t*+ and let +=+1++2 . Then K+=K+1
& K+2

and P+=P+1
& P+2

, so we have canonical holomorphically locally trivial
fibrations ?i : K+ � K+i . It is not hard to see that |+=?*1|+1

+?*2 |+2
. If

+, +1 and +2 are dominant, the holomorphic line bundle O+ is isomorphic
to ?*1 O+1

�?*2 O+2
. Let me summarize this in a commutative diagram:

?1 ?2

?1*O+1
�?2*O+2

�

O+1
O+ O+2

K+1 K+ K+2 .

2.5. Gradient Flows, Semistability

Let X be a smooth connected Riemannian manifold and let f be a func-
tion on X with the property that at every point of X there exists a system
of local coordinates in which f is real-analytic. Let F(t, } ) be the gradient
flow of & f. Assume that the path of steepest descent F(t, x) through every
point x is contained in a compact set. Then the flow is defined for all t�0.
Moreover, by results of 4ojasiewicz [20] and Simon [28], the limit
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x�=limt � � F(t, x) exists for all x. Let a be a critical level of f and let
Sa=[x # X : f (x�)=a] be the stable set of a. Then Sa is a locally closed
subset of X and x [ x� is a continuous retraction from Sa onto f &1(a).
The decomposition X=~a Sa is called the Morse decomposition of X with
respect to f (even if f is not a Morse function).

(A note on the literature: 4ojasiewicz' paper [20] does not contain a
complete proof of these assertions. He explains part of the requisite
estimates in [21]. Simon gives a fuller account of the retraction argument
in [28], while also generalizing it to an infinite-dimensional situation.
Apparently independently of both [20] and [28], Neeman [25] and
Schwarz [27] rederive the retraction theorem for certain flows on vector
spaces from the inequalities in [21]. Their arguments can easily be
generalized to prove the above statements.)

As an example, let (X, |, {, 8) be a connected Hamiltonian K-manifold
equipped with a compatible almost-complex structure J. Let ( } , } ) be a
K-invariant inner product on k and let | } | be the associated norm. I use
the same symbols to denote the corresponding inner product and norm on
the dual k*. Put f =|8|2. It follows from the local model for Hamiltonian
actions (see Section 6) that this function is real-analytic in suitable
local coordinates. Note that since f is K-invariant, the flow F(t, } ) is
K-equivariant. Let us assume the momentum map to be admissible in the
sense that for every x # X the path of steepest descent F(t, x) is contained
in a compact set. The set S0 is called the set of (analytically) semistable
points and is denoted by X ss(8). So X ss(8) is nonempty if and only if
0 # 8(X ). Kirwan has shown in [13] that Sa is a submanifold of even
codimension for every critical level a (and if J is integrable, then Sa is a
complex submanifold). Now assume that the Morse decomposition X=
~a Sa is locally finite. (This is for instance the case if for every a there are
only finitely many critical levels below a). Then, if nonempty, X ss(8) is
open, connected and dense.

3. SEMISTABILITY AND CONVEXITY

In this section I review the convexity theorem for Ka� hler manifolds due
to Guillemin and Sternberg [5] and Mumford [26]. Guillemin and
Sternberg have pointed out in [6] that semistability and convexity are
closely related. This idea goes back to Heckman's paper [8], and can be
formulated as follows.

Proposition 3.1. Let (Yi , _i , 9i) be compact Hamiltonian K-manifolds
with compatible (integrable) complex structures Ji , where i=1, 2, ..., k.
Assume that the cohomology classes of the _i are integral. Let Y be a
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compact complex K-manifold and let pi : Y � Yi be K-equivariant surjective
holomorphic maps. Let a1 , a2 , ..., ak be nonnegative numbers, and let _=
�i ai pi*_i and 9=�i ai p i*9i . Assume _ is a Ka� hler form on Y. Then
�i p&1

i (Y ss(9 i)) is contained in Y ss(9 ). Hence, if 0 # 9i (Yi) for every i,
then 0 # 9(Y ).

By the equivariant version of Kodaira's Embedding Theorem, the
manifolds Yi and Y are of course biholomorphically equivalent (but not
necessarily isometric) to projective manifolds with linear G-actions. The
proof is a straightforward adaptation of the techniques of [5] and [26].
With a view to later applications I supply an argument which can easily be
made to work for noncompact manifolds.

Proof. Note that 9 is a momentum map for the K-action on Y with
respect to the symplectic form _. Also, since Y is compact, 9 is admissible
in the sense of Section 2.5. For clarity I will first handle the case where
Yi=Y and pi=idY . So we are given Ka� hler forms _i on Y and we wish to
show �i Y ss(9 i)/Y ss(9 ).

For i=1, 2, ..., k, let Li be a Hermitian holomorphic line bundle on Y
with curvature form &2? - &1 _i . (These exist because Y is compact.) Let
ni be a positive integer and let si # 1(Y, Lni

i )K, where 1 stands for
holomorphic sections. Let (si , si) denote the length squared of si with
respect to the fibre metric on Lni

i . It follows from the invariance of the si

that for every ! # k we have LJ!Y
(si , si)=&4?ni9 !

i (si , si) , and hence

LJ!Y
(si , si) ai �ni=&4?ai9 !

i (si , si) ai�ni. (3.1)

Here L stands for the Lie derivative. Let L be the line bundle }i Li with
the product Hermitian metric and let F(t, } ) be the flow of the vector field
&grad |9|2. From the elementary fact that

J!Y=grad 9! (3.2)

one easily deduces that

grad |9( y)|2=2J9( y)�
Y, y , (3.3)

where � : k* � k is the linear isomorphism defined by the inner product,
and 9( y)�

Y is the vector field on Y induced by 9( y)� . (See [13].) Put
s=sn�n1

1 �sn�n2
2 � } } } �sn�nk

k , where n=n1n2 } } } nk . Then s # 1(Y, Ln)K.
Consider the function u=(s1 , s1) a1 �n1 (s2 , s2) a2�n2 } } } (sk , sk) ak�nk. By
(3.1),

LJ!Y
u=&4?(a1 9 !

1+a2 9 !
2+ } } } +ak9 !

k) u=&4?9!u.
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Using this and (3.3) we find that the derivative of u along a trajectory
F(t, y) is equal to

d
dt

u(F(t, y))=&du(grad |9(F(t, y))|2)=&2 du(J9(F(t, y))�
Y, F(t, y))

=8?(9(F(t, y)), 9(F(t, y))) u(F(t, y))

=8? |9(F(t, y))| 2 u(F(t, y))�0. (3.4)

Now suppose y # Y is semistable with respect to all _i . Kirwan [13] and
Ness [26] observed that for a projective manifold with the Fubini�Study
metric analytic semistability is equivalent to semistability in Mumford's
sense. This is true in general for a compact complex manifold with
an integral Ka� hler metric; see [29]. This means we can find positive
integers ni and invariant global holomorphic sections si of Lni

i such that
si ( y){0. Then s( y)=sn�n1

1 ( y)� } } } �sn�nk
k ( y){0, so u( y)>0. Put y�=

limt � � F(t, y). By (3.4), u(F(t, y)) is increasing along the path
F(t, y), so u( y�)>0. On the other hand, du(F(t, y))�dt tends to zero as
t tends to infinity, so from (3.4) we get |9( y�)|2 u( y�)=0, and therefore
|9( y�)|2=0. In other words, y is semistable for _. We have shown
�i Y ss(9 i)/Y ss(9 ).

Suppose now that 0 # 9i (Yi) for all i. Then the sets Y ss(9 i) are
nonempty for all i, and are therefore open and dense. It follows that their
intersection is nonempty. If y # �i Y ss(9i), then, by the first part of the
proof, 9( y�)=0, that is, 0 # 9(Y ).

In the general case the argument is almost exactly the same. The
difference is that one considers the line bundle L= � i pi*Li on Y and the
section s= p*1sn�n1

1 � } } } � p*ksn�nk
k of Ln. Further, the assumptions on the pi

guarantee that the pre-image p&1
i (S ) of a complex-analytic subset S/Yi of

positive codimension is a complex-analytic subset of positive codimension
of Y. This implies that if Y ss

i {< for all i, then �i p&1
i (Y ss(9i)){<. K

For noncompact Y the flow of &grad |9|2 may not be defined for all
time or its trajectories may fail to converge, and the equivalence between
analytic and algebraic semistability can break down. But the following
qualified statement is still true. The proof is almost word for word the
same.

Proposition 3.2. Let (Yi , _ i , 9i) be Hamiltonian K-manifolds endowed
with compatible complex structures Ji , where i=1, 2, ..., k. Assume there
exist K-equivariant Hermitian holomorphic line bundles Li on Yi with
curvature forms &2? - &1 _i for all i. Let Y be a complex K-manifold and
let pi : Y � Yi be K-equivariant surjective holomorphic maps. Let a1 , a2 , ..., ak
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be nonnegative numbers, and let _=�i ai pi*_i and 9=� i ai pi*9i . Assume
_ is a Ka� hler form on Y and that the momentum map 9 is admissible in the
sense of Section 2.5. If for every i there exist a positive integer ni and a
nonzero K-invariant holomorphic section of Lni

i , then 0 # 9(Y ).

Remark 3.3. Suppose that Z/Y and Zi /Yi are irreducible K-stable
locally closed analytic subvarieties, and that for all i the restriction of the
map pi to Z is a surjective map Z � Zi . Assume that for every z in Z
the path F(t, z) and its limit z� are contained in Z. Also assume that
the sections s i restrict to nonzero sections on Zi . Then 0 # 9i (Zi) for all i
implies 0 # 9(Z). Exactly the same proof works.

Here is an application of Proposition 3.2, where the notation is as in
Section 2.4. Let (X, |, 8) be a Hamiltonian K-manifold, not necessarily
compact, with a compatible complex structure J. Suppose that there exists
a K-equivariant Hermitian holomorphic line bundle L on X with curvature
form &2? - &1 |. For i=1, 2, ..., k, let +i be a dominant weight and let
Yi be the manifold X_K+i* with symplectic form _i=|+|+i*

. (Recall that
V is defined by &*=&w0&.) Then the K-action on (Yi , _ i) is Hamiltonian
with momentum map 9i=8+@+i*

. Let Li be the Hermitian line bundle
L�O+i*

on Yi . Let ai be arbitrary positive numbers, let +=�i ai+ i , and let
Y be the K-manifold X_K+*. Consider the fibrations pi : Y � Yi induced
by the fibrations of coadjoint orbits K+* � K(ai+i) w�

qi K+i*, where qi is the
equivariant diffeomorphism sending ai +i to + i . Since the ai are positive, the
form _=�i ai pi*_i is a Ka� hler form on Y, and the action on Y is
Hamiltonian with momentum map 9=�i ai pi*9i . Let us assume that

for all i there exist ni

>0 and nonvanishing sections si # 1(Yi , Lni
i )K; (3.5)

for all ai�0 the momentum map 9 is admissible. (3.6)

(Assumption 3.6 holds e.g., when 8 is proper.) Then by Proposition 3.2
there exists a point (x, k+*) in Y=X_K+* with 9(x, k+*)=0, that is,
(a1+ } } } +ak) 8(x)=kw0(a1+1+ } } } +ak+k). This shows that

a1 +1+a2+2+ } } } +ak +k

a1+a2+ } } } +ak
# 8(X ) & t*+=2(X )

for all ai>0. The same is obviously true if some of the ai are 0 (just replace
the *i by the subset consisting of those + i for which ai {0), so we have
proved:

Proposition 3.4. Under the assumptions (3.5) and (3.6) the convex hull
of +1 , +2 , ..., +k is contained in 2(X ).
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Remark 3.5. By Remark 3.3, a similar result holds for an irreducible
K-stable locally closed analytic subvariety Z of X. Namely, assume that
the gradient flow of the function &|9 |2 preserves the subvariety
Z_K+*/X_K+* and that the forward trajectories converge to points in
Z_K+*. (This assumption is satisfied e.g., if the K-action on X extends to
a holomorphic G-action and if Z has the property that Gz/Z whenever
z # Z.) Assume further that for all i the sections si restrict to nonzero sec-
tions on Z_K+i . Then hull[+1 , +2 , ..., +k]/2(Z).

