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Abstract

The application of Adomian’s decomposition method to partial differential equations, when the exact solution is not reached,
demands the use of truncated series. But the solution’s series may have small convergence radius and the truncated series may be
inaccurate in many regions. In order to enlarge the convergence domain of the truncated series, Padé approximants (PAs) to the
Adomian’s series solution have been tested and applied to partial and ordinary differential equations, with good results. In this paper,
PAs, both in x and t directions, applied to the truncated series solution given by Adomian’s decomposition technique for Burgers
equation, are tested. Numerical and graphical illustrations show that this technique can improve the accuracy and enlarge the domain
of convergence of the solution. It is also shown in this paper, that the application of Adomian’s method to the ordinary differential
equations set arising from the discretization of the spatial derivatives by finite differences, the so-called method of lines, may reduce
the convergence domain of the solution’s series.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlinear phenomena play a crucial role in applied mathematics and physics, in mechanics and biology. Hence,
explicit solutions to the nonlinear equations are of fundamental importance to preserve the actual physical character of
the problem and to understand thoroughly the described process. In the open literature the advantages of the Adomian’s
decomposition method applied to many linear and nonlinear problems have been emphasized by many authors. Some
analytic procedures to solve nonlinear differential equations, linearize the system or assume that the nonlinearities are
relatively insignificant. However, this procedure may change the real solution of the mathematical model that represents
the physical reality, sometimes in a serious way. Generally, the numerical methods are based on discretization techniques,
and allow only for the calculation of the approximate solution for some values of time and space variables, exhibiting
therefore the disadvantage of leading us to overlook some important phenomena occurring in very small time and
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space intervals, such as chaos and bifurcations. Various methods for obtaining explicit solutions to nonlinear evolution
equations are described in the literature, such as the similarity methods, the generalized separation of variables, the tanh
method, the sine–cosine method, the Painlevé method, the Darboux transformation, the inverse scattering transform,
the Bäcklund transformation (like the Hopf–Cole transformation in the Burgers equation [41] and [29]) among others
[44,30,57].

Adomian’s method does not require discretization of the variables, and, therefore, it is not affected by errors associated
to discretization. Also, the decomposition method does not require linearization or perturbation and, consequently, does
not change the true solution of the problem, being very efficient on determining an approximate or even exact solution
in a closed form, for both linear and nonlinear problems [59–63,31].

Another advantage of the Adomian’s decomposition technique is on the provision of a rapidly convergent series,
attribute manifested by several authors [26,3–6,27,15], as it is only required a small number of terms to obtain an
approximation of the solution with high accuracy [45,32,25].

One can find in the literature, among others, applications to stochastic problems [14,9,34,35], ordinary differential
equations [39,58] partial differential equations, [66,48,42] and nonlinear equations [4,18,17,8,20] being the benefits of
Adomian’s method almost always emphasized. However, some embarrassment may appear that are not quite stressed.
The good results presented include exact Taylor series solutions identified from the truncated series. This is achieved
either because it is easy to identify the exact solution from the truncated series or because the real solution derived
by other methods is known in advance [67,46,47] or because the presence of the so-called noisy terms [62,46,47].
Otherwise, it would not be so straightforward the finding of such closed form solutions. Moreover, the solution’s series
may have small convergence radius and the truncated series solution may be inaccurate in some regions, as described
in [43,23,33,1,2]. Also, difficulties can still be encountered on the application of Adomian’s method to initial-boundary
value problems. These type of problems have been usually solved based only on the imposition of the initial conditions.
However, when initial and boundary conditions have to be imposed, the Adomian’s series may converge (or not) to a
solution with the wrong boundary conditions. To overcome this problem, Adomian [11] and Lesnic [51–53] proposed
a method to solve linear initial-boundary problems, with possible extensions to higher-dimensional, inhomogeneous
and nonlinear problems. Ngarhasta et al. [56], to solve some PDEs, suggest taking in account both initial and boundary
conditions in the canonical form, by choosing the first term of Adomian’s series verifying all conditions.

One way of improving the mathematical structure, gaining more information and enlarging the convergence domain
of the truncated series solution, is to define Padé approximants (PAs), converting the polynomial approximation into a
ratio of two polynomials, a rational function. Some examples applied to ordinary differential equations can be found
in [43,16,64,65] and more recently examples applied to partial differential equations [1,2]. Generally, PAs can enlarge
the convergence domain of the truncated Taylor series and improve the convergence rate of the truncated series [43].
PAs will also converge on the entire real axis if the function is free of real singularities.

Cheng et al. [23] in order to overcome the divergent difficulties arising from small convergence radius, suggested a
piecewise solution technique, by dividing the solution space into regions.

In El-Tawil et al. [33] the Adomian’s method approximated to the first two terms is applied to the matrix Riccati
differential equation in a recursive form, in n subintervals on the time horizon, which can be used to obtain the solution
for the whole time considered. The authors named the method, as the multistage Adomian’s decomposition method
(MADM), and justified it on the fact that the first two terms give a good approximation for the Riccati matrix equation,
only in the neighborhood of the initial time. The accuracy of the method can be increased either by choosing small
time intervals or by adding more terms [33].

In the present work, PAs are implemented to the series solution given by Adomian’s decomposition technique applied
to nonlinear partial differential equations, in particular to Burgers equation. Numerical and graphical illustrations show
that this technique can improve the convergence rate and enlarge the domain of convergence of the solution, even when
the actual solution cannot be expressed as the ratio of two polynomials. However a disadvantage can come through: the
rational approximation may create inaccurate solutions near its poles when the real solution is not a rational polynomial
function with respect to the variable considered in the Padé approximation.

Another way of trying to overcome the limitations of the small convergence radius of Adomian’s method, which
has not yet been tested, would be to develop a time analytical and spacial numerical method, approximating the
spatial derivatives by finite differences and then solve analytically the resulting set of ordinary differential equations
by applying Adomian’s decomposition method and PAs or by applying the MADM. However, it is shown in this paper,
that the application of Adomian’s method to the ordinary differential equations set arising from the discretization of
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the spatial derivatives by finite differences, the so-called method of lines, may reduce the convergence domain of the
solution’s series.

