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Abstract 

Koko!ogiannaki, C.G., P.D. Siafarikas and C.B. Kouris, On the complex zeros of H,(z), J;(z), JJ’(z) for real 
or complex order, Journal of Computational and Applied Mathematics 40 (1992) 337-344. 

Propositions about the nonexistence of complex zeros of the functions H,(z) = (YJ~(z) + zI$z), J;(z), J:(z), 
where J;(z) and ./L(z) are the first two derivatives of the Bessel functions J,(z), for p in general complex, are 
proved. Bounds for the purely imaginary zeros of the above functions assuming their existence are given. Thus 
for the range of values for which these bounds are violated there are no purely imaginary zeros of the above 
functions. Finally, some known results from previous work are generalized in the present paper. 

Keywords: Mixed Bessel functions, zeros of derivatives of Bessel functions. 

1. Introduction 

Let JP( z) be the ordinary Bessel function of order p, JJ z) and J:(z) are the first and 
second derivatives of J,j z) and ZT$( z) = a$( z) + Z/J z), (X E C. 

The study of the above functions is motivated by several problems arising from the solution 
of the wave or the heat equation with appropriate boundary conditions and the fact that they 
are related to the zeros of many interesting mixed Bessel functions. 

Several methods have been used in order to study the properties of zeros of these functions. 
In this paper we use a method which has beeli presented in [2] and is baaed on the study of 
operators in an abstract Hilbert space and also the well-known Mittag-Leffler expansion [4, 
p.4971. 
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In the present paper we give some propositions about the nonexistence of complex zeros of 
the functions HP(z) , JL( z), J:( z 1, for I_C in general complex. We give also some bounds for the 
purely imaginary zeros of the above functions, assuming their existence. So, if the given 
inequalities do not hold, then there are no purely imaginary zeros of the above functions. These 
bounds for the purely imaginary zeros of HP(z) are 

P3 - 
2(cc, + l)l~+clI* 

Pl +a1 
9 -1 <p, < ---(xl, (1 1) . 

lP*l> 
l~+al~lCL+(YI*+2CC*(~*+~*) -IcL+d2 

lP*+~*I 
9 

p2 > m=(O, -02) or p, < min(O, -(yz}, (12) . 

where pl, pz, ply CL*, al, (x2 are the real and imaginary parts of the zeros, order and a! of 
H,(z), respectively. From (1.1) and (1.2) for al = cy2 = 0, we obtain the bounds (2.15) and (2.201, 
for the purely imaginary zeros of JL< z). 

For the measure of the purely imaginary zeros of JL( z) the following bounds are found: 

!/2 

IP*l> 
P;+b*I~~ 

2 1 9 p1=0, 
IP*I>lP*l(~-9, P1 =o, 

as well as the bounds (2.26) and (2.29), holding for complex p with pl > 
-l<pl< - +, p2 f 0, respectively. 

Some results of [3] are generalized in the present paper. 

2. Main results 

(1% . 

(14) . 

(15) . 
1, ~,#0 and 

First of all we note that &(z), JL< z) and J:(z) are particular cases of the function 

M,(z) = (pz’+a)J,(z) +d;(z). 

In [1,3] was proved that p f 0 is a zero of the function 

(b’+~)J,(z> +d;(z), (2 1) . 

if and only if there exists an element u f 0 in an abstract Hilbert space H, such that 

(Co + E)M - $T,u =’ - $*e, (2 2) . 

and 

(u, q) = - ((BP*+a)+Ti)? (2 3) . 
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where C, is the diagonal operator: C,-,en = ne,, n 2 1; and T,, = I/ + I/ *, V and I/ * being the 
shift operator with respect to the basis e, and the adjoint of V, respectively. From (2.2) and 
(2.3) we find 

2(C,u, u)+2~11~~1*-P(T0~, u)=PIpj4+(~+p)p2* (2 4) . 