Now consider the graded G-algebra A=�n�0 1(X, Ln).

Definition 3.6 (Brion). The highest-weight set of X is the subset C(X )
of the Q-vector space 4*�Q consisting of all *�n with the property that
* is a dominant weight and n a positive integer such that the irreducible
representation R* occurs in the degree-n piece An . In other words,
*�n # C(X ) if and only if n>0 and * occurs as a weight of the T-action on
the degree-n piece of the ring AN.

Let me recall a few basic facts concerning highest-weight sets. See [3] for
details. Note first that C(X ) is contained in t*+ . The fact that A has no zero
divisors implies that C(X ) is a convex subset of the Q-vector space 4*_Q.
Now suppose X is compact. Then A is of finite type. A result of Luna and
Vust says that for every G-algebra A of finite type (not necessarily graded)

AN$(R�A)G, (3.7)

where R is as in (2.1). This implies that AN is of finite type. (See e.g., [17].)
It follows from this that C(X ) is the convex hull of a finite number of
points in 4*�Q. Moreover, 2(X ) is closed. It is now easy to deduce the
following result from Proposition 3.4.

Theorem 3.7 ([5], [26], [3]). If X is a compact integral Hamiltonian
K-manifold with a compatible Ka� hler structure, 2(X ) is equal to the closure
of C(X ) in t*+ and is therefore a rational convex polytope.

By Remark 3.5, Theorem 3.7 also holds if we replace X with a G-stable
irreducible closed analytic subvariety.

This result applies in particular to a G-stable irreducible closed
subvariety X of PV, the projective space of a G-module V, equipped with
the Fubini�Study symplectic form. But now consider a subvariety X of PV
that is not necessarily irreducible or even reduced. What is the connection
between 2(X ) and C(X )? Let X red denote the reduced variety associated to
X and let X1 , X2 , ..., Xl be its irreducible components (each endowed with
the reduced induced structure). Let Z and Zi be the affine cones of X red,
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resp. Xi , and let I, resp. I i , be their homogeneous ideals. Then I=�i Ii and
for each i we have an exact sequence

Ii �I/�C[Z] �� C[Zi].

It follows easily from this that C(X red)=�i C(Xi). It is evident that
2(X red)=�i 2(Xi), so applying Theorem 3.7 to each of the X i we obtain
the following result.

Addendum 3.8 ([18]). If X is a (not necessarily irreducible or reduced )
subvariety of PV, then 2(X red) is equal to the closure of C(X red) in t*+ and
is therefore a union of finitely many rational convex polytopes.

The following example shows that C(X ) is in general not a union of
finitely many Q-convex sets and that it is not necessarily equal to C(X red).

Example 3.9. Fix a positive integer n. Let A be the algebra C[x, y]�
(xn) and let X=Proj A, considered as a closed subscheme of P1. For any
weight * of K=S1 define an action of K on C2 by g(x, y)=(`&*(g) x, y),
where `&* is the character defined by `&*(exp !)=exp(&2? - &1 (*, !) ).
According to (2.6), 2(P1) is equal to the interval between 0 and *. Note
that X red is the point with homogeneous coordinates [0, 1], so

C(X red)=2(X red)=[0].

Write f� for f +(xn) # A; then x� ky� l has degree k+l and weight k* for
k=0, 1, ..., n&1 and l�0, so that

C(X )={ k*
k+l

: k, l # N, k<n, kl{0= ,

which cannot be written as a union of finitely many Q-convex sets.
Nevertheless, it is always true that the intersection of C(X ) with a

rational line in t* is a bounded set which contains both its endpoints.

Addendum 3.10. For every (not necessarily irreducible or reduced )
subvariety X of PV and every & in C(X ), let I&=[q # Q : q& # C(X )]. Then
inf I& and sup I& are in I& .

Proof. This is similar to the proof of Theorem 3.7. The assertion is
trivial for &=0, so let me assume that &{0. Let t1 be the subalgebra of t
annihilated by &; then T1=exp t1 is a subtorus of T of codimension one.
Denote the quotient circle T�T1 by T2 and identify t*2 , the kernel of the
canonical projection t* � t*1 , with the line R&/t*. Put C&=C(X ) & R&.
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Let Z be the affine cone on X and let A be the graded algebra C[Z]N,
which as noted above is of finite type. Since the maximal torus T nor-
malizes N, it acts in a natural way on A. The algebra B=AT1 is likewise
of finite type and it carries a representation of T2 . Let *0 be the (unique)
primitive element of 4* such that *0= p& for some positive rational p. Note
that f # A is a weight vector of weight proportional to *0 if and only if f
is in B and is a weight vector for T2 . It follows that C& is equal to the set
of m*0�n such that there exists f # B of weight m** and degree n. Choose
(nonzero) generators f1 , f2 , ..., fl of B with weights m1*0 , m2*0 , ..., ml *0

and degrees n1 , n2 , ..., nl . Then mj *0 �nj # C& , so mj �nj # I& for 1� j�l.
Moreover, q& # C& if and only if there exist a1 , a2 , ..., al such that the
monomial >j f aj

j is nonzero and

q&=
� j ajmj

� j ajnj
*0 .

In other words, every element of C& is a convex combination of the mj *0 �n j

(but not every such combination need be in C& , because B may have zero
divisors). Now let r be the minimum of the mj �nj and s their maximum.
Then r and s are in I& and r=inf I& and s=sup I& . K

4. AFFINE VARIETIES

In this section X denotes an affine algebraic variety (not necessarily
reduced or irreducible) on which G acts algebraically. The main results are
theorems describing the momentum map image of X with respect to
suitable K-invariant symplectic forms, Theorems 4.9 and 4.23. My main
interest is in smooth varieties, but the proofs turn out to be no harder for
general varieties. There are some examples at the end of Section 4.1.

4.1. Highest Weights and the Momentum Cone

The natural analogue of Definition 3.6 is the following.

Definition 4.1 (Brion). The set of highest weights of X is the subset
C(X ) of 4*+ consisting of all dominant weights * such that the irreducible
G-representation R* occurs in the coordinate ring C[X ]. In other words,
* # C(X ) if and only if * is a weight of the T-action on the ring C[X ]N. If
G is a torus, we refer to C(X ) as the weight set of X.

Note that if Y is another affine G-variety, then C(X )=C(Y ) if and
only if the coordinate rings of X and Y contain the same irreducible
G-representations (up to multiplicities). It is easy to see that if X is
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irreducible, then C(X ) is a submonoid of 4*+ (that is, it contains 0 and is
invariant under addition). It follows from (3.7) that C(X ) is finitely
generated as a monoid.

Let me first discuss a few simple tricks for computing highest-weight sets.
Let X��G=Spec C[X ]G denote the categorical quotient of X, that is, the
variety of closed G-orbits in X, and let ? : X � X��G be the quotient
mapping. (See [17] or [23].) A subset U of X is called saturated (with
respect to ?) if ?&1?(U)=U, that is, Gx/U whenever x # U. Saturated
subsets are evidently G-stable. The following result says that C(X ) is
determined locally in the Zariski topology, or, more precisely, that it does
not change when we remove from X a divisor defined by an invariant
polynomial.

Lemma 4.2. Assume X is irreducible. Let Y be any saturated affine
Zariski-open subvariety of X. Then C(X )=C(Y ).

Proof. The coordinate ring of X embeds equivariantly into the
coordinate ring of Y. This implies C(X )/C(Y ). For the reverse inclusion,
note that the assumption that Y is saturated implies that the quotient Y��G
is an affine open subvariety of X��G. Let D be the complement of Y��G in
X��G, let D1 , D2 , ..., Dk be the irreducible components of D, and let
fi # C[X��G] be the polynomial defining Di for i=1, 2, ..., k. Put
f = f1 f2 } } } fk ; then the divisor X&Y=?&1(D) is the zero set of f (viewed
as an element of C[X ]), and the coordinate ring of Y is just the localiza-
tion of C[X ] at f. Define for every p the linear map �p : C[X ]p � C[Y]
by �p(a)=a�f p. Since X is irreducible, �p is injective. Since f is invariant,
�p is equivariant. The direct sum of the maps �p is an equivariant map
from C[X ] to C[Y], which is surjective, because C[Y] is the localization
of C[X ] at f. It follows from this that if an irreducible G-representation
occurs in C[Y], then it occurs in C[X ]. This proves C(Y )/C(X ). K

The problem of computing highest-weight sets can in principle be
reduced to torus actions. The variety Spec C[X ]N is a categorical quotient
of X by N in the category of affine varieties, and will be denoted by X��N.
(It is not always the same as the set-theoretical quotient of X by N and the
natural map X � X��N is not always surjective. For instance, the homo-
geneous space G�N is a quasi-affine variety and G��N is its affine closure.)
Let C(X��N ) be the weight set of the H-action on X��N. By the theorem of
the highest weight, a weight occurs in C[X ]N if and only if it occurs as the
highest weight of an irreducible component of C[X ]. This proves the
following lemma.

Lemma 4.3. C(X )=C(X��N ).
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Furthermore, highest-weight sets are invariant up to denominators under
finite morphisms.

Lemma 4.4. Let X and Y be affine G-varieties and let , : X � Y be a
finite surjective G-morphism. Then C(Y ) is contained in C(X ) and n ! C(X )
is contained in C(Y ), where n is the cardinality of the generic fibre of ,.

Proof. Let A and B be the coordinate rings of X, resp. Y. Then B can
be regarded as a subring of A via the pull-back map ,*. This implies
C(Y )/C(X ). Now for the second inclusion. By Lemma 4.3, it suffices to
show that n! C(X��N )/C(Y��N ). Recall that the finiteness of , means that
A is a B-module of rank n. By Satz 1 on p. 192 of [17], AN is a
BN-module of rank �n. This implies that every element a of AN satisfies
an equation P(a)=0, where P(t) is a monic polynomial of degree n in
BN[t]. Let a # AN be an element of weight * # 4*. I will show that BN

contains an element of weight k* for some k�n. There exist b0 , b1 , ..., bn&1

in BN such that an+bn&1an&1+ } } } +b1a+b0=0. Let k be the largest
number l such that bn&l {0. Then

ak+bn&1ak&1+ } } } +bn&k+1a+bn&k=0.

Because the action of H on BN is completely reducible, we may assume all
terms in this equation have the same weight. Then the weight of bn&k is
equal to the weight of ak, which is k*. K

Example 4.5. Let 1 be a finite group acting on X and suppose that
the actions of G and 1 commute. Let Y be the affine G-variety X�1. Then
the lemma shows that C(Y )/C(X ) and n ! C(X )/C(Y ), where n is the
cardinality of 1.

Remark 4.6. If , : X � Y is any surjective G-morphism of affine
G-varieties, then C(Y ) is a subset of C(X ).

Remark 4.7. Suppose that G is the direct product of two reductive
subgroups G1 and G2 . Then the monoid of dominant weights of G is simply
the product of the monoids of dominant weights of G1 and G2 , and the
positive Weyl chamber of G is the product of the positive Weyl chambers
of G1 and G2 . Moreover, every irreducible representation of G is a tensor
product of an irreducible representation of G1 and an irreducible represen-
tation of G2 . It follows that for every affine G1 -variety X1 and for every
affine G2 -variety X2 , C(X1_X2) is the product of C(X1) and C(X2).

Now take any equivariant algebraic closed embedding of X into some
representation space V. Such embeddings always exist; see e.g., [17]. Let
( } , } ) be a K-invariant Hermitian inner product on V and let |V be the
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symplectic form &Im( } , } ) . Denote by & }& the corresponding norm, and
by 8V the momentum map given by (2.2). Now attach a copy of the one-
dimensional trivial representation C to V. Then the projective space
P(V�C) carries a natural G-action, and the projective space PV can be
identified equivariantly with the hyperplane at infinity in P(V�C). By
(2.5), the momentum map on P(V�C) is given by

8P(V�C)([v, 1])=
8V (v)

?(1+&v&2)
=

- &1
2?