To illustrate these results the Burgers equation [21] is used, as this equation is one of the simplest unidimensional
nonlinear partial differential equations and one of the few nonlinear equations that admits analytic solution for arbitrary
initial conditions [41,29] and [68,36,37] having been used along the years to test numerical methods, the exact solution
serving as validation criterium. Such equation has also been used to explore ‘turbulence’ [21], in spite of the intrinsic
three-dimensionality of the phenomenon. The turbulence in Navier–Stokes equations is incorporated in the quadratic
term, nonlinear term of convection, and therefore Burgers equation can run as a starting point for the study of turbulence,
as it possesses a nonlinear quadratic term. Other phenomena as wave processes, traffic flow, acoustic transmission,
shocks and gas dynamics can also be studied starting from this equation [30,36,40].

2. Description of the method

For the sake of generality, the Adomian’s method is described as applied to a nonlinear differential equation Fu=g,
where F represents a nonlinear differential operator. The technique consists on decomposing the linear part of F into
L + R, where L is an operator easily invertible and R is the remaining part. Representing the nonlinear term by N , the
equation in canonical form is

Lu + Ru + Nu = g. (1)

Representing the inverse of the operator L as L−1, one gets the following equivalent equation:

L−1Lu = g − L−1Ru − L−1Nu. (2)

Being L the operator derivative of order n, one represents L−1 as the n-fold integration operator. Thus, L−1Lu=u+a,
where a is the term emerging from the integration and one gets

u = g − a − L−1Ru − L−1Nu. (3)

A series solution u =∑∞
n=0 un is looked for. Identifying u0 as g − a, the rest of the terms un, n > 0, will further be

settled by a recursive relation. The key of the method is to decompose the nonlinear term Nu in the equation (3), into
a particular series of polynomials Nu =∑∞

n=0 An, being An the so-called Adomian’s polynomials. Each polynomial
An depends only on u0, u1, . . . , un. Adomian introduced formulae to generate these polynomials for all kinds of
nonlinearities [15,12,10,13]. It has also been shown that the sum of the Adomian’s polynomials is a generalization of
the Taylor series in a neighborhood of a function u0 rather than a point

Nu =
∞∑

n=0

An =
∞∑

n=0

1

n! (u − u0)
nN(n)(u0) (4)

tending the general term of the series to zero very fast, as 1/(mq)!, according to the optimal choice of the initial term,
for m terms and q the order of the linear operator L [15] and [27].

Substituting u =∑∞
n=0 un and Nu =∑∞

n=0 An into Eq. (3) one gets

∞∑
n=0

un = g − a − L−1R

∞∑
n=0

un − L−1
∞∑

n=0

An. (5)

To determine the components un(x, t), n = 0, 1, 2, . . . , one can employ the recursive relation

u0 = g − a,

u1 = −L−1Ru0 − L−1A0,

u2 = −L−1Ru1 − L−1A1,
...

un+1 = −L−1Run − L−1An.
...

(6)
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Adomian’s polynomials were formally introduced in [26,3,12,10,13], and expressed as

An(u0, u1, . . . , un) = 1

n!

[
dn

d�n N

( ∞∑
i=0

�iui

)]
�=0

. (7)

This formula is obtained by introducing, for the sake of convenience, the parameter �, and writing

u(�) =
∞∑

n=0

�nun, (8)

N(u(�)) =
∞∑

n=0

�nAn. (9)

Expanding in a Taylor series N ◦ u in a neighborhood of � = 0 one gets

N(u(�)) =
∞∑

n=0

1

n!
[

dn

d�n N(u(�))

]
�=0

�n

=
∞∑

n=0

1

n!

[
dn

d�n N

( ∞∑
i=0

�iui

)]
�=0

�n (10)

from which Eq. (7) follows immediately.
Other methods have been developed for the calculation of Adomian’s polynomials An [3,5–7]. The next theorem,

Theorem 2.1 [3,22], allows the infinite series representing the Adomian’s polynomials, An, to be substituted by a finite
sum, fact that allows its computation.

Theorem 2.1. Adomian’s polynomials An may be computed by the formula

An = 1

n!

[
dn

d�n N

(
n∑

i=0

�iui

)]
�=0

. (11)

3. Convergence of Adomian’s decomposition method

The convergence of Adomian’s method has been subject of investigation by several authors [26,3–6,27] and
[24,28,54,38,19]. One important observation is that the series solution of Adomian’s decomposition technique usually
converges very fast to the exact solution, if there is only one, and to one of the solutions, if several exist, tending the
general term of the series solution to zero very fast, as 1/(mq)!, for m terms and the qth order of the linear operator L

[27,15].
Consider the Hilbert space H = L2((�, �) × [0, T ]) defined by the set of applications

u : (�, �) × [0, T ] → R with
∫

(�,�)×[0,T ]
u2(s, �) ds d� < + ∞. (12)

Consider the differential equation

Lu + Ru + Nu = g, (13)

with

T u = Ru + Nu. (14)
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For T hemicontinuous operator, consider the following hypothesis:

(H1) (T (u) − T (v), u − v)�k‖u − v‖2, k > 0, ∀u, v ∈ H

(H2) ∀M > 0, ∃C(M) > 0 : ‖u‖�M , ‖v‖�M 
⇒ (T (u) − T (v), w)�C(M)‖u − v‖‖w‖, ∀w ∈ H

If the above hypothesis are satisfied, the Adomian’s method is convergent [24,54,55]. These hypothesis applied to
Burgers equation can be verified using the same scheme of proof of [47,56,54,55,49].

Theorem 3.1 (sufficient condition of convergence). The Adomian’s decomposition method applied to the Burgers
equation

�u

�t
= −u

�u

�x
+ �

�2u

�x2 . (15)

without initial and boundary conditions, converges towards a particular solution.