Forp=p,+ip2,1L=~1+i~2, (Y = aI + ia, and p = & + ip2, equating the real and imaginary 
parts of (2.4), we obtain 

2(&u, u) + 2~~ 11 u II* -p,(T o~~~~=p11P14+~~~+Iu~~(P:-P~)+~P,P2~~2+~2~ 

(2 5) . 

and 

-2~~ II ~4 II* + P~(T ou,~)=pzIP14+(~2+~2)(P:-P:)-~P1P2~(y1+cL~~~ n (2 6) 

Since u = E;=l (u, e,)e,z, we find 

(C)u, u) > II u II29 (2 7) . 
and from (2.3) we get: 

II u II* > I(u, q)l’ = I PP* + a + I-C I*- 
We also know from [2]: 

(2 8) . 

I (Tou, u) I Q II To II II u iI2 = 2 II u l12. (2 9 . 

Multiplying both sides of (2.5) and (2.6) by p2 and pl, respectively, and adding, we get 

2P,(CoU7 4 + 2hP2 - /+PI) II u II2 = (PIP2 +P*PJ I P I4 

+ [(1u* + Ly2)PI - (I-9 + “AP21 I P I*- (2.10) 

Proposition 2.1. For p1 > max{ - 1, -al} and p2 > max{O, -(Y*} (or p2 < min{ -cy2, 0)) the 
fimction Hwc z) has no complex zeros in the second and fourth (or first and third 1 quadrants. 

Proof. For p2 f 0 aud & = & = 0 from (2.10) and due to (2.7) we have 

+lpl* 

[ 

(cL2+(y2)~ - (/A1 -Cal) 

P2 1 [ > PI 72: + l ll”l12* 1 (2.11) 

If p, 2 max(-a,, - 1) and p, > max{ --a*, 0}, p1p2 < 0 (or p2 < mint --a*, 01, PI P2 > 0)~ (2.11) 

does not hold, which proves the proposition. 0 

Proposition 2.2. For p = pu, + ip2, p2 > max{O, -(Y*) (or ~2 < min{O, -a,)) HP(Z) has no rea1 
zeros. 

Proof. From (2.6) for & = p2 = p2 = 0, we get 

-p, II u II2 = ;P:<a, + /4* 

If p2 > max(0, -(Y*} or p2 C min{O, -a*}, the above equation does not hold. 0 



C.G. Kokologiannaki et al. / Zeros oj’Besse1 jimctions 

Proposition 2.3. For p1 > - 1, p2 = 0, cy2 > 0 (or cy2 < 0) HP(z) has no complex zeros in the 
second and fourth (or first and third 1 quadrants. 

proof, The zeros of M*(z) satisfy the relation 

zJ,+*(z) w+a+p= J(z) 9 

cr 

as follows from 

@z’+cu)J,(z) +zJ;(z) =0 

and the well-known relation [4, p.451 

d;(z) =pJp(z) -tl;+*(z>= 

Because of the well-known Mittag-Leffler expansion [4, p.4971 

qL+*(z) 1 

J,cz) 
=2z2e __ 

1” _z2’ 
zf +j,,,, n=l,2 ,._, 

n=l Cc.n 

(2.12) becomes 

/3rZ+a+p=222~ -2 
1 

n=l fi.n I 
-22 l 

(2.12) 

(2.13) 

From (2.131, for p = 0, LY = QC~ + ia,, CL = p1 + ip2, z = p1 + ip, and equating the imaginary 
parts of the two members of (2.13;, we find 

+=4plp2 i 

-2 
1 

Cr’n 
-2 

n=i J I P-n 
_z212’ 

which does not hold for a2 > 0, p1 p2 < 0 or cy2 < 0, plp2 > 0, so the desired result is 
established. Also, from the last relation, we obtain that the function HP(z) cannot have purely 
imaginary zeros for p, > - 1, p2 = 0, cy2 z 0, a result which was proved in [3] by a different 
method. [7 

Proposition 2.4. For p = p, + ip,, Q! = cyl + icy2, 
HP( zl, if they exist, satisfy the relation 

- 1 < p 1 < -aI, the purely imaginary zeros og” 

Pf> - 
2(P*+1)I(Y+p12 

. 