(!v, v)
1+&v&2 , (4.1)

where [v, 1] denotes the line through (v, 1). Denote by X� the closure of X
in P(V�C). Let X� be the divisor at infinity X� & PV in X� . The highest-
weight sets of X, X� and X� , are closely related. If X is irreducible, then
C(X ) is a submonoid of 4*+ , so we have the equalities

coneQ C(X )=hullQ C(X )=Q�0 } C(X ).

(See Section 2.2 for the notation.) Also, Q�0 } C(X� )=coneQ C(X� ), because
C(X� ) is Q-convex. As before, let X red

� denote the reduced variety associated
to X� . By Addendum 3.8, 2(X red

� ) is a union of convex polytopes, one for
each irreducible component of X red

� .

Theorem 4.8. Let X be an irreducible affine G-variety.

1. The highest-weight set of X� is the Q-convex hull of the highest-weight
set of X red

� and the origin in t*+ : C(X� )=hullQ(C(X red
� ) _ [0]);

2. the momentum polytope of X� is the convex hull of the momentum set
of X red

� and the origin in t*+ : 2(X� )=hull(2(X red
� ) _ [0]);

3. the highest-weight sets of X and X� span the same cone: coneQ

C(X )=coneQ C(X� ).

Proof. 1. First I show that

C(X� )=hullQ (C(X�) _ [0]). (4.2)

Let Z be the affine cone on X� and let Y be the affine cone on X� . Let
z : V_C � C be the projection onto the second factor and let f be the
restriction of z to Z. Then f can be regarded as an element of C[Z]1 and
as such it is an invariant, because G acts trivially on the second factor. The
coordinate ring of Y is equal to C[Z]�( f ). From the G-equivariant exact
sequence

( f )/�C[Z] �� C[Y ] (4.3)
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it is clear that every irreducible representation occurring in C[Y ]n also
occurs in C[Z]n . Therefore, C(X�)/C(X� ). Furthermore, C[Z]1 contains
the copy C[Z]0 f of the one-dimensional trivial representation, and so
0 # C(X� ). Consequently C(X� )#hullQ(C(X�) _ [0]). Conversely, from
(4.3) we see that if R** occurs in C[Z]n , then it occurs in either C[Z]n&1

or C[Y ]n . In other words, if *�n # C(X� ), then *�(n&1) # C(X� ) or
*�n # C(X�). This implies that every element of C(X� ) lies on the segment
joining an element of C(X�) to the origin. Thus, C(X� )/hullQ(C(X�) _
[0]). This proves (4.2).

To finish the proof of 1 it is enough to show that

C(X�)/hullQ(C(X red
� ) _ [0]).

I do this by showing that for every & # C(X�) there exists a rational q�1
such that q& # C(X red

� ). Let q be the largest rational number such that
+=q& # C(X�). Such a q exists by Addendum 3.10 and is clearly �1. There
exist g # C[Z]N

n and * # 4*+ such that +=*�n, g transforms according to
the weight ** under the action of T, and g is not in ( f ). I assert that g does
not vanish identically on Y. For if it did, then by the Nullstellensatz there
would exist l such that gl # ( f ). Write gl=hf m with h # C[Z] and m as
large as possible; then h � ( f ), so h+( f ) is a nonzero element of C[Y ]=
C[Z]�( f ). Since f is an invariant of degree one, the weight of h+( f ) is
equal to l* and its degree is nl&m. Therefore,

nlq&
nl&m

=
nl+

nl&m
=

l*
nl&m

# C(X�),

which contradicts the maximality of q. We conclude that g( y){0 for some
y in Y. This means that g represents a nonzero element of C[Y red], and
hence + # C(X red

� ).

2. This follows immediately from 1 and Theorem 3.7.

3. Note first that cone C(X� )=cone C(Z), because Z is the affine
cone on X� . Furthermore, the affine G-variety Z&Y is saturated in Z,
because Y is defined as the zero set of the invariant function f. Therefore,
C(Z&Y )=C(Z) by Lemma 4.2. Moreover, the G-equivariant map from
V�C to itself sending (x, t) to (tx, t) maps X_C_ isomorphically onto
Z&Y. It follows that C[Z&Y ] is isomorphic to C[X ]�C[ f, f &1] as a
G-algebra, where G acts trivially on C[ f, f &1]. This implies C(Z)=C(X ).
In sum, we have shown that cone C(X )=cone C(X� ). K

The proof shows that 2(X� ) is in fact equal to the join of 2(X red
� ) with

the origin in t*+ , that is, the union of all intervals joining points in 2(X red
� )

to the origin.
We now state the main result of this section.
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Theorem 4.9. For every G-stable irreducible closed affine subvariety X
of V the set 2(X ) is equal to cone C(X ). In particular, it is a rational convex
polyhedral cone.

Proof. Because the monoid C(X ) is finitely generated, it spans a
rational convex polyhedral cone in t*. To prove that 2(X )=cone C(X ) it
suffices to prove that

2(X )/cone C(X ); (4.4)

hull[*1 , ..., *k]/b 2(X ) for all b>0 and *1 , ..., *k in C(X ).

(4.5)

Proof of (4.4). By 4.1, 2(X ) is a subset of the cone on 2(X� ). By
Theorem 3.7, 2(X� ) is equal to the closure of C(X� ) in t*+ , so by 3 of
Theorem 4.8, the cone on 2(X� ) is equal to the convex hull of C(X ).
Consequently, 2(X ) is a subset of the convex hull of C(X ).

Proof of (4.5). Let b be any positive number, let + # t*+ and let Y be the
product V_K+ with symplectic form _=b|V+|+ and momentum map
9=b8V+@+ . I assert that

the momentum map 9 is admissible for all b>0 and + # t*+ . (4.6)

Assuming this for the moment, let us consider the trivial line bundle
OV=V_C on V with the Hermitian metric defined by the Gaussian
h(v)=exp(&?b &v&2). The curvature form of (OV , h) is &2? - &1 b|V .
Lift the K-action on V to OV by letting K act trivially on the fibre C. Then
the fibre metric is K-invariant, the K-invariant (or G-invariant) holo-
morphic sections of OV are just the G-invariant holomorphic functions on
V, and the associated momentum map is b8V .

Let us apply this to the special case +=�i ai +i , where the ai are
nonnegative numbers and the +i are in C(X ). Consider the varieties
Yi=V_K+i* , on which we have the line bundles Li=OV �O+i*

, symplectic
forms _i=b|V+|+i*

and momentum maps 9i=b8V+@+i*
. By (4.6), the

momentum map 9=�i ai pi*9i on Y=V_K+* is admissible for all b>0.
Moreover, by the definition of C(X ),

+i # C(X )

� there exists a G-equivariant linear surjection C[X ] � R+i

� there exists a nonzero G-invariant vector in C[X ]�R+i*

� there exists a nonzero G-invariant algebraic section of OX �O+i*
.
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Remark 3.5 now implies that for all b>0 the polytope hull[+1 , +2 , ..., +k]
is contained in b9(X ).

Proof of (4.6). After rescaling 9 we may assume that b=1. Let F(t, } )
be the flow of &grad |9 |2. We have to show that for every y in Y the
trajectory F(t, y) is contained in a compact subset of Y=V_K+. Since K+
is compact, we need only show that the projection of F(t, y) onto V is
contained in a compact subset of V. For any function u on Y, let gradV u
denote the component of grad u along V. Then using (3.2) we find for every
pair (v, ;) in Y

gradV |9(v, ;)|2=gradV |8V (v)+;|2

=gradV ( |8V (v)|2+2(8V (v), ;)+|+|2)

=gradV |8V (v)|2+2J;�
V, v .

This implies

(gradV |9(v, ;)|2, v) =4 |8V (v)| 2+2(v, J;�
V, v)

=4 |8V (v)|2+2(v, grad 8;�

V (v))

=4 |8V (v)|2+48;�

V (v)

=4 |8V (v)|2+4(8V (v), ;)

=4 }8V (v)+
;
2 }

2

&|+|2, (4.7)

where I have used the fact that 8! is homogeneous of degree two for all !
in k, and that |8V |2 is homogeneous of degree four. Now suppose (v, ;) is
a point where (gradV |9(v, ;)| 2, v) �0. Then it follows from (4.7) that
8V (v) is contained in the ball of radius |+|�2 about the point &;�2 # k*.
Therefore, 8V (v) is contained in the ball of radius |+| about the point &;.
In other words, |8V (v)+;|2�|+|2, that is, |9(v, ;)|2�|+|2. In short,

(gradV |9(v, ;)|2, v)�0 O |9(v, ;)|2�|+|2. (4.8)

Now let #(t) be the projection onto V of the trajectory F(t, (v, ;)) through
any point (v, ;) # V_K+. It follows from (4.8) that we have the following
two (non-exclusive) possibilities: (gradV |9(F(t, (v, ;)))|2, v)>0 for all
t>0, or |9(F(s, (v, ;)))|2�|+|2 for some s>0. In the first case, the curve
#(t) is trapped inside the ball of radius &v& about the origin in V. In the
second case, |9(F(t, (v, ;)))|2�|+|2 for all t�s, because |9 |2 is decreasing
along F(t, (v, ;)). This implies that |8V |2 (#(t))�4 |+|2 for all t�s.
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Moreover, #(t) is contained in the G-orbit through v. It now follows from
Lemma 4.10 below that #(t) is contained in a compact subset of V. K

The following lemma implies that for every point v in V the restriction
of 8V to the affine variety Gv is a proper map.

Lemma 4.10. For every bounded subset D of k* and for every bounded
subset B of V the intersection 8&1

V (D) & GB is a bounded subset of V.

Proof. Let B be any bounded subset of V. Let [g(n)]n�0 be a sequence
of elements of G, let [v(n)]n�0 be a sequence of vectors in B, and put
f (n)=&g(n) v(n)&2. Suppose that limn � � f (n)=�. We need to show that
the sequence [8V (g(n) v(n))]n�0 is unbounded. By the Cartan decomposi-
tion, G=K exp(- &1 t) K, so we can write g(n)=k(n) exp(- &1 !(n))
h(n), where k(n), h(n) # K and !(n) # t. Choose an orthonormal basis [ei]
of V with respect to which the T-action is diagonal. Then there exist ;i # t*
such that !ei=- &1 ;i (!) ei for all ! # t. Write h(n) v(n)=�i vi (n) ei and
\=sup[&v& : v # B]; then

|vi (n)|�\ for all i and n,

g(n)v=k(n) :
i

e;i (!(n))vi (n) ei ,

f (n)=:
i

e2;i (!(n)) |vi (n)| 2.

Consider the set I consisting of all i such that the sequence exp(2;i (!(n)))
|vi (n)|2 is unbounded. Then I is nonempty, because limn � � f (n)=�.
After replacing [g(n)] and [v(n)] by suitable subsequences we may assume
that

lim
n � �

e2;i (!(n)) |vi (n)|2=�

for all i # I. Then limn � � ;i (!(n))=� for all i # I, because |vi (n)| is
bounded. This implies there exists an ' # t with ;i (')>0 for all i # I. We
may assume ' has length 1. Then k(n)&1 ' has length 1, so

|8V (g(n) v)|2�|8k(n)&1 '(g(n) v)|2=|8'(exp(- &1 !(n)) h(n) v)|2. (4.9)

A straightforward computation using (2.3) shows that for all ' # t

8'(exp(- &1 !(n)) h(n) v)= 1
2 :

i

; i (') e2;i(!(n)) |vi (n)|2. (4.10)
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The vector ' was chosen in such a way that all unbounded terms in the
right-hand side of (4.10) tend to � for n � �. It now follows from (4.9)
that |8V (g(n) v)|2 tends to � for n � �. K

Corollary 4.11. The momentum cone of X is the cone over the momen-
tum polytope of the projectivization of X : 2(X )=cone 2(X� )=Q�0 } 2(X� ).