Proof. For Eq. (15) let Lu = �u/�t , Ru = u(�u/�x) and Nu = −�(�2u/�x2). One has then:

T u = u
�u

�x
− �

�2u

�x2 . (16)

This operator T is hemicontinuous.
Verification of hypothesis H1:

T (u) − T (v) =
(

u
�u

�x
− v

�v

�x

)
− �

�2

�x2 (u − v)

= 1

2

�

�x
(u2 − v2) − �

�2

�x2 (u − v), (17)

(T (u) − T (v), u − v)

=
(

1

2

�

�x
(u2 − v2) − �

�2

�x2 (u − v), u − v

)

=
(

−�
�2

�x2 (u − v), u − v

)
+ 1

2

(
�

�x
(u2 − v2), u − v

)
. (18)

In addition, there exists �, � > 0 such that

(
− �2

�x2 (u − v), u − v

)
��‖u − v‖2, (19)

(
�

�x
(u2 − v2), u − v

)
��‖u + v‖‖u − v‖2 �2M�‖u − v‖2, (20)

where ‖u‖�M , ‖v‖�M .
Therefore,

(T (u) − T (v), u − v)�(�� − 2M�)‖u − v‖2 (21)

Setting k = �� − 2M� (with �� > 2M�), hypothesis H1 is verified.
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For hypothesis H2:

(T (u) − T (v), w) =
(

1

2

�

�x
(u2 − v2) − �

�2

�x2 (u − v), w

)

= 1

2

(
�

�x
(u2 − v2), w

)
+ �

(
− �2

�x2 (u − v), w

)

�M‖u − v‖‖w‖ + �‖u − v‖‖w‖
� (M + �) ‖u − v‖‖w‖ (22)

being C(M) = M + � and therefore hypothesis H2 is verified. �

4. Application of PAs to Burgers equation

Now PAs are tested and applied to the series solution given by Adomian’s decomposition technique for Burgers
equation. PAs are usually superior to Taylor expansions when functions contain poles, because the use of rational
functions allows them to be well represented. One will compute essentially the symmetric PA, because the diagonal
approximants are the most accurate one [64]. Numerical and graphical illustrations illustrate the study.

Consider Burgers equation (15) with the following initial and Dirichlet boundary conditions:

u(x, 0) = u0(x), (23)

u(0, t) = f0(t), u(1, t) = f1(t). (24)

Following Adomian, the linear operators expressed by Eqs. (25) are defined.

Lt(·) = �

�t
(·), Lxx(·) = �2

�x2 (·). (25)

Applying the inverse operator of Lt(·) = �
�t

(·), L−1
t (·) = ∫ t

0 (·) dt , to both sides of Eq. (15) one obtains

u(x, t) = u0(x) + L−1
t

(
−u

�u

�x
+ �

�2u

�x2

)
. (26)

According to Adomian’s method, one assumes that the unknown function u(x, t) can be expressed by an infinite sum
of components of the form

u(x, t) =
∞∑

n=0

un(x, t) (27)

and the nonlinear term u(�u/�x) into an infinite series of Adomian’s polynomials

u
�u

�x
=

∞∑
n=0

An. (28)

Substituting Eqs. (27) and (28) into Eq. (26) one obtains

∞∑
n=0

un = u0(x) + L−1
t

(
�

�2

�x2

∞∑
n=0

un −
∞∑

n=0

An

)
. (29)
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To determine the components of un(x, t), n = 0, 1, 2, . . . , Adomian’s technique can employ the recursive relation
defined by

u0 = u0(x),

u1 = L−1
t

(
�

�2

�x2 u0 − A0

)
,

u2 = L−1
t

(
�

�2

�x2 u1 − A1

)
,

...

un = L−1
t

(
�

�2

�x2 un−1 − An−1

)
.

...

(30)

The Adomian’s polynomials depend on the particular nonlinearity. In this case, the An polynomials are given by

A0 = u0
�

�x
u0,

A1 = u0
�

�x
u1 + u1

�

�x
u0,

A2 = u0
�

�x
u2 + u1

�

�x
u1 + u2

�

�x
u0,

A3 = u0
�

�x
u3 + u1

�

�x
u2 + u2

�

�x
u1 + u3

�

�x
u0.

...

(31)

Applying Adomian’s decomposition method in the x direction

u(x, t) = u(0, t) + x
�

�x
u(0, t) + 1

�
L−1

xx

[
�u

�t
+ u

�u

�x

]
, (32)

with L−1
xx (·) = ∫ x

0 dx′ ∫ x′
0 (·) dx′′. The series solution is given by

∞∑
n=0

un = u(0, t) + x
�

�x
u(0, t) + 1

�
L−1

xx

(
�

�t

∞∑
n=0

un +
∞∑

n=0

An

)
. (33)

To determine the components of un(x, t), n = 0, 1, 2, . . . , Adomian’s technique can define the following recursive
relation:

u0 = u(0, t) + x
�u

�x
(0, t),

u1 = 1

�
L−1

xx

[
�

�t
u0 + A0

]
,

u2 = 1

�
L−1

xx

[
�

�t
u1 + A1

]
,

...

un = 1

�
L−1

xx

[
�

�t
un−1 + An−1

]
.

...

(34)

In the following examples the truncated series solution �n(x, t) =∑n
k=0 uk(x, t) is considered.
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4.1. Example 1

Consider Burgers equation (15) with the particular initial and Dirichlet homogeneous boundary conditions given by

u0(x) = sin(	x), (35)

u(0, t) = u(1, t) = 0. (36)

The exact solution is given by [29]

u(x, t) = 4	�
∑∞

k=1 kI k(1/2	�) sin(k	x) exp(−k2	2�t)

I0(1/2	�) + 2
∑∞

k=1 Ik(1/2	�) cos(k	x) exp(−k2	2�t)
(37)

being Ik the modified Bessel functions of first kind.
Consider � = 1. For such � one can find, as an illustrative example, the first four terms of the Adomian’s series

solution:

u0 = sin(	x),

u1 = − sin(	x)(	 + cos(	x))	t ,

u2 = 1
2 sin(	x)(	2 + 6 cos(	x)	 + 3(cos(	x))2 − 1)	2t2

u3 = − 1
6 sin(	x)	3t3

[
28	2 cos(	x) + 	3 − 15	

+51(cos(	x))2	 + 16(cos(	x))3 − 10 cos(	x)
]

.