Pl +a1 

(2.14) 

proof. This follows from (2.11) and (2.8) for p 1 = 0 and P = 0. •I 

&mark 2.5. (i) For ttl = a2 = 0, p = pl + ip,, - 1 C pl < 0, from (2.14) we obtain 

Pf> - 
2(/Q+ l)Iplf 

9 

Pl 
(2.15) 

for the purely imaginary zeros of J;(z), if they exist. 
(ii) For cy2 = p2 = 0, (2.14) gives the bound: pz > -2(pl + l)(pl +a,), found in [3]. 
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Proposition 2.6. For p2 > max{O, -(Ye) or p2 < min{O, 
Hp( z ), if they exist, satisfy the relation 

- (yz), the purely imaginary zeros of 

IP:l> 
-l~+CL12+I~+~l\lI~+CL)2+~CL2(~2+~2) 

I’y2+p2I 
. (2.16) 

Proof. From (2.6), for p2 = pl = 0, p2 # 0 and due to (2.9) we obtain 

-1+s< 
P2b2 + ff2) Pa 

<1+-. 
P2 2 II lJ II2 92 

(2.17) 

From (2.8) for p = 0, and from (2.17), we have: if p2 > 0, ~42 + a2 > 0 Of ~2 < 0, ~2 + a2 < 0, 

_1+c2<-_’ P2b2 + (yz) 

P2 21p+(Y12 ’ 

if p2>0, p2+cy2<Oorp2~0, p2+a2>0, 

l+S> 
P2b2 + Ly2) 

P2 21p+(Y12 * 

After some algebra, we get from (2.18): 

P2 ’ 

-I~Y+~~~+I(Y+~I;/~ +pi2+2p2(a2+/LL2) 

a2+1u2 
9 for p2 + cy2 > 0, 

(2.18) 

(2.19) 

P2 < 
-Icu+p12+I~+pIJI~+~12+2P2(~2+P2) 

ff2+p2 
? for p2 + a2 < 0. 

And from (2.19): 

P2 ’ 
Ia+~IZ-I~+~IJI~+CL12+~CL2(~2+~2) 

a2+P2 
7 for p2 + cy2 < 0, 

P2 < 

Ia+p12-Icf+d~I~+P12+2P2((Y2+P2) 

a2+P2 
9 for p2 + a2 > 0. 

Hence we have 

1 P2 I ’ 
-la+p12+I~+C11JI~+P12+&.4~2+ICL2) 

cu,+cL2 
9 for p2 + cy2 > 0, 

and 

I P2 I ’ 
I(Y+p12-ILy+cLIJI~+cL12+2p2(~2+P2) 

a2+w2 
9 for p2 + cx2 < Cl. 

From these inequalities we have the desired result. The discriminant is positive due to the 
conditions for p2. 0 
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Cordary 2.7. For ~1 = p1 + ipZ, p, c 0, the purely imagirzary zeros of JLt t ), if they exist, satis- 
the relation 

,p 
2 

,> Irll(!ld2+2& -IpI 

IP2I 

. (2.20) 

f. We make the assumption that pi < 0, because from (2.10) for p2 f 0, p1 = cyI = cy2 = & 
= fi3 = 0 and ~1~ 2 0, J,‘(z) cannot have purely imaginary zeros. We obtain (2.20) from (2.16) 
for & =cr,=O. q 

Rem 2.8. The bound (2.15) is sharper than (2.20) for ( - 2 - a;/(3 + a> < pl < 0, i.e., f?r 
-0.788 675 c p1 < 0. In fact, if we take the ratio of the quantities on the right-hand side of 
(2.15) and (2.201, we have 

A= 

or 

[-2-3”IP21 [-2--;7P21(y+ Id) 
t 

1/ld2+2& IpI-= 2& 

[ I( _I_- :,1 {Iz+l+12) 
AZ= 

2& 
. 

We have 

i 
(ljM2+2& +lPl)2 (fi+1)2p; =2+~ 

2c12, 
> a4 9 

-2-a 
if 

1 1 

3+fi 
<pl<O, then -l-->- 

PI 2+K 

(2.21) 

(2.22) 

MuhipIying (2.21) and (2.22), we find A2 > 1 and since A > 0, it follows that A > 1, which 
proves our assertion. 