Proof. Combine Theorem 4.8.3 with Theorem 4.9. K

Corollary 4.12. The momentum cone of X is a closed subset of t*+ ,
and it does not depend on the embedding of X into the unitary K-module V.

Corollary 4.13. If X is normal, all fibres of the momentum map 8X

are connected.

Proof. The function |9 |2=|8V+@+ |2 is real-algebraic on Y=V_K+
and has therefore only finitely many critical levels. This implies that the
Morse decomposition of Y with respect to |9 |2 is finite. By the proof of
Theorem 4.9, the momentum map 9 is admissible. It now follows from the
results quoted in Section 2.5 that its zero level, which is K8&1

V (&+), is a
deformation retract of an open subset of V the complement of which is a
finite union of complex-analytic subsets of positive codimension. The same
holds with V replaced by X, because the flow of |9 |2 leaves X_K+
invariant. Since X is normal, the complement of a finite number of analytic
subsets is always connected. This implies that K8&1

X (&+), and hence
8&1

X (&+), are connected. K

Remark 4.14. The zero fibre 8&1
X (0) is connected regardless of whether

X is normal. The reason is that the function |8V |2 has only one critical
level, namely 0.

Corollary 4.15. Let Y be a saturated Zariski-open subvariety of X.
Then 2(Y )=2(X ).

Proof. Evidently, 2(Y ) is contained in 2(X ). For the reverse inclusion
it suffices to show that hull[*1 , ..., *k]/b 2(Y ) for all b>0 and *1 , ..., *k

in C(X ). The proof of this fact is a straightforward generalization of the
proof of (4.5). (Cf. Remark 3.5.) K

Example 4.16. Suppose the affine G-variety X is defined over the real
numbers in the sense that the complex G-algebra C[X ] is the complexi-
fication of a real K-algebra of finite type. Then complex conjugation defines
an antilinear involution on the G-module C[X ], so whenever an irredu-
cible representation R* occurs in C[X ], its contragredient representation
R** also occurs. It follows from this that the monoid C(X ) is invariant
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under the involution V : 4*+ � 4*+ . Therefore, by Theorem 4.9, the cone
2(X ) is invariant under the involution V : t*+ � t*+ . This can also be shown
directly as follows. We may assume the embedding of X into the G-module
V to be defined over the real numbers (in the sense that both V and the
G-morphism X � V are defined over the reals). Then X is invariant under
complex conjugation on V. From (2.2) one deduces immediately that
8!

V (v� )=&8!
V (v). Hence 8V (X )=&8V (X ), and therefore 2(X )*=

&w0 2(X )=2(X ).

Example 4.17 (Peter-Weyl). The group G is an affine variety in its own
right, and it acts on itself by left multiplication: Lgh= gh, and by right
multiplication: Rgh=hg&1. Consider the L_R-action of G_G on G.
Let us denote the highest-weight set of G for this action by C(G, L_R)
and the momentum cone (with respect to any algebraic G_G-equivariant
embedding of G into a unitary K_K-module) by 2(G, L_R). The monoid
of dominant weights of G_G is simply the product 4*+_4*+ and its
positive Weyl chamber is t*+ _t*+ . By the Peter-Weyl Theorem the
coordinate ring of G is a direct sum of irreducible G_G-modules: C[G]=
�* # 4*+

R* �R** . This implies that the highest-weight monoid C(G, L_R)
is equal to the subset [(*, **) : * # 4*+] of 4*+_4*+ . By Theorem 4.9, the
momentum cone 2(G, L_R) is therefore the ``anti-diagonal'' [(+, +*) :
+ # t*+] inside t*+_t*+ . Notice that this set is V -invariant as it should be,
because G is defined over the real numbers.

Example 4.18. We use the notation of the previous example. There are
three different embeddings of G into G_G: the maps i1(g)=(g, 1),
i2(g)=(1, g) and d(g)=(g, g). Pulling back the L_R-action via these
three embeddings yields three actions of G on itself: the actions L
(left multiplication), R (right multiplication) and C (conjugation). The
momentum maps for these actions are obtained by composing the
L_R-momentum map with the maps i*1 , i*2 and d*, respectively. Thus we
find that 2(G, L) and 2(G, R) are equal to the positive Weyl chamber, t*+ ,
and 2(G, C) is the positive Weyl chamber of the semisimple part of
K : 2(G, C)=t*+ & [k, k].

Example 4.19 (Gelfand's variety G��N ). The action L of G on itself
descends to an action of G on G��N. Every irreducible G-module occurs
exactly once in the coordinate ring R=C[G]N, so, once again, C(G��N )=
4*+ and 2(G��N )=t*+ .

We can embed G��N into affine space and compute the momentum
polytope of its projectivization. First assume G is semisimple and simply
connected. Then the algebra R is generated by the subspace E=�r

i=1 R?i
,

where ?1 , ?2 , ..., ?r are the fundamental weights of G and r is the rank of G.
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Choose a highest-weight vector vi in each of the R?i
. Consider the left-

G-equivariant map from G to E defined by sending the identity of G to the
vector v1 �v2 � } } } �vr . This map is right-N-equivariant, so it descends
to a map from G��N to E, which is by construction an embedding. Let us
identify G��N with its image in E. It is not hard to show that the subvariety
G��N is invariant under the standard C_-action on E, and the divisor at
infinity (G��N )� is therefore the quotient (G��N&[0])�C_. In other
words, G��N is the affine cone on (G��N )� . It now follows immediately
from Theorem 3.7 that the momentum polytope of (G��N )� (with respect
to any K-invariant inner product on E) is the r&1-dimensional simplex
spanned by the fundamental weights. By Theorem 4.8, the momentum
polytope of the projective closure of G��N is therefore the r-dimensional
simplex spanned by the fundamental weights and the origin in t*+ .

Now assume G is a torus of dimension k. Then the subgroup N is trivial
and so R=C[G] and G��N=G. Let `1 , `2 , ..., `k be a basis over Z of the
weight lattice 4*, and identify t* with Rk by sending this basis to the
standard basis in Rk. This choice of basis gives an identification of G with
the product (C_)k=[(t1 , t2 , ..., tk) : ti # C_]. A closed affine embedding of
G is given by sending (t1 , t2 , ..., tk) to (t1 , t&1

1 , t2 , t&1
2 , ..., tk , t&1

k ) # C2k.
The projective closure of G in P2k is a product of k copies of P1. The
divisor at infinity G� contains 2k fixed points for the action of G, whose
images under the momentum map are the points \`1\`2\ } } } \`k .
Theorem 4.8 now implies that the momentum polytope of the projective
closure of G is the parallelepiped spanned by these 2k points.

For an arbitrary connected reductive group G, the variety G��N can be
embedded into affine space in a similar way, by choosing a basis of the
monoid of highest weights. One can show that the momentum polytope of
the projective closure of G��N under such an embedding is the product
of the simplex spanned by the origin and the fundamental weights of [k, k],
and the parallelepiped spanned by the points \`1\`2\..., where the `i

are a basis of the weight lattice of z(k), the centre of k.

Example 4.20 (associated bundles). Let F be a reductive subgroup of
G and let Y be an affine F-variety. Consider the bundle X=G_F Y
associated to the principal fibration F � G � G�F. The action L of G on
itself induces a G-action on X. Also, X is an affine variety with coordinate
ring C[X ]=(C[G]�C[Y ])F. Note that if F 0 is the identity component
of F, there is a finite map G_F 0 Y � X, so 2(X )=2(G_F 0 Y ) by
Lemma 4.4. This means we may assume F to be connected. The categorical
quotient of X by N has coordinate ring C[X ]N=(C[G]�C[Y ])F_N,
which is isomorphic to (R�C[Y ])F, where R is the ring C[G]N, on which
F acts by left multiplication. By Lemma 4.3 and Theorem 4.9, the momen-
tum cone of X is therefore the convex cone spanned by the weights of the
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action of the maximal torus H on the algebra (R�C[Y ])F defined by
right multiplication on R. In general, this is hard to calculate explicitly.

Example 4.21 (tori). In the setting of the previous example, let us
assume that G=H is a torus, and let us write F=H1 . As noted above, we
may assume H1 to be connected. Then H1 is the complexification of a
subtorus T1 of T. We let T2 be the quotient T�T1 and identify it with a
complement of T1 in T, so that T$T1 _T2 . Put H2=(T2)C. Then
H$H1_H2 and

X=H_H1 Y$(H1_H2)_H1 Y=H2_(H1_H1 Y )=H2 _Y.

Therefore, by Remark 4.7,

C(X )$C(H2)_C(Y )=4*2_C(Y ),

where 4*2 is the weight lattice of H2 . Consequently, 2(X )$t*2_2(Y ).
(These identifications depend on the splitting H$H1_H2 . An invariant
way of stating these facts is: X is a trivial principal H2-bundle over Y ;
C(X ) is equal to the preimage of C(Y ) under the canonical projection
4* � 4*1 ; and 2(X ) is equal to the preimage of 2(Y ) under the canonical
projection t* � t*1 .) If Y is a vector space, then by (2.4), 2(X )$t*2 _
&cone[&1 , ..., &l], where &1 , ..., &l are the weights of the H1 -action on Y.

4.2. The Momentum Cone and E� tale Slices

Remarkably, the momentum cone 2(X ) of an affine G-variety X turns
out to be entirely determined by infinitesimal data at any point on a closed
G-orbit. I shall deduce this from Luna's e� tale slice theorem. First I discuss
a variation on Lemma 4.4.

Proposition 4.22. Let X and Y be affine G-varieties, let , : X � Y be a
G-morphism, let x be a point in X, and let y=,(x). Suppose that , has finite
fibres, that the image of , is open in Y, and that the orbits Gx and Gy are
closed. Then C(Y ) is contained in C(X ), and C(X ) is contained in the cone
on C(Y ).

Proof. The orbit Gy and the complement of ,(X ) are G-stable Zariski-
closed subsets of Y. Because G-invariant polynomial functions separate
G-stable Zariski-closed subsets, there exists an f # C[Y ]G that vanishes
outside ,(X ) and satisfies f ( y)=1. Let Y $=Yf and X $=,&1(Y ). Then X $
and Y $ are saturated affine open subsets of X, resp. Y, containing the orbits
Gx, resp. Gy, and the restriction of , to X $ is surjective onto Y $. Then
C(X $)=C(X ) and C(Y $)=C(Y ) by Lemma 4.2. We are therefore reduced
to proving that C(Y $)/C(X $) and C(X $)/cone C(Y $).

69CONVEXITY OF MOMENT MAPPING



File: DISTL2 173925 . By:AK . Date:11:08:98 . Time:09:21 LOP8M. V8.B. Page 01:01
Codes: 3452 Signs: 2521 . Length: 45 pic 0 pts, 190 mm

Let C be the integral closure of C[Y $] in C[X $], and let Z=Spec C.
By Luna's equivariant version of Zariski's Main Theorem ([23], part I),
the natural maps @ : X $ � Z and � : Z � Y $ have the following properties:
@ is an open immersion, � is a finite morphism, and ,=� b @. Also, � is
surjective, because , : X $ � Y $ is. Consequently, C(Y $)/C(Z) and C(Z)/
cone C(Y $) by Lemma 4.4. So if we can show that C(X $)=C(Z), we are
done. Let us identify X $ with its image @(X $) in Z. The orbit Gx/X $ is
closed in Z (cf. [23], p. 94): since Gy is closed in Y $ and � is finite,
�&1(Gy) is closed in Z and consists of a finite number of orbits, one of
which is Gx. The conclusion is that Gx and the complement of X $ in Z are
G-stable closed subsets of Z. This implies the existence of a G-invariant
h # C[Z] that vanishes outside X $ and satisfies h(x)=1. Then X $h is a
G-stable affine open subset of X $, and it is saturated as a subset of both X $
and Z. Hence, by Lemma 4.2, C(X $)=C(X $h)=C(Z). K

Theorem 4.23. Let X be an affine G-variety, let x be a point on a closed
G-orbit, and let Sx be an e� tale slice at x. Then the momentum cone of X is
equal to the momentum cone of G_Gx Sx . If x is a smooth point of X, then
2(X )=2(G_Gx Vx), where Vx is the tangent space to Sx at x.