Figs. 1 and 2 show the results for the exact solution and the one obtained by application of Adomian’s method with
n = 10 and n = 14. Fig. 3 shows the three-dimensional plot for the solution obtained by Adomian’s method for n = 20.
One can see that the solution diverges for values of t greater than a value elsewhere between t = 0.03 and t = 0.04.

Figs. 4–6 show the results for the exact solution and the one obtained by application of PAs [5/5], [5/4] and [7/7]
to Adomian’s solution. Fig. 7 show the three-dimensional plot for the solution obtained by a [7/7] PA.

Tables 1 and 2 show the errors (difference between the exact solution and the approximate solution) for the solution
given by Adomian’s method with n = 14, and for the solution modified by PA [7/7].

The more accurate solution and the improved region of convergence is patent by using PAs. However, a drawback
of using PAs that can be clearly seen in Fig. 4 and also in Fig. 6, occur due to the existence of poles in the rational
approximation.

4.2. Example 2

Consider Burgers equation (15) with initial and boundary conditions given by

u(x, 1) = x − 	 tanh
(	x

2�

)
, (38)

u(0, t) = 0,
�

�x
u(0, t) = 1

t
− 	2

2�t2 . (39)

The exact solution is

u(x, t) = x

t
− 	

t
tanh

( 	x

2�t

)
. (40)
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Fig. 1. Example 1: results obtained for the exact solution (dashed line) and the one obtained by application of Adomian’s method (solid line) with
n = 10.
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Fig. 2. Example 1: results obtained for the exact solution (dashed line) and the one obtained by application of Adomian’s method (solid line) with
n = 14.
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Fig. 3. Example 1: three-dimensional plot for the solution obtained by Adomian’s method for n = 20.

This example was worked by [50]. By Adomian’s decomposition method applied in the x direction, the solution is
given by

u(x, t) = u(0, t) + x
�

�x
u(0, t) + 1

�
L−1

xx

[
�u

�t
+ u

�u

�x

]
(41)

being L−1
xx (·) = ∫ x

0 dx′ ∫ x′
0 (·) dx′′.

So, as performed in [50] one obtains

u0 = x

t
− x	2

2� t2 ,

u1 = 	4x3

24�3t4
,

u2 = − 	6x5

240�5t6
,

u3 = 17	8x7

40320�7t8
,

u4 = − 31	10x9

725760�9t10
.

The series obtained is the Taylor expansion of the real solution (40) around x = 0.
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Fig. 4. Example 1: results obtained for the exact solution (dashed line) and the one obtained by application of a Padé approximant [5/5] to Adomian’s
series solution (solid line).
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Fig. 5. Example 1: results obtained for the exact solution (dashed line) and the one obtained by application of a Padé approximant [5/4] to Adomian’s
series solution (solid line).
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Fig. 6. Example 1: results obtained for the exact solution (dashed line) and the one obtained by application of a Padé approximant [7/7] to Adomian’s
series solution (solid line).
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Fig. 7. Example 1: three-dimensional plot for the solution obtained by application of a Padé approximant [7/7] to Adomian’s series solution.

The expansion of the function tanh(x) being

tanh(x) =
∞∑

n=1

B2n

4n(4n − 1)

(2n)! x2n−1, |x| < 	

2
(42)
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Table 1
Example 1: errors, differences between the exact solution and the approximate solution given by Adomian’s method with n = 14

ti\xj 0.05 0.15 0.25 0.35 0.45

0.1 −7.51745E − 12 8.46701E − 13 4.91018E − 12 −4.38956E − 12 4.50247E − 13
0.2 −1.98818E − 07 1.75001E − 08 1.35282E − 07 −1.15055E − 07 6.11515E − 09
0.3 −7.30473E − 05 5.18810E − 06 5.09930E − 05 −4.18427E − 05 7.06584E − 07
0.4 −4.71039E − 03 2.75777E − 04 3.34633E − 03 −2.67247E − 03 −2.88965E − 05
0.5 −1.17644E − 01 5.76254E − 03 8.46449E − 02 −6.61789E − 02 −2.16060E − 03
0.6 −1.61678E + 00 6.69537E − 02 1.17453E + 00 −9.02702E − 01 −4.54042E − 02
0.7 −1.47351E + 01 5.19643E − 01 1.07855E + 01 −8.17325E + 00 −5.30109E − 01

ti\xj 0.55 0.65 0.75 0.85 0.95

0.1 1.54630E − 12 −8.34916E − 13 −1.34394E − 13 2.16168E − 13 1.83671E − 14
0.2 4.43314E − 08 −2.12349E − 08 −5.21332E − 09 6.05034E − 09 9.07751E − 10
0.3 1.70554E − 05 −7.46111E − 06 −2.35344E − 06 2.27028E − 06 4.52373E − 07
0.4 1.13185E − 03 −4.60881E − 04 −1.72366E − 04 1.47078E − 04 3.49075E − 05
0.5 2.88133E − 02 −1.10676E − 02 −4.68945E − 03 3.66155E − 03 9.79461E − 04
0.6 4.01285E − 01 −1.46841E − 01 −6.84936E − 02 4.99722E − 02 1.45870E − 02
0.7 3.69265E + 00 −1.29695E + 00 −6.53125E − 01 4.51534E − 01 1.40891E − 01

