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In the first part of this paper, we introduce normalized rewriting, a new rewrite relation.
It generalizes former notions of rewriting modulo a set of equations E, dropping some
conditions on E. For example, E can now be the theory of identity, idempotence, the
theory of Abelian groups or the theory of commutative rings. We give a new completion
algorithm for normalized rewriting. It contains as an instance the usual AC completion
algorithm, but also the well-known Buchberger algorithm for computing Gröbner bases
of polynomial ideals.

In the second part, we investigate the particular case of completion of ground equa-
tions. In this case we prove by a uniform method that completion modulo E terminates,
for some interesting theories E. As a consequence, we obtain the decidability of the word
problem for some classes of equational theories, including the AC-ground case (a result
known since 1991), the ACUI-ground case (a new result to our knowledge), and the cases
of ground equations modulo the theory of Abelian groups and commutative rings, which
is already known when the signature contains only constants, but is new otherwise.

Finally, we give implementation results which show the efficiency of normalized com-
pletion with respect to completion modulo AC.

c© 1996 Academic Press Limited

1. Introduction

Equational axioms are very common in most sciences, including computer science. Equa-
tions can be used for reasoning, by using Leibniz law of replacing equals by equals. An
equational proof from s to t may therefore use the equations both ways. In contrast,
rewrite proofs restrict their use to be one way, by rewriting according to a well-founded
ordering on terms from both s and t. This strategy amounts to orienting the equations
into rewrite rules via the ordering. To transform an equational proof into a rewrite proof
one must replace the undesirable patterns such as s ← u → t by appropriate rewrite
proofs. To achieve this purpose, the key step is to compute the so-called critical pairs by
overlapping left-hand sides of rules, then rewriting the obtained term via each one of the
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two rules. When such critical pairs do not enjoy a rewrite proof, they may be simplified,
then oriented and added as new rules. Rules may be simplified as well in order to obtain a
reduced set. This process is called Knuth–Bendix completion (Knuth and Bendix, 1970).
In completion, the axioms used are therefore in a constant state of flux; these changes
are usually expressed as