Proof. By Luna's Etale Slice Theorem the natural map from the bundle
G_Gx Sx into X is e� tale and its image is Zariski-open. Furthermore the
G-orbits through the point [1, x] in G_Gx Sx and the point x in X are
closed. It now follows from Proposition 4.22 that C(X ) and C(G_Gx Sx)
span the same cone. Hence 2(X )=2(G_Gx Sx) by Theorem 4.9.

If x is a smooth point of X, we may assume the e� tale slice Sx to be
smooth, and there exists a Gx -equivariant e� tale morphism � : Sx � Vx with
Zariski-open image. The map � extends to a G-equivariant map G_Gx Sx

� G_Gx Vx , which is e� tale and has Zariski-open image as well. Again by
Proposition 4.22, C(G_Gx Sx) and C(G_Gx Sx) span the same cone. We
conclude that 2(X )=2(G_Gx Vx). K

Corollary 4.24. The cone on C(G_Gx Sx) is independent of the point
x. Here x ranges over the set of all points in X whose G-orbit are closed.

The following result is a necessary condition for the origin to be an
extreme point of 2(X ). Here [G, G] denotes the commutator subgroup of
G. Note that for every subgroup F of G, [G, G] F is a subgroup of G,
because [G, G] is normal. If F is a closed reductive subgroup, then so is
[G, G] F.

Theorem 4.25. Assume that 2(X ) is a proper cone. Then for every point
x such that Gx is closed the following condition holds: G=[G, G] Gx .
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Proof. Let x be any point such that Gx is closed. Let Y denote the
homogeneous space G�Gx and Z the homogeneous space G�[G, G] Gx .
Consider the maps

X �w
@ Y w�

{ Z,

where @ is the G-map sending the coset 1Gx to x and { is the canonical
projection. Clearly, 2(Y ) is a subset of 2(X ) and, by Remark 4.6 and
Theorem 4.9, 2(Z) is a subset of 2(Y ). Therefore, since 2(X ) is a proper
cone, so is 2(Z). On the other hand, the torus G�[G, G] acts transitively
on Z, so 2(Z) is a vector space. (Cf. Example 4.21.) We conclude that Z
is a point, in other words, G=[G, G] Gx . K

Note that if G is semisimple, the condition G=[G, G] Gx is void. This
is as it should be, because in this case the positive Weyl chamber t*+ is a
proper cone, so every cone contained in it is a proper cone.

5. STEIN VARIETIES

In this section I prove a convexity theorem for certain Stein K-varieties,
Theorem 5.4. It can be regarded as a local version of Theorem 4.9. The
results are far from optimal, but will be sufficient for our purposes. Let me
start with a number of elementary observations on Ka� hler potentials and
momentum maps.

Lemma 5.1. Suppose Y is a connected complex manifold and \ a strictly
plurisubharmonic function on Y. Let _ be the Ka� hler form - &1 � �� \ with
associated Riemannian metric ( } , } ) , and let � be the Hamiltonian vector
field of \. Then the vector field J�=grad \ is expanding: LJ�_=2_.

Proof. Let J : TY � TY denote the complex structure on Y and also the
transpose operator T*Y � T*Y. For all functions f,

�� f = 1
2 (d+- &1 Jd ) f

and (5.1)

dJ df =&2 - &1 d�� f =&2 - &1 ��� f.

Moreover, for all functions f and all tangent vectors ',

_(grad f, ')=&(grad f, J')=&df (J')=&J df ('),
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and therefore J df =&@grad f _. Together with (5.1) this implies that Lgrad \_
=d@grad \_=&dJ d\=2 - &1 ��� \=2_. K

Let me add to this that the vector fields � and J� are usually not
holomorphic.

The symplectic form on Y being exact, every symplectic action of K on
Y has a momentum map 9. It turns out that the flow of the vector field
&grad \ has the peculiar property that it pushes forward under 9 to a
flow on k*, which retracts the image of 9 exponentially to a single point
in z(k)*, where z(k) is the centre of k.

Proposition 5.2. Let Y and \ be as in Lemma 5.1. Suppose that K acts
holomorphically on Y, leaving \ invariant. Put :=&- &1 �� \ and 9 !=@!Y

:
for all ! # k. Let G(t, } )=Gt( } ) denote the flow of &J�=&grad \. Then

1. the functions 9! are the components of an equivariant momentum
map 9 for the K-action on Y with respect to the symplectic form _;

2. there exists a character c of k such that LJ�9=2(9+c) (cf. [10],
93). Therefore

Gt*9=e&2t9+(e&2t&1) c (5.2)

for all t such that Gt is defined. It follows that Gt maps fibres of 9 to fibres
of 9. Moreover, if Gt is defined for all t�0, then limt � � Gt*9 is the
constant map &c;

3. if c=0, then the critical set of \ is contained in the fibre 9&1(0).
The converse holds if \ has at least one critical point.

Proof. Note first that _=&d:. Further, since \ is K-invariant and K
acts holomorphically, : is K-invariant. Consequently,

d9!=d@!Y
:=L!Y

:&@!Y
d:=&@!Y

d:=@!Y
_,

so !Y is the Hamiltonian vector field of the function 9 !. An easy calcula-
tion shows that [9!, 9']=9[!, '], so 9 is K-equivariant. This proves 1.

Note that since � is the Hamiltonian vector field of the K-invariant func-
tion \, the induced vector field !Y commutes with � for all ! # k. Being
holomorphic, !Y therefore commutes with J� as well, so by 1

dLJ�9!=LJ� d9!=LJ� @!Y
_=(@[J�, !Y ]+@!Y

LJ�) _

=@!Y
LJ�_=@!Y

2_=2 d9 !.

This implies the function LJ�9 !&29! is a constant, say 2c(!), for all ! # k.
It is evidently linear in !. From the equivariance of 9 and the fact
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that [J�, !Y]=0 it is now easy to deduce that c([!, '])=0 for all !
and ' in k. This proves the first assertion in 2. Integrating the equation
LJ�9=2(9+c) yields (5.2). The last two assertions are obvious.

Assume c=0. Let y be a critical point of \. Then 2 implies that 29( y)=
(Lgrad \( y)9 )( y)=(L09)( y)=0, so y # 9 &1(0). Conversely, assume the
critical set of \ is nonempty and is contained in the fibre 9&1(0). Let y be
a critical point of \. Then from (5.2) we obtain

0=9( y)=9(G(t, y))=e&2t9( y)+(e&2t&1) c=(e&2t&1) c

for t�0, and so c=0. K

The set-up of this proposition is functorial in the following sense. Let Z
be a K-invariant closed complex submanifold of Y and let \Z=\|Z be the
restriction of \ to Z. Put :Z=&- &1 �� \, _Z=&d: and 9 !

Z=@!Z
:Z for

! # k. Then :Z=:| Z , _Z=_| Z and 9Z=9 |Z . Of course, the Hamiltonian
vector field �Z of \Z is not the restriction of � to Z, unless � happens to
be tangent to Z.

These observations apply to the pair of manifolds Y=V and Z=X,
where V is a G-representation space with a K-invariant inner product as in
Section 4, and X a G-stable closed nonsingular algebraic subvariety of V.
We take \ to be the function \(v)=&v&2�2. Clearly, _=- &1 ��� \ is the
standard symplectic form |V , 9 is the quadratic momentum map 8V given
by (2.3), and J�=grad \ is the radial vector field v ���v on V. The idea to
use the length function as a tool in invariant theory is due to Kempf and
Ness [12]. I shall frequently refer to their main result (see also [27]):

Theorem 5.3. For all v in V the following conditions are equivalent:

1. the orbit Gv is closed;

2. the restriction of \ to Gv has a stationary point;
3. Gv intersects the zero level set of the momentum map 8V .

If v is a stationary point of \|Gv , then: \|Gv takes on its minimum at v ; for
all w # Gv, \(w)=\(v) implies w # Kv ; and Gv=(Kv)C.

Note that grad \ is tangent to the subvariety X only if X is invariant
under the standard C_-action on V. Because X is closed, the restriction of
\ to X, \X , is a proper function, so the forward trajectories of &J�X=
&grad \X are bounded and the flow GX (t, } ) is defined for all t�0. Since
\X is real-analytic, limt � � GX (t, x) exists for all x in X. The properness of
\X implies that the the flow retracts the stable set of every critical level
continuously onto the critical set. (See Section 2.5.) Furthermore, \X

always has critical points, for example minima. If x is a critical point of \X ,
it is a critical point of the restriction of \X to the orbit Gx, and therefore
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8X (x)=0 by Theorem 5.3. Hence, the character c in Proposition 5.2 is 0,
so that

LJ�X
8X=28X and (GX)*t 8X=e&2t8X . (5.3)

Theorem 5.4. Let X be a G-stable closed nonsingular algebraic
subvariety of V. Suppose that \X has a unique critical level. Let U be a basis
of neighbourhoods (in the classical topology on X ) of the critical set of \X .
Then the sets 2(U ), where U # U, form a basis of neighbourhoods of the
vertex 0 of the momentum cone 2(X ). In particular, the cone spanned by
2(U ) is equal to 2(X ) for every U # U.

Proof. Let B= denote the closed ball of radius = about the origin in V
and let $=min[&x& : x # X] be the distance from X to the origin. The
assumption on \X implies that its only critical level is the global minimum,
$2�2. Therefore, the sets X & B= , where =>$, are a basis of neighbourhoods
of the critical set X & B$ of \X . So it suffices to prove that the sets
2(X & B=), where =>$, form a basis of neighbourhoods of the vertex 0 of
the momentum cone 2(X ). The proof has three parts: first I show that for
some =>$ the set 2(X & B=) is a neighbourhood of the vertex in 2(X ).
Then I show that the same is true for every =>$. Lastly, I prove that for
every ball D about the origin in k* there exists an =>$ such that
2(X & B=)/D.

Part 1. The flow GX extends to a deformation retraction

G� X : X_[0, �] � X (5.4)

of X onto the set X & B$ /8&1
X (0). Now take any '>$. Then for every x

in X the trajectory GX (t, x) is contained in B' for sufficiently large t.
Moreover, by (5.3), 8X (GX (t, x))=e&2t8X (x). This implies that

the cone spanned by 2(X & B') is the whole of 2(X ). (5.5)

Now consider the subset S=G } (X & B') of X. I assert that

for every x # S the affine variety Gx is contained in S. (5.6)

Indeed, take any x in S and any y in Gx. We have to show that y is in S.
Let Ft( } ) be the gradient flow of the function &|8V |2. The limit map F� =
limt � � Ft is continuous, it retracts S onto 8&1

X (0) & B' , and it retracts
Gx onto the K-orbit K(F� x)/B' . Moreover, \X is decreasing along the
flow lines, so the restriction of \X to Gx takes on its minimum at F�(x).
(See [25] and [27].) This implies F�( y) is in the K-orbit through F�(x).
There are two possibilities: either F�(x) is in the interior of the ball B' , or
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it is on the boundary. In the first case, the G-orbit Gy intersects the interior
of B' , so y # G } (X & B')=S. In the second case, since F�(x) is the point
closest to the origin on Gx and by assumption the orbit Gx intersects B' ,
we see that F�(x) lies on Gx. By Theorem 5.3 every G-orbit intersecting
8&1

V (0) is closed, and therefore y # Gx=Gx/S. This proves (5.6).
Next, I assert that

2(S )=2(X ). (5.7)

To see this, let * be any point in 2(X ). Then b* # 2(X & B') for some b>0
by (5.5). Take x # X & B' such that 8X (x)=b*. Then 2(Gx) contains the
ray through b* by Theorem 4.9. But Gx/S by 5.6, so * # 2(Gx)/2(S ).
This proves (5.7).