Table 2
Example 1: errors, differences between the exact solution and the approximate solution given by application of a Padé approximant [7/7] toAdomian’s
series solution

ti\xj 0.05 0.15 0.25 0.35 0.45

0.1 7.72079E − 17 4.15110E − 16 −4.60375E − 15 1.85715E − 15 −3.08566E − 15
0.2 6.64533E − 13 2.97967E − 12 4.79233E − 11 1.15523E − 11 −2.68941E − 11
0.3 8.83448E − 11 3.53281E − 10 2.15023E − 09 1.18129E − 09 −3.97138E − 09
0.4 2.24271E − 09 8.27523E − 09 3.44407E − 08 2.41130E − 08 −1.24531E − 07
0.5 2.35585E − 08 8.18779E − 08 2.72689E − 07 2.11025E − 07 −1.92525E − 06
0.6 1.43608E − 07 4.76656E − 07 1.36455E − 06 1.10350E − 06 −2.77392E − 05
0.7 6.06647E − 07 1.94200E − 06 4.97574E − 06 4.09749E − 06 2.09511E − 04
0.8 1.97133E − 06 6.13120E − 06 1.44267E − 05 1.19450E − 05 1.68476E − 04
1.0 1.20971E − 05 3.60752E − 05 7.51463E − 05 6.19395E − 05 3.97112E − 04
1.5 1.90141E − 04 5.37610E − 04 9.53013E − 04 7.69280E − 04 2.52636E − 03
2.0 8.60069E − 04 2.38495E − 03 3.93444E − 03 3.15794E − 03 7.90138E − 03
3.0 3.99455E − 03 1.09768E − 02 1.71344E − 02 1.38859E − 02 2.73590E − 02
4.0 8.34046E − 03 2.29107E − 02 3.50999E − 02 2.87099E − 02 5.12215E − 02

ti\xj 0.55 0.65 0.75 0.85 0.95

0.1 3.12547E − 15 4.52255E − 16 −4.48250E − 16 −9.95009E − 16 −8.52856E − 15
0.2 1.51485E − 11 2.45257E − 12 −2.64229E − 12 −8.25245E − 12 6.56919E − 11
0.3 1.28440E − 09 2.10130E − 10 −2.48538E − 10 −1.00155E − 09 3.02544E − 09
0.4 2.25029E − 08 3.53289E − 09 −4.64875E − 09 −2.28691E − 08 4.31081E − 08
0.5 1.73013E − 07 2.51916E − 08 −3.75399E − 08 −2.17176E − 07 2.93990E − 07
0.6 8.08725E − 07 1.06053E − 07 −1.83231E − 07 −1.21422E − 06 1.25877E − 06
0.7 2.72097E − 06 3.11320E − 07 −6.43426E − 07 −4.79189E − 06 3.94343E − 06
0.8 7.26666E − 06 6.96330E − 07 −1.79757E − 06 −1.48379E − 05 9.91050E − 06
1.0 3.24437E − 05 1.73659E − 06 −8.88349E − 06 −8.77082E − 05 4.00941E − 05
1.5 3.05102E − 04 −2.56678E − 05 −1.14953E − 04 −1.73076E − 03 3.24537E − 04
2.0 1.01625E − 03 −2.84541E − 04 −5.55498E − 04 −1.69520E − 02 1.02811E − 03
3.0 3.04366E − 03 −2.95330E − 03 −3.65196E − 03 6.38294E − 02 3.43774E − 03
4.0 3.77849E − 03 −1.00792E − 02 −1.08112E − 02 6.11860E − 02 6.22718E − 03
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Table 3
Example 2: the true results obtained for the error between the exact solution and the one obtained by application of Adomian’s method with n = 20

ti\xj 0.01 0.02 0.03 0.04 0.05

0.1 2.00000E + 01 7.03687E + 13 1.31303E + 21 1.82050E + 26 1.74903E + 30
0.2 1.81899E − 12 1.00000E + 01 2.29652E + 08 3.51844E + 13 3.56543E + 17
0.3 3.65567E − 20 2.47351E − 07 6.66667E + 00 1.13138E + 06 1.22236E + 10
0.4 1.21644E − 25 9.09495E − 13 2.71528E − 05 5.00000E + 00 5.73412E + 04
0.5 6.76623E − 30 5.33595E − 17 1.69846E − 09 3.31983E − 04 4.00000E + 00

one gets for the real solution (40) expanded in Taylor series around x = 0:

x

t
− 	

t
tanh

( 	x

2�t

)
= x

t
−

∞∑
n=1

B2n

4n(4n − 1)

(2n)!
(	

t

)2n( x

2�

)2n−1
, |x| < �t (43)

where Bn are the Bernoulli numbers. This expansion coincides with the one obtained by Adomian’s method

x

t
− 	

t
tanh

( 	x

2�t

)
= x

t
− 	2x

2�t2 + 	4

24�3t4
x3 − 	6

240�5t6
x5

+ 17	8

40320�7t8
x7 − 31	10

725760�9t10
x9 + · · · . (44)

Keeping this in mind, one can conclude that the Adomian’s truncated series solution is only a good approximation
for the real solution when |x| < �t , diverging for all other values of x and t . Representing the truncated series solution
by �n = ∑n

k=0 uk , the numerical comparison for � = 0.1, performed in [50] for the truncated series �20 given by
Adomian’s method with the analytical solution (40) is not accurate. For this value of �, one should have 10x < t and the
values taken by those authors were 0.1� ti �0.5 and 0.01�xj �0.05. Table 3 shows the precise results obtained for
the error between the exact solution and the one obtained by application of Adomian’s method with n=20, for �=0.1.
For the majority of those values one can see that the solution diverges. In order to be accurate, the values presented
in [50] should obey to the relation max xj < � min ti , that is, those authors may have performed their calculations for
� > 0.5.

Consider again � = 0.1. Fig. 8 shows the results obtained for the exact solution and the one obtained by application
of Adomian’s method with n = 20. Fig. 9 shows the results obtained for the exact solution and the one obtained by
application of PA [10/10] to Adomian’s series solution. The results obtained for the error between the exact solution
and the one obtained by application of PA [10/10] to Adomian’s series solution are shown in Table 4. The more accurate
solution and the improved region of convergence is patent by using PAs.