On the contrary, for p1 + -1, cc, > - 1 and 1 p2 I not very small, obviously A2 < 1 and the 
bound (2.20) is sharper than (2.15). For example, for - 1 < pL1 < - 0.8, I p2 I 2 2.9, (2.20) is 
sharper than (2.15). 

Remark 2.9. From (2.15) and (2.20) we find that for p2 + +a, 1 p2 I---) 00. 

Proposition 2.10. For real y, 0 < p < 1, the function J:‘< z) has no complex zeros. 

hf. From the Bessel differential equation 

( z2 -p2)J,(r) +zJ’(z) = -z2J;(z), 
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we see that the zeros of J:(z) are the same as the zeros of (2.1) for /3 = 1 and CY = -p2. So, 
from (2.13), putting p = 1, p2 = 0, z =pr + ip2, pr, p2 z 0, cyl = -p2, cy2 = 0 and equating the 
real and imaginary parts, we have 

~-/L2+(p:-p;)=2(Pf-P:) i 
-2 

J 
I.r*n 

1 

n=l j2 I w &I2 
-21P14 i 

n=l I& -z21 
2’ (2.23) 

1 O” jjL -= E L- 

2 n=l j2 I 
-_iT 22’ 

CL*n I 

(2.24) 

From (2.23), because of (2.24) we obtain 

CL-+ -2]p14 e 
1 

n=l lj;,n -*y2 ’ 

which does not hold for 0 < p < 1. 0 

Proposition 2.11. For p2 = 0, - 1 < pl < - i, the purely imaginary zeros of JL( z), if they exikt, 
satisfy the inequality 

Ip 

2 

I> 2Pl(l -d,l” 
[ 1+&Q 1 l 

(2.25) 

proof. From (2.10) for pl = 1, aI = -&, p2 = cy2 = y2 = p1 = 0 and due to (2.7), (2.8) we have 

(1 + 2&P; - (Y1 - CL:)!3 + GAP; + 2(/h + I)(& - CL:y < 0. 

Since 2~~ + 1 < 0, from the above inequality follows (2.25). 0 

Remark 2.12. In the case p2 = 0, - i < pI < 0, in [3, p.1651 was proved that the function .!l(z) 
has no purely imaginary zeros. 

Proposition 2.13. For P = cc 1 + b2, ~1 > - 1, the purely imaginary zeros of Ji( d, if they afit, 
satisfy the inequality 

proof, From (2.10), (2.7) and (2.8) for pl - & = 0, PI = 1, a1 = & - dy cy2 = -2plp2 and if 
pl + 1 > 0, we obtain 

p;+(+&-fll)p;-2(&&l+ l)&(1-2CL1)2>2(l +Pl)(P;+d -&-PJ2. 
(2.27) 

Hence, 

Pii + (d - & -p&g - 2(p1+ q&(1 - 21(.l)2 ’ 09 

from which (2.26) follows. 0 
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Remark 2.111. For JL~ = 0 the inequality (2.26) becomes 

(2.28) 

Proposition 2.15. For p = pl + ip,, - 1 < pI < - $, the purely imaginary zeros of J$‘( 21, if they 
exist, satisfy the inequality 

Prl> 

[ 

- p;--p;- ( p&3 + 4p,) + Gi 

20 + 2h) 1 l’* 9 (2.29) 

where il is given by 

d = (~1 -P: + iu:)’ - 8(1+ &Ml + CL&~ - 2~1~2)~~ 

hf. For -l<pl< -& 4 is positive. and since 1 + 2~, < 0, the proposition follows from 
(2.2-D. 

Remark 2.16. For p2 = 0, (2.29) gives (2.25). Note that (2.29) is sharper than (2.26) but has 
narrower range of validity. 

hposition 2.17. For p = ip,, the purely imaginary zeros of J$ z), if they exist, satisfy the 
inequality 

IP*bI44(c3-1). (2.30) 

Proof, From (2.61, due to (2.9) and (2.81, and for p1 = pl = & = cy2 = 0, and & = 1, cyl = &, 
and proceeding as in the proof of Proposition 2.6 we have the desired inequality. 0 

Remark 2.18. The bound (2.261, for p1 = 0, is sharper than (2.30). 
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