Now let D be any ball about the origin in k*. Then 8&1
V (D) & S is a

bounded subset of V by Lemma 4.10. This means we can find =>$ such
that the ball B= contains 8&1

V (D) & S=8&1
X (D) & S. Then 8X (X & B=)#

8X (8&1
X (D) & S ). By (5.7) above, 8X maps S surjectively onto 8X (X ),

and therefore 8X (8&1
X (D) & S )=D & 8X (X ). Consequently, 2(X & B=)

contains 2(X ) & D and is therefore a neighbourhood of the vertex in 2(X ).

Part 2. Suppose 2(X & B=) is a neighbourhood of the vertex in 2(X )
for a certain =>$. Then e&2t 2(X & B=) is a neighbourhood of the vertex
for all t. Choose an arbitrary =$ with $<=$<=. By the continuity of the
retraction (5.4) and the compactness of X & B= there exists a t such that
Gt(X & B=) is a subset of X & B=$ . So by (5.3), e&2t 2(X & B=)=
2(Gt(X & B=)) is a subset of 2(X & B=$), so 2(X & B=$) is a neighbourhood
of the vertex in 2(X ).

Part 3. Let D be any ball about the origin in k*. Take any =>$; then
there exists a t such that e&2 2(X & B=)=2(Gt(X & B=)) is contained in D.
Again by continuity and compactness, there exists an =$ with $<=$<= such
that X & B=$ /Gt(X & B=). But then 2(X & B=$) is contained in D. K

This proof gives no information on the shape of the set 2(X & B=) away
from the vertex. It seems not unlikely that 2(X & B=) is convex.

Example 5.5 (homogeneous vector bundles). Let L be a closed
subgroup of K and let F be the reductive subgroup LC of G. Let W be a
unitary L-module and let X=G_F W. There exists an orthogonal (real)
representation V1 of K containing a vector v0 with stabilizer Kv0

=L.
The map k [ kv0 therefore induces an embedding K�L � V1 . The
complexification of this map is an embedding of KC�LC=G�F into the
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unitary K-module V C
1 . There also exists an L-equivariant isometric embed-

ding of W into a unitary K-module V2 . Then the map X � V C
1 �V2

defined by [ g, w] [ gv0+ gw is a G-equivariant closed embedding of X
into V=V C

1 �V2 . (See Lemmas 1.16 and 1.18 of [29] for a proof of these
facts.) Let \(v)=&v&2�2, where & }& denotes the length function with respect
to the direct sum metric on V. Let us identify X with its image in V. Using
Theorem 5.3 one can easily show that \X has a unique critical level, which
is a minimum, and that the critical set is the compact orbit Kv0 . Hence, by
Theorem 5.4, the sets 2(U ), where U ranges over the neighbourhoods of
Kv0 in X, form a basis of neighbourhoods of the vertex of 2(X ).

Here is an example of a singular variety for which the conclusion of
Theorem 5.4 holds.

Example 5.6. Let F, W and X be as in the previous example, and let
Y be an F-invariant affine cone in W. Let X $ be the affine subvariety
G_F Y of the vector bundle X=G_F W and embed X into a G-module V
as in the previous example. Because Y/W is invariant under dilations, the
subvariety X $ is invariant under the gradient flow of \X . It follows that the
restriction of the flow GX to X $ retracts X $ onto the compact orbit Kv0 .
Exactly the same proof as that of Theorem 5.4 now shows that the sets
2(U$), where U$ ranges over the neighbourhoods of Kv0 in X $, form a basis
of neighbourhoods of the vertex of the cone 2(X $).

6. HAMILTONIAN ACTIONS AND CONVEXITY

In this section I explain how the previous, mainly algebro-geometric,
results can be generalized to arbitrary Hamiltonian actions. The basic idea
is that every symplectic manifold with a Hamiltonian K-action can locally
near every orbit in the zero fibre of the momentum map be identified with
a germ of a complex affine G-variety. I then state the main result of the
paper, Theorem 6.7. First recall the following standard definition.

Definition 6.1. Let M be a Hamiltonian K-manifold with momentum
map 8. For every + # k* the (Meyer�Marsden�Weinstein) reduced space or
symplectic quotient at level + is the space 8&1(K+)�K. It is denoted by
M+, K , or by M+ , if the group K is clear from the context.

By the results of [30], the symplectic quotient is a stratified space
carrying natural symplectic forms on the strata, which satisfy certain
compatibility conditions. For most + in k*, M+ is actually a symplectic
V-manifold.
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One application of symplectic reduction is the construction of ``local
models,'' which I now briefly explain. See [24] or [7] for details. Let +
be any vector in k* and let L be any closed subgroup of K+ . Let W be a
symplectic representation of L and let 8W be the standard quadratic
L-momentum map on W. Let z+ be the centre of k+ . Then the zero-weight
space in k under the adjoint action of z+ is exactly k+ , so k+ has a natural
k+ -invariant complement in k. This means that the principal fibre bundle
K+ � K � K+ comes equipped with a natural connection. Furthermore, the
Levi decomposition k+=z+ �[k+ , k+] shows that z+ is a direct summand of
k+ . We can therefore view z*+ as a subspace of k*+ and k*+ as a subspace of k*.
Under these natural identifications, + is an element of z*+ /k*+ .

The manifold K_k*+ carries a natural closed two-form (the minimal-
coupling form defined by the symplectic form on K+ and the connection on
K � K+), which is nondegenerate in a K-invariant neighbourhood of
K_[0]. Now consider the manifold X=K_k*+_T*K+_W and identify
T*K+ with K+_k*+ by means of left-translations. The action of K+_L on
X defined by

(k, l ) } (g, }, h, &, w)=(gk&1, k}, khl&1, l&, lw)

is Hamiltonian with momentum map 9 : X � k*+_l* given by

9(g, }, h, &, w)=(&}+h&, &&| l +8W (w)).

Definition 6.2. X(+, L, W )=9&1(&+, 0)�(K+_L) is the symplectic
quotient of X by the K+_L-action at the value (&+, 0) # k*+_l*.

It turns out that X(+, L, W ) is smooth. Consider the K-action on X
defined by left-multiplication on the first factor. It is Hamiltonian as well
and, moreover, it commutes with the K+ _L-action. It descends therefore
to a Hamiltonian K-action on X(+, L, W ). The easiest way to write the
K-momentum map on X(+, L, W ) is as follows. Put m=k+ �l. Choose an
L-invariant complement of l in k+ and identify it with m. Then m* is a
subspace of k*+ . The map . from the product K_m*_W to 9&1(&+, 0)
defined by

.(g, &, w)=(g, &+8W (w)++, 1, &+8W (w), w)

descends to a K-equivariant diffeomorphism

.� : K_L (m*_W ) � X(+, L, W ).

Via this diffeomorphism, the associated bundle K_L(m*_W ) acquires a
closed two-form that is symplectic in a neighbourhood of the zero section.
Note that the definition of .� depends only on the choice of a complement
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of l in k+ (which is equivalent to the choice of a connection on the principal
fibre bundle L � K � K�L). We shall henceforth identify X(+, L, W ) with
K_L (m*_W ) through .� . The K-momentum map on K_L (m*_W ) is
given by

8([ g, &, w])= g(&+8W (w)++). (6.1)

It is useful to consider the restriction of 8 to a K-invariant
neighbourhood of the point [1, 0, 0]. If we perform the reduction of X by
the K+_L-action in stages, first with respect to L and then with respect to
K+ , we see that X(+, L, W ) is an ``iterated'' associated bundle: it is a bundle

X(+, L, W )$K_K+ (K+_L (m*_W ))=K_K+ Y, (6.2)

over the coadjoint orbit K+$K�K+ with fibre the Hamiltonian K+ -space

Y=K+_L (m*_W ). (6.3)

The K+ -momentum map Y � k*+ is the restriction of 8 to Y. We can now
write 8 as the composition of two maps,

K_K+ Y � K_K+ k*+ w�
@

k*, (6.4)

the first of which is the unique bundle map extending the K+ -momentum
map on the fibre Y, and the second of which is defined by @([ g, &])= g&.

Recall that k*+ is a slice at + for the coadjoint action on k*: the restriction
of @ to a sufficiently small K-invariant open neighbourhood of [1, +] is a
K-equivariant embedding onto an open neighbourhood of +. This implies
that the restriction of 8 to a sufficiently small K-invariant neighbour-
hood U of [1, 0, 0] is a bundle map of associated bundles over K+.
Consequently, U & 8&1(k*+)=U & Y and the image 8(U ) is a bundle over
K+ with fibre 8(U & Y ).

If + happens to be in t*+ , then t* is a subset of k*+ , and t*+ is contained
in t*+, + , the positive Weyl chamber of k*+ . In fact, t*+, + & D=t*+ & D for a
sufficiently small neighbourhood D of + in k*. It follows from this that if
U is small enough

2(U)=8(U ) & t*+=8(U & Y ) & t*+=8(U & Y ) & t*+, +=2(U & Y ),

(6.5)

where 2(U & Y ) stands for the momentum set of U & Y considered as a
Hamiltonian K+ -space.

Now let M be an arbitrary Hamiltonian K-manifold with momentum
map 8. Marle [24] and Guillemin and Sternberg [7] have shown that
locally at any orbit M is isomorphic to some X(+, L, W ).
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Theorem 6.3 (symplectic slices). Let m be any point in M. Let L=Km

be the stabilizer of m, let +=8(m), and let

W=Tm(Km)|�(Tm(Km) & Tm(Km)|).

Then there exist a K-invariant neighbourhood U1 of m in M, a K-invariant
neighbourhood U2 of [1, 0, 0] in X(+, L, W ), and a map f : U1 � U2 with
the following properties: f is a K-equivariant symplectomorphism; f inter-
twines the momentum maps on U1 and U2 ; and f (m)=[1, 0, 0].

The symplectic vector space W is called the symplectic slice at m. Note
that in the situation of the theorem m is simply the tangent space to K+ m
at m. An immediate consequence of the theorem is that the germ at m of
8&1(k*+), called a local cross-section of M, is a smooth K+ -invariant
symplectic submanifold, because in the local model X(+, L, W ) it is equal
to the germ of Y=K+_L (m*_W ) at [1, 0, 0]. Furthermore, if m
has the property that +=8(m) # t*+ , then for any small K-invariant
neighbourhood U of m we have an equality of momentum sets

2(U)=2(U & 8&1(k*+)), (6.6)

because by (6.5) the same is true in the local model. An analogue of (6.6)
for projective varieties was proved by Brion (Proposition 4.1 in [3]).

Definition 6.4. Let m be any point in M. The local momentum cone at
m is the set 2m=++2(Ym). Here Ym is the complex affine (K+)C-variety
(K+)C_(Km)C W, with +=8(m) and with W being the symplectic slice at m
furnished with a compatible Km-invariant complex structure.

So 2m is a convex polyhedral cone with vertex + and is contained in
t*+, + , the positive Weyl chamber of K+ . Up to a translation by + it is a
rational cone.

From the symplectic slice theorem we deduce the following ``local''
convexity theorem.

Theorem 6.5. 1. For every m in M such that +=8(m) is contained in
t*+ and for every sufficiently small K-invariant neighbourhood U of m the
set 2(U ) is a neighbourhood of the vertex of the local momentum cone
2m /t*+, + . In particular, the cone with vertex + spanned by 2(U ) is equal to
2m ;

2. for every + # k* and for every connected component C of the fibre
8&1(+), the local momentum cone 2m is independent of the point m # C.
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Proof. 1. First we treat the case +=0. At points in the zero fibre of 8
there is an alternative local model for M as follows. Put F=LC=(Km)C

and choose an F-invariant compatible complex structure on the symplectic
slice W at m. Consider the affine G-variety Z=G_F W. Embed it into a
unitary K-module V as in Example 5.5, and regard it as a Hamiltonian
K-space with the symplectic structure and momentum map inherited from
V. The stabilizer of the point [1, 0] # Z under the K-action is equal to L.
The G-orbit through [1, 0] is closed, so by Theorem 5.3, [1, 0] is
contained in 8&1

Z (0). The symplectic slice at [1, 0] is simply the
(Hermitian) orthogonal complement to the G-orbit through [1, 0] and is
therefore equal to W. Theorem 6.3 now allows us to conclude that the
K-invariant germ of M at m is isomorphic as a Hamiltonian K-manifold to
the K-invariant germ of Z at [1, 0].