4.3. Example 3

Consider once more Burgers equation (15) with the following particular initial and boundary conditions:

u(x, 1) = x

1 + ex2/4�
, (45)

u(0, t) = 0, u(1, t) = 1

t (1 + √
te1/4�t )

. (46)

The exact solution, which can be verified by direct substitution in Burgers equation (15), is

u(x, t) = x

t (1 + √
tex2/4�t )

. (47)

Consider � = 0.1. Figs. 10 and 11 show the three-dimensional results for the solution obtained by application of
Adomian’s method with n = 10 and the one obtained by application of a PA [3/3] to Adomian’s series solution.
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Table 4
Example 2: results obtained for the error between the exact solution and the one obtained by application of a Padé approximant [10/10] to Adomian’s
series solution

ti\xj 0.01 0.02 0.03 0.04 0.05

0.1 −7.80799E − 15 −1.08753E − 09 −4.15470E − 07 −1.63449E − 05 −1.99498E − 04
0.2 −5.74753E − 21 −3.66689E − 15 −4.69991E − 12 −5.09706E − 10 −1.48886E − 08
0.3 −9.38304E − 25 −1.03846E − 18 −2.24700E − 15 −3.82994E − 13 −1.66668E − 11
0.4 −1.65326E − 27 −2.34680E − 21 −6.73391E − 18 −1.49469E − 15 −8.24634E − 14
0.5 −1.06739E − 29 −1.72494E − 23 −5.83936E − 20 −1.53467E − 17 −9.92477E − 16

ti\xj 0.06 0.07 0.08 0.09 0.10

0.1 −1.22003E − 03 −4.78901E − 03 −1.39084E − 02 −3.26205E − 02 −6.54008E − 02
0.2 −1.94092E − 07 −1.47243E − 06 −7.60301E − 06 −2.95326E − 05 −9.23204E − 05
0.3 −3.11483E − 10 −3.28583E − 09 −2.29811E − 08 −1.18092E − 07 −4.77972E − 07
0.4 −1.91039E − 12 −2.45529E − 11 −2.06381E − 10 −1.26007E − 09 −5.99905E − 09
0.5 −2.66083E − 14 −3.91240E − 13 −3.72707E − 12 −2.55932E − 11 −1.36165E − 10

ti\xj 0.11 0.12 0.13 0.14 0.15

0.1 −1.16485E − 01 −1.89345E − 01 −2.86389E − 01 −4.08878E − 01 −5.56990E − 01
0.2 −2.43553E − 04 −5.61274E − 04 −1.15936E − 03 −2.18899E − 03 −3.83582E − 03
0.3 −1.60074E − 06 −4.59913E − 06 −1.16494E − 05 −2.65664E − 05 −5.54553E − 05
0.4 −2.34166E − 08 −7.77501E − 08 −2.25780E − 07 −5.85883E − 07 −1.38180E − 06
0.5 −5.90685E − 10 −2.16882E − 09 −6.93288E − 09 −1.97193E − 08 −5.07715E − 08
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Fig. 10. Example 3: three-dimensional plot, for t = 0.3 to t = 2, for the solution obtained by Adomian’s method for n = 10.

The symmetric PA correspondent to n = 10 is a [5/5] PA, but the much too demanding computation associated to it
led one to use instead the less demanding [3/3] PA.

Table 5 shows the results obtained for the error between exact solution and the one obtained by application of
Adomian’s method with n = 10. The results obtained for the error between the exact solution and the one obtained by
application of PA [3/3] to Adomian’s series solution is shown in Table 6.
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Fig. 11. Example 3: three-dimensional plot, for t = 0.3 to t = 3, for the solution obtained by application of a Padé approximant [3/3] to Adomian’s
series solution.

Table 5
Example 3: results obtained for the error between the exact solution and the one obtained by application of Adomian’s method with n = 10

ti\xj 0.1 0.2 0.3 0.4 0.5

0.1 2.43833E − 01 2.61487E − 01 −1.53871E − 01 −4.21187E − 01 −9.57961E − 02
0.3 5.14780E − 03 7.11723E − 03 1.86708E − 03 −9.74435E − 03 −1.25352E − 02
0.5 7.61650E − 05 1.09543E − 04 4.59579E − 05 −1.20577E − 04 −2.16753E − 04
0.7 1.97159E − 07 2.88136E − 07 1.39259E − 07 −2.78553E − 07 −5.76015E − 07
0.9 8.64972E − 13 1.27512E − 12 6.60120E − 13 −1.13337E − 12 −2.53511E − 12
1.1 −7.07303E − 13 −1.04838E − 12 −5.65256E − 13 8.78828E − 13 2.06821E − 12
1.3 −1.05975E − 07 −1.57665E − 07 −8.73234E − 08 1.26589E − 07 3.08767E − 07
1.5 −2.53072E − 05 −3.77535E − 05 −2.13128E − 05 2.93269E − 05 7.34644E − 05
1.7 −9.04018E − 04 −1.35142E − 03 −7.73855E − 04 1.02270E − 03 2.61537E − 03
1.9 −1.28341E − 02 −1.92170E − 02 −1.11263E − 02 1.42377E − 02 3.70166E − 02

ti\xj 0.6 0.7 0.8 0.9 1.0

0.1 2.59384E − 01 2.08289E − 01 −5.01249E − 02 −1.33354E − 01 −4.61523E − 02
0.3 3.31525E − 03 1.34845E − 02 3.18653E − 03 −6.41433E − 03 −4.46725E − 03
0.5 −2.30201E − 05 2.22107E − 04 1.22349E − 04 −9.01966E − 05 −1.03979E − 04
0.7 −1.59242E − 07 5.48580E − 07 4.25550E − 07 −1.80266E − 07 −3.14395E − 07
0.9 −9.40572E − 13 2.25722E − 12 2.11536E − 12 −5.71407E − 13 −1.45578E − 12
1.1 8.89948E − 13 −1.74225E − 12 −1.84047E − 12 3.25633E − 13 1.20793E − 12
1.3 1.45327E − 07 −2.48709E − 07 −2.85370E − 07 3.25616E − 08 1.80701E − 07
1.5 3.67200E − 05 −5.70584E − 05 −6.95540E − 05 4.79428E − 06 4.28002E − 05
1.7 1.36483E − 03 −1.97130E − 03 −2.51681E − 03 8.79493E − 05 1.51269E − 03
1.9 1.99534E − 02 −2.72113E − 02 −3.60346E − 02 3.06051E − 04 2.12348E − 02

The most accurate solution and the improved region of convergence is patent by using PAs in spite of the comparison
being performed between a [3/3] PA and the series solution with n = 10. Only for small values of time t and in the
neighborhoods of x = 0.8 this is not true, because of the appearance of poles in the solution near x = 0.8, as it is shown
in Figs. 11 and 12.