Putting this information together with Theorems 4.9 and 5.4 and
Example 5.5, we see that for every small K-invariant neighbourhood U of
m the set 2(U )=8(U ) & t*+ is a neighbourhood of the vertex of the cone
2m=2(G_F W).

If +{0, we may without loss of generality assume that + # t*+ , because
every K-orbit in k* intersects t*+ . This case can then be reduced to the
case +=0 by using (6.6) and shifting the K+ -momentum map on the space
Y in (6.3) by the vector &+. This shifted map is still an equivariant
K+ -momentum map, because + is in z*+ .

2. Again, it suffices to prove this for +=0. If M is an affine G-variety,
then by Theorem 5.3 the points in 8&1(0) are exactly those whose G-orbits
are closed. Corollary 4.24 then says that the local momentum cones 2m are
constant along the fibre 8&1(0). For general M, this argument combined
with the symplectic slice theorem shows that 2m is locally constant along
the fibre 8&1(0). K

Remark 6.6. It follows from the Cartan decomposition of G that
there exists a global K-equivariant diffeomorphism between the two local
models K_L (m*_W) and G_F W, but I don't know if there is a global
symplectomorphism.

The following generalization of Kirwan's convexity theorem [14] is the
main result of this paper. The first part describes 2(M ) as a locally finite
intersection of polyhedral cones, each of which is determined by local data
on M. (The fact that 2(M ) is a convex set when 8 is proper was also
proved in [11].) The second part is a necessary condition for a point to be
a vertex of 2(M ). It generalizes the well-known fact that for torus actions
vertices arise as images of fixed points. The third part states that the points
where this necessary condition is fulfilled form a discrete subset of t*+ .
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Theorem 6.7. Assume that the momentum map 8 : M � k* is proper.

1. 2(M) is the intersection of local momentum cones:

2(M )= ,
m # 8&1(t*+)

2m . (6.7)

This intersection is locally finite and therefore 2(M) is a closed convex
polyhedral subset of t*+ ;

2. if + is a vertex of 2(M) and m is any point in the fibre 8&1(+), then
k+=[k+ , k+]+km , or, equivalently, K+=[K+ , K+] Km . In particular, if + is
a vertex of 2(M ) lying in the interior of t*+ , then T fixes m;

3. let E be the subset of M consisting of all points m such that + # t*+
and k+=[k+ , k+]+km , where +=8(m). The image 8(E ) is a discrete subset
of t*+ . If M is compact, then 2(M ) is the convex hull of 8(E ).

Proof. 1. The assumption that 8 is proper implies that its image
8(M ) is closed and, by the argument outlined in Section 2.5, that its fibres
are connected. Consequently, by Theorem 6.5.2, for every + # 2(M) the
cone 2m is the same for all points m # 8&1(+). It is now easy to deduce
from Theorem 6.5.1 plus the fact that 8 is proper that for every + # 2(M )
there exists an open subset D of t* containing + such that

2(M ) & D=2m & D, (6.8)

where m is any point in the fibre 8&1(+). This means that 2(M ) is
locally convex. But every closed locally convex set is convex, so 2(M) is
convex. Since every closed convex set is the intersection of all closed cones
containing it, the equality (6.8) also implies (6.7). Furthermore, applying
Theorem 6.5 to the Hamiltonian K-manifold 8&1(D), we find that for
every +$ # D and every m$ # 8&1(+$) the local momentum cone 2m$ is equal
to the cone with vertex +$ spanned by 2m . Since 2m is a polyhedral cone,
it follows from this that as +$ ranges over D, only finitely many different
cones 2m$ can occur. In other words, the collection of cones appearing in
the intersection (6.7) is locally finite on t*+ . This means that 2(M ) is a
polyhedron.

2. This follows from (6.8) and Theorem 4.25 (applied to the group
G=(K+)C and the variety X=(K+)C_(Km)C W).

3. First I prove that 8(E ) is discrete. Since 8 is proper, it suffices to
show that every point m in M possesses a neighbourhood U such that
8(E & U ) is discrete. By the symplectic slice theorem, we may therefore
assume M is an affine variety. But it follows from Lemma 6.8 below that
for an affine G-variety the set 8(E) consists of the origin in t*+ only.
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Finally, the second statement in 3 follows immediately from 2 and the
fact that a compact convex set is the convex hull of its extreme points. K

Lemma 6.8. Let V be a unitary K-module and suppose that v # V satisfies
the condition K+=[K+ , K+] Kv , where +=8V (v). Then +=0.

Proof. We want to prove that +(!)=8!
V (v)=(- &1�2)(!v, v) =0 for

all ! # k. It suffices to show this for all ! # k+ . The condition on v says that
!=[/, `]+' for some /, ` # [k+ , k+] and ' # kv . Now 'v=0, so +(')=0;
and +(/, `)=+(ad /(`))=(ad* /) +(`)=0. We conclude that +(!)=0. K

Theorem 6.7 is clearly not optimal. As Theorem 4.9 shows, it is not
always necessary to assume that 8 is proper, nor even that M is non-
singular. See Section 7 for further examples of convexity for noncompact or
singular spaces.

On the other hand, the necessary condition 2 for a point to be mapped
to a vertex of 2(M) is optimal in the following sense.

Proposition 6.9. For every + # t*+ and for every closed subgroup L of
K+ such that K+=[K+ , K+] L, there exists a Hamiltonian K-manifold
(M, |, K, 8) with a point m # M satisfying the following properties: Km=L,
8(m)=+, and * is a vertex of 2(M ).

The proof will be given in Section 7.3.
Theorem 6.7.1 implies that for every + in 2(M ) the cone with vertex +

spanned by 2(M ) is equal to the local momentum cone 2m , where m is any
point in 8&1(+). In other words, the local shape of 2(M ) near + is
determined by the representation of the isotropy subgroup Km on the
symplectic slice W at m. Calculating 2m boils down to finding generators
for the monoid of highest weights of the homogeneous vector bundle
(K+)C_(Km)C W. If + is contained in the boundary of the positive Weyl
chamber, this is usually an arduous task. However, the situation is more
manageable if the fibre 8&1(+) contains a point m that is fixed under K+ .
This means that Km=K+ , or, equivalently, that the restriction of 8 to the
orbit Km is a symplectic isomorphism onto the coadjoint orbit K+. If this
is the case, the vector space m in the local model (6.2) is 0, so the tangent
space at m to the symplectic cross-section 8&1(k*+) is equal to the symplectic
slice W at m, and W is simply the symplectic orthogonal complement of
Tm(Km) inside TmM. In other words,

Tm(8&1(k*+))=W=Tm M�Tm(Km)$(Tm(Km))|. (6.9)

It follows that 2m=2(W), where W is regarded as a K+ -module. In some
examples this enables one to determine the entire momentum set 2(M); see
for instance Section 7.1.
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7. EXAMPLES

7.1. Actions on Projective Space

Let V be a finite-dimensional unitary K-module. If V is irreducible and
has highest weight *, it follows from (2.6) that the momentum polytope of
the projective space PV for the T-action is the convex hull of the Weyl
group orbit through **. Similarly, if *1 , *2 , ..., *k are the highest weights of
the irreducible submodules of V, then the T-momentum map image of PV
is the convex hull of the union of the W-orbits through *1*, **2 , ..., **k . This
implies 2(PV ) is a subset of

t*+ & hull(W*1* _ W**2 _ } } } _ W**k).

Arnal and Ludwig [1] and Wildberger [31] determined this subset for
``most'' V that are irreducible. I shall calculate 2(PV ) in some (but not all)
of the remaining cases.

For simplicity I assume K to be semisimple, although the results can
easily be generalized to arbitrary compact groups. Let 9 be the root system
of (k, t) and let g=�: # 9 CE: be the root space decomposition of g=kC.
The following result can be used to find a ``lower bound'' for the polytope
2(PV).

Lemma 7.1. 1. Let v be any vector in V and let [v] be the ray through
v. Then 8PV ([v]) # t* if and only if (E:v, v) =0 for all roots :.

2. Let v1 , ..., v l be weight vectors in V with weights &1 , ..., &l . Assume
that (E:vi , vj) =0 for all roots : and for all i and j with 1�i< j�l. (This
is for instance the case if for all i and j the difference &i&&j is not a root.)
Then the subspace spanned by v1 , ..., vl is contained in 8&1

V (t*), and the
intersection t*+ & hull[&1* , ..., &l*] is contained in 2(PV ).

Proof. 1. Let !:=E:&E&: and ':=- &1(E:+E&:). By (2.5), 8PV

([v]) # t* if and only if (!:v, v)=(': v, v) =0 for all roots :. Since E&:

(viewed as an operator on V) is the adjoint of E: , this is equivalent to
(E: v, v)=0 for all :.

2. Let W denote the linear span of the vi . Let : be any root. The
assumption implies (E: v, v)=0 whenever v is in W. It now follows from
1 that 8V (W) is contained in t*.

From this fact and from (2.5) we infer that

8PV (g[c1 v1+ } } } +clv l])=
|c1 |2 &1*+ } } } +|c l |

2 &l*
|c1 |2+ } } } +|cl |

2 ,
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where g is any element of the normalizer of T representing w0 # W. Hence
2(PV)=8PV (PV) & t*+ contains the set t*+ & hull[&1*, ..., &l*]. K

Put +$ =2+�(+, +) for any + in (tC)*. Let :1 , ..., :r be the simple roots of
k and ?1 , ..., ?r the corresponding fundamental weights, that is, the basis of
t* dual to :$ 1 , ..., :$ r . Then *=�r

i=1 (*, :$ i) ?i , where the coefficients (*, :$ i)
are nonnegative integers. The next result gives an upper bound for the
polytope 2(PV ) for irreducible V.

Proposition 7.2. Assume V is irreducible and has highest weight *. Let
6* be the set of weights of V that are not of the form *&: for any positive
root : such that (*, :$ )=1. Then 2(PV ) is contained in t*+ & hull 6 **.

Proof. Let v* be a highest-weight vector in V. It suffices to show that
the local momentum cone 2[v*] of PV at the point [v*] (see Definition 6.4)
is contained in the cone with vertex &* spanned by the set &6* . To this
end let us compute the tangent space to the symplectic cross-section at
[v*] and the weights of the T-action on it. The vector v* is an eigenvector
for K* , so K[v*]=K* . In view of (6.9) this implies that we have an
isomorphism of K* -modules

T[v*](8&1(k**))=W$T[v*](PV )�T[v*](K[v*]), (7.1)

W being the symplectic slice at [v*]. Define 6 to be the subset of the
weight lattice 4* consisting of 0 and of all weights occurring in W under
the action of the maximal torus T of K* . From (7.1) we get:

2[v*] / &(*+cone 6 ). (7.2)

(If * is strictly dominant, so that K*=T, then this inclusion is an equality.)
I assert that

cone 6=cone(&*+6*). (7.3)

Because of (7.2), this will finish the proof. Let V=�& # 4* V& be the weight
space decomposition of V and let C&* be the one-dimensional representa-
tion of K* defined by the character &* # z**. Then the quotient map
V&[0] � PV induces an isomorphism of K* -modules

T[v*](PV)$ �
& # 4*&[*]

V& �C&* . (7.4)

Since the maximal unipotent subgroup N fixes v* , the complex stabilizer
G[v*] is the parabolic subgroup P*=(K*)C N. This implies that the real

84 REYER SJAMAAR



File: DISTL2 173940 . By:AK . Date:11:08:98 . Time:09:22 LOP8M. V8.B. Page 01:01
Codes: 2909 Signs: 1880 . Length: 45 pic 0 pts, 190 mm

orbit K[v*] is equal to the complex orbit G[v*] and therefore we have
natural isomorphisms of complex K* -representations

T[v*](K[v*])$po
* $ �

(*, :){0
: # 9&

CE: , (7.5)

where po
* denotes the annihilator of p* in g*. (The second isomorphism is

induced by the Killing form on g.) Let 4r* /4* denote the root lattice of
the pair (k, t). There are two inclusions,

(4r*"9 &) & (&*+hull W*)/6/4r* & (&*+hull W*),

the second of which follows from (7.4) and the first of which follows from
(7.1) and (7.5). Moreover, by the definition of 6* , the same inclusions hold
with 6 replaced by &*+6* . Therefore, to establish (7.3), it suffices to
prove the following statement for every positive root :: if &: # 6, then
&: # &*+6* ; and if &: # &*+6* , then some multiple of &: is in 6.
There are three possibilities:

1. (*, :$ )=0. Then *&: is not a weight of V, so &: is contained in
neither 6 nor &*+6* .