944 M. Basto et al. / Journal of Computational and Applied Mathematics 206 (2007) 927–949

Table 6
Example 3: results obtained for the error between the exact solution and the one obtained by application of a Padé approximant [3/3] to Adomian’s
series solution

ti\xj 0.1 0.2 0.3 0.4 0.5

0.1 −8.60461E − 03 −4.13796E − 02 −1.79268E − 01 −2.61018E − 02 2.20208E − 01
0.3 −4.73900E − 05 −1.66618E − 04 −8.16442E − 04 −8.71155E − 04 1.31269E − 03
0.5 −6.84560E − 07 −2.13900E − 06 −8.94407E − 06 −1.08418E − 05 8.03014E − 06
0.7 −4.94078E − 09 −1.44641E − 08 −5.37449E − 08 −6.72593E − 08 2.37770E − 08
0.9 −7.70704E − 13 −2.16225E − 12 −7.37029E − 12 −9.34334E − 12 1.14841E − 12
1.1 3.13951E − 13 8.54371E − 13 2.72755E − 12 3.48157E − 12 1.06377E − 13
1.3 3.16534E − 10 8.41686E − 10 2.55197E − 09 3.27169E − 09 4.60525E − 10
1.5 5.71408E − 09 1.49182E − 08 4.33790E − 08 5.57863E − 08 1.25124E − 08
1.7 3.26833E − 08 8.40620E − 08 2.36098E − 07 3.04354E − 07 8.83149E − 08
1.9 1.09029E − 07 2.76943E − 07 7.55334E − 07 9.75586E − 07 3.35335E − 07
3.0 2.69059E − 06 6.53941E − 06 1.60435E − 05 2.08624E − 05 1.09247E − 05
4.0 9.42320E − 06 2.23926E − 05 5.19886E − 05 6.78483E − 05 4.14633E − 05
6.0 3.26520E − 05 7.56064E − 05 1.64632E − 04 2.15799E − 04 1.53060E − 04

ti\xj 0.6 0.7 0.8 0.9 1.0

0.1 2.26184E − 01 1.75848E − 01 2.57468E − 01 −2.01302E − 01 −6.01716E − 02
0.3 6.15424E − 03 1.41896E − 02 1.73301E + 00 −1.00293E − 02 −6.03234E − 03
0.5 8.59361E − 05 4.13946E − 04 −7.93718E − 04 −2.41646E − 04 −2.11008E − 04
0.7 5.15066E − 07 4.31281E − 06 −3.70338E − 06 −1.84955E − 06 −1.98855E − 06
0.9 6.75362E − 11 9.98495E − 10 −4.20469E − 10 −2.64645E − 10 −3.20265E − 10
1.1 −2.38213E − 11 −8.06939E − 10 1.31928E − 10 9.47361E − 11 1.22714E − 10
1.3 −2.13499E − 08 1.13939E − 05 1.06848E − 07 8.33902E − 08 1.12384E − 07
1.5 −3.49795E − 07 1.19630E − 05 1.60163E − 06 1.32262E − 06 1.82453E − 06
1.7 −1.84535E − 06 3.42814E − 05 7.81115E − 06 6.71618E − 06 9.39248E − 06
1.9 −5.74947E − 06 7.53380E − 05 2.26973E − 05 2.01117E − 05 2.83473E − 05
3.0 −1.11354E − 04 6.34877E − 04 3.33750E − 04 3.21491E − 04 4.55076E − 04
4.0 −3.45297E − 04 1.42551E − 03 8.85082E − 04 8.79852E − 04 1.23382E − 03
6.0 −1.04284E − 03 3.08856E − 03 2.21164E − 03 2.26387E − 03 3.11921E − 03

5. The method of lines

Another possible way of trying to bypass the small convergence radius of Adomian’s method would be to develop
a time analytical and space numerical method, approximating the spatial derivatives by finite differences and then
solve analytically the resulting set of ordinary differential equations by applying Adomian’s decomposition method
and PAs or by applying the MADM. It is shown herein, illustrated by an example, that the application of Adomian’s
method to the ordinary differential equations set arising from the discretization of the spatial derivatives by finite
differences, may reduce the convergence domain of the solution’s series, and therefore the above bypassing approach
becomes useless. Actually, the convergence radius of the series solution may decrease with the number of discretization
points, and, although the numerical results obtained by application of PAs to the Adominan’s series solution enlarge
the convergence domain, this improvement also decreases with the number of spatial discretization points.

Consider Burgers equation (15) with initial and Dirichlet boundary conditions given by

u(x, 0) = sin(	x), (48)

u(0, t) = u(1, t) = 0. (49)

Consider a uniform grid with �x = xj+1 − xj , and approximate the first and second spatial derivatives by the
difference schemes of second order

�u

�x
= uj+1 − uj−1

2�x
, (50)
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Fig. 12. Example 3: Zeros and poles for the solution obtained by application of a Padé approximant [3/3] to Adomian’s series solution.

�2u

�x2 = uj+1 + uj−1 − 2uj

�x2 . (51)

By applying the finite differences (50) and (51) to Burgers equation (15) with initial and boundary conditions (48)
and (49), one gets for N − 1 points the following equation:

�uj

�t
= 1

2�x
(ujuj−1 − ujuj+1) + �

�x2 (uj+1 + uj−1 − 2uj ).

1 < j < N − 1 (52)

or, in conservative form:

�uj

�t
= 1

4�x
(u2

j−1 − u2
j+1) + �

�x2 (uj+1 + uj−1 − 2uj ), 1 < j < N − 1. (53)

Adomian’s polynomials are given, respectively, by (the superscript of u represents the spatial discretization):

A
,j
n = 1

n!

[
dn

d�n

(
n∑

i=0

�iu
j
i

)(
n∑

i=0

�iu
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i

)]
�=0

, (54)
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n!
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d�n

(
n∑

i=0

�iu
j
i

)(
n∑

i=0

�iu
j
i

)]
�=0

. (55)

Consider � = 1. For the solution given by Adomian’s method with n = 20 applied to system (53) with initial and
boundary conditions given by Eqs. (48) and (49), for different values of N , considering the convergence radius r(N)

the largest value of t for which the difference for all of the considered points, between the exact values of the solution
given by (37) and the ones obtained by the truncated series applied to the discretized system (53), is inferior to 10−2,
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Table 7
Experimental convergence radius in function of the number of subintervals

N r(N) N r(N)

20 0.013575 100 0.000563
30 0.006024 200 0.000137
40 0.003461 300 0.000062
50 0.002307 400 0.000034
70 0.001161 500 0.000021

one obtains the values showed in Table 7. One can see that the convergence radius r(N) and/or the rate of convergence
of the series solution, decreases with the number of subintervals N . The conclusions applied to system (52) are similar.

This behavior is not due to the dimension of the system, but it seems to be related to the way the series solution of
Adomian’s method is constructed. To determine the components u

j
n(x, t), n=0, 1, 2, . . . , j =1, 2, . . . , N −1, applied

to system (53), Adomian’s technique employs the recursive relation defined by

u
j
0 = u(xj , 0),

u
j
1 = ∫ t

0

(
1

4�x

[
A

j−1
0 − A

j+1
0

]
+ �

�x2

[
u

j+1
0 + u

j−1
0 − 2u

j
0

])
,

u
j
2 = ∫ t

0

(
1

4�x

[
A

j−1
1 − A

j+1
1

]
+ �

�x2

[
u

j+1
1 + u

j−1
1 − 2u

j
1

])
,

...

u
j
n = ∫ t

0

(
1

4�x
[Aj−1

n−1 − A
j+1
n−1] + �

�x2 [uj+1
n−1 + u

j−1
n−1 − 2u

j
n−1]

)
.

...

(56)

For the purpose of clarity, the solution for n = 2 of the ith equation written in terms of the zero’s term of Adomian’s
series solution (the subscript zero has been omitted), is

2∑
k=0

ui
k =

[
1

2
ui+2 + 3ui + 1

2
ui−2 − 2ui−1 − 2ui+1

]
t2 �2

�x4

+
[
−1

2
u2

i+2 − ui+1ui + 3u2
i+1 − ui+1ui+2

+ui−1ui − 3u2
i−1 + ui−1ui−2 + 1

2
u2

i−2

]
t2

4

�

�x3

+ [16ui+1 + 16ui−1 − 32ui] t

16

�

�x2

+ [ui+1u
2
i+2 − ui+1u

2
i − ui−1u

2
i + ui−1u

2
i−2]

t2

16

1

�x2

+ [u2
i−1 − u2

i+1]
t

4

1

�x
+ ui . (57)

Increasing the number of subintervals N , �x diminishes, the absolute values of the expressions between brackets in
Eqs. (56) and (57) should also diminish and the values of the powers of 1/�x increase. It seems that the powers of 1/�x

may have a deeper influence on the convergence radius of the series solution, as shown below. Consider the powers
of 1/�x2. If one has �N subintervals (� > 1), 1/�x2 equals �2N2, which is �2 times larger than that of 1/�x2 if one
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Table 8
Theoretical convergence radius in function of the number of subintervals

N r(N) N r(N)

20 0.013575 100 0.000543
30 0.006033 200 0.000136
40 0.003394 300 0.000060
50 0.002172 400 0.000034
70 0.001108 500 0.000022

had N subintervals. Therefore, the convergence radius may decrease as a function of �2. Considering that it decreases
�2 times, this means that r(�N) = (1/�2)r(N) or r(y) = (N2/y2)r(N). Fixing the value of N = 20, the one found in
Table 7, one gets the values showed in Table 8, that are almost the same as those showed in Table 7.

However, in some particular problems, the behavior can be quite different. Consider Burgers equation (15) with �=1
and initial and Dirichlet boundary conditions given by

u(x, 0) = x, (58)

u(0, t) = 0, u(1, t) = 1

1 + t
. (59)

In this case one has at x = 1 a boundary condition not nil. Hence, the computations may become quite hard or even
impossible to carry on, due to the successive analytical integrations performed by Adomian’s method. Nevertheless,
one can substitute 1/(1 + t) by its Taylor series

∑∞
k=0 (−1)ktk and constructing the Adomian’s series through the

standard procedure, the corresponding terms in both series are identical. This way the computations become easier to
perform, and, in this particular case, the solution is independent of the number of lines used, since the series solution
obtained is the exact solution given by x

∑∞
k=0 (−1)ktk .

6. Conclusions

When it is not possible to know the explicit solution given by Adomian’s method applied to nonlinear partial
differential equations, the series obtained may be adequate only in a small region. Techniques to enlarge and/or improve
this region may be necessary.

In order to prove numerically whether the application of PAs to Adomian’s series solution of Burgers equation leads
to better accuracy and larger convergence region, the numerical solution of some examples with and without PAs were
evaluated, and one concluded, from the worked examples, that PAs improve the convergence region and the accuracy
of the solution, except in the neighborhood of poles that can appear in the rational approximation and are not present
in the real solution.

It is also shown that the application of Adomian’s method to the ordinary differential equations set arising from the
discretization of the spatial derivatives by finite differences, the so-called method of lines, may reduce the convergence
domain of the solution’s series, behavior that seems to be related to the presence of powers of 1/�x, that are larger
when the spatial interval grid is smaller.
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