2. (*, :$ )=1. Then *&: � 6* by definition. Also, *&: is a weight of
V with multiplicity one, so by (7.5) &: is not a weight of W, so &: � 6.

3. (*, :$ )=l>1. Then the weights *, *&:, ..., *&l: occur in V. Since
(*, :$ ){1, all these weights are also in 6* . The weight &: may or may not
occur in W (depending on whether the multiplicity of *&: in V is greater
than one), but at any rate &l: is a weight of W. We conclude that
&: # &*+6* and &l: # 6.

In sum, we have shown that 6/&*+6* and &*+6* /cone 6. This
proves (7.3). K

The following result follows easily from Lemma 7.1 and Proposition 7.2.

Proposition 7.3 ([1], [31]). Assume V is irreducible and has highest
weight *.

1. Suppose that (*, :$ i){1 for i=1, 2, ..., r. Then 2(PV )=t*+ &
hull W**;

2. if (*, :$ )=1 for some positive root :, then 2(PV) is not equal to
t*+ & hull W**.

3. 8PV (PV) & t* is convex if and only if (*, :$ i){1 for i=1, 2, ..., r.

If (*, :$ )=1 for some positive root :, Proposition 7.3 does not give an
explicit description of the polytope 2(PV ). Using Lemma 7.1 one can
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easily check that the upper bound given by Proposition 7.2 is sharp e.g., in
the following cases.

Proposition 7.4. The equality 2(PV)=t*+ & hull 6** holds if

1. K=SU(4) and *=?1 , ?2 , ?3 , or ?1+?2+?3 ;

2. K has rank two and * # t*+ is arbitrary.

Figures 1�3 illustrate Proposition 7.4. They show the convex hull of W**
and the polytope 2(PV ) (shaded). The intersection t*+ & hull W** is
indicated in light shading. The dominant weights occurring in V are
denoted by black circles. These are exactly the images of the T-fixed points
in PV intersected with t*+. Notice that few of the vertices on the walls of
t*+ arise as images of T-fixed points. In those cases where they are not
weights of V, the fundamental weights of k are indicated by black squares.

Finally, here is a generalization of Proposition 7.3 to reducible represen-
tations.

Proposition 7.5. 1. Let *1 , *2 , ..., *k be the highest weights of the
irreducible submodules of V. Suppose that (*j , :$ i){1 for all i and j. Then
2(PV)=t*+ & hull(W*1* _ W**2 _ } } } _ W**k).

2. Suppose V is the direct sum of at least r+1 copies of a unitary
irreducible representation with highest weight *, where r is the rank of K.
Then 2(PV )=t*+ & hull W**.

Proof 1. This is easy to deduce from Lemma 7.1 and Proposition 7.3.

2. Write V=�k
1 V$, where k>r and V$ is an irreducible module

with highest weight *. Clearly, 2(PV ) is a subset of t*+ & hull W**. The

FIG. 1. K=SU(3) and *=?1+2?2 .
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FIG. 2. K=G2 and *=?2 (highest weight of complexified adjoint representation, gC
2 ).

weight polytope hull W* has exactly r edges containing the vertex *. Let
&1 , &2 , ..., &r be the opposite endpoints of these edges. Choose weight
vectors v0 , v1 , ..., vr , each coming from a different copy of V$, and having
weights *, &1 , &2 , ..., &r , respectively. Since each copy of V$ is K-invariant
and they are all mutually orthogonal, (E: vi , vj)=0 for all roots :
and for all i and j with 0�i< j�r. Lemma 7.1 therefore tells us that
t*+ & hull[**, &1* , ..., &r*] is contained in 2(PV). Hence, 2(PV )=
t*+ & hull W**. K

7.2. Cotangent Bundles

Let Q be a connected K-manifold and let M be the cotangent bundle of
Q. Points in M will be written as pairs (q, p), where q # Q and p # T*q Q,
and tangent vectors to M as pairs ($q, $p), where $q # TqQ and $p #
Tp(T*qQ). The standard one-form : on M is the K-invariant form defined
by :(q, p)($q, $p)= p($q). The two-form |=&d: is symplectic, and the
lifted K-action on M is Hamiltonian with momentum map defined by 8!=
@!M

:, that is, 8!(q, p)= p(!Q, q). Clearly, 8 is homogeneous of degree one
in p, so 8&1(0) is a conical subset of M. In particular, 8 is not proper (not
even if Q is compact) and Theorem 6.7 does not apply. But the
homogeneity of 8 also implies that 2(M) is equal to the cone on 2(U ) for
any neighbourhood U of the zero section. In view of Theorem 6.5 this
means that 2(M)=2(q, 0) , where q is any point in Q. Furthermore,
8(M)=&8(M), so 2(M)=2(M)*. The symplectic slice W at (q, 0) to the
K-action on M is equal to T*V, where V is the slice TqQ�Tq(Kq) at q to
the K-action on Q. This implies that W=V+JV=VC for a suitable
Kq -invariant complex structure J on W, and so the variety G_(Kq)C W is
the complexification of the real-algebraic variety K_Kq V. We have proved:
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FIG. 3. K=SU(4) and *=?1+?2+?3= 1
2 �: # 9+ :. Vertices of 2(PV ) are ?1+?2+?3 ,

0, 2?1 , 2?2 , 2?3 , 4
3 ?1+?2 , 4

3?3+?2 , ?1+ 5
3 ?3 and 5

3 ?1+?3 .

Theorem 7.6. For every connected K-manifold Q, the set 2(T*Q) is a
rational convex polyhedral cone. It is invariant under the involution V and
equal to the momentum cone of the complexification of the K-variety
K_Kq V. Here V=TqQ�Tq(Kq) is the slice at an arbitrary point q # Q.

For instance, let L be a closed subgroup of K and let Q be the
homogeneous space K�L. Then the theorem says that 2(T*(K�L))=
2(G�LC).

7.3. Symplectic Quotients

Let M be a Hamiltonian K-manifold with momentum map 8 : M � k*.
Let L be a closed normal subgroup of K. Then M is a Hamiltonian L-space
with momentum map 8(L)=@* b 8 : M � l*, where @ is the inclusion of l
into k. Let K� be the Lie group K�L. The kernel of @* can be identified in
a natural way with k� *, the dual of the Lie algebra of K� . Let + be any point
in z(k)*, where z(k) denotes the centre of k. The symplectic quotient of M
at the level @*+ # z(l)* with respect to the L-action,

M@*+=M@*+, L=8&1
(L)(@*+)�L=8&1(++k� *)�L,
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is a stratified Hamiltonian K� -space. (Cf. [30].) A momentum map
8(K� ) : M@*+ � k� */k* for the K� -action on M@*+ is induced by the map
8&1(++k� *) � k� * sending m to 8(m)&+. (Up to a shift by an element of
z(k� )*, the map 8(K� ) only depends on the point @*+.) It is easy to calculate
2(M@*+) in terms of 2(M). Let T� be the maximal torus T�(T & L) of K� .
Then t� * is naturally isomorphic to t* & k� *, and the intersection
t� *+=t*+ & k� * is a Weyl chamber of the pair (K� , T� ). The following result is
now obvious (regardless of whether M@*+ is smooth or not).

Proposition 7.7. 2(M@*+)=(&++2(M)) & k� *. Therefore, if 2(M) is a
closed convex polyhedral subset of t*+ , then 2(M@*+) is a closed convex
polyhedral subset of t� *+ .

For example, consider the Hamiltonian K_K-space T*K$K_k* with
momentum map (k, &) [ (k&, &&). Let L be any closed subgroup of K. The
momentum map for the restriction of the action to K_L is (k, &) [
(k&, &&| l ). The symplectic quotient of T*K at level 0 with respect to the
normal subgroup [1]_L/K_L is isomorphic as a Hamiltonian K-space
to the cotangent bundle of the homogeneous space K�L. Proposition 7.7
tells us that the momentum map image of T*(K�L) is the set K[& : &| l =0],
and hence

2(T*(K�L))=K lo & t*+ , (7.6)

where lo is the annihilator of l in k*. (This can also be seen from the equality
2(T*(K�L))=2(G�LC) proven in Section 7.2 and the Peter�Weyl Theorem.)
Consequently, the set K lo & t*+ is a rational convex polyhedral cone.

Now assume that K is semisimple and take L to be the maximal torus
T. Kostant's convexity theorem [16] implies that Kto & t*+=t*+ . (Consider
the natural projection @*: k* � t*. Take any + # t*+ . By Kostant's theorem
the set @*(K+)/t* is equal to the convex hull of the Weyl group orbit
through +, which contains the origin in t*. Therefore K+ & to=K+ & ker @*
is not empty.) We conclude from (7.6) that 2(T*(K�T ))=t*+ .

More generally, take L to be the centralizer K_ of a wall _ of the Weyl
chamber t*+ . It is not difficult to see from the root space decomposition of
the pair (k, t) that K ko

_ & t*+ contains the ray through every dominant root
that is not perpendicular to the wall _. This is insufficient information to
determine 2(T*(K�K_)) in general, but if K is e.g., of type B2 or G2, then
this implies that 2(T*(K�K_))=t*+ for any wall _{[0]. If K=SU(n) and
_ is the one-dimensional wall spanned by either ?1 or ?n&1=?1* , one can
easily calculate by hand that 2(T*(K�K_))=K ko

_ & t*+ is equal to the ray
spanned by the maximal root :1+ } } } +:n&1=?1+?n&1 .

As another application of Proposition 7.7, I now give a proof of
Proposition 6.9. For any + # t*+ and for any closed subgroup L of K+ , let
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M be the space X(+, L, [0]), the local model of Definition 6.2 with trivial
symplectic slice W. By (6.2), M is the bundle over the coadjoint orbit K+
with fibre T*(K+�L) furnished with the minimal-coupling form. Put m=
k+ � l. Then m* is canonically isomorphic to the annihilator of l inside k*+ .
Clearly, the point m=(1, 0, 0) in K_L m*$M has the property that
Km=L and 8(m)=+. Also, the symplectic cross-section of M at m is just
the cotangent bundle T*(K+ �L) with its standard momentum map shifted by
+ # z*+ . By (7.6), the local momentum cone of M at m is therefore equal to

2m=++(K+m* & t*+, +), (7.7)

where t*+, + denotes the positive Weyl chamber of k+ . Now assume that
K+=[K+ , K+] L, or, in other words, k+=[k+ , k+]+l. Because of the
decomposition k*+=[k+ , k+]*�z*+ , this is equivalent to m* & z*+=[0], or:

K+ m* & z*+=[0]. (7.8)

Now the Weyl chamber t*+, + is the product of z*+ and the Weyl chamber of
the semisimple part, t*+, + & [k+ , k+]*, which is a proper cone. So the cone
K+ m* & t*+, + could only fail to be proper if K+m* contained a nontrivial
linear subspace of z*+ . But this is impossible because of (7.8). By (7.7), the
point 8(m) is therefore a vertex of 2(M). This completes the proof of
Proposition 6.9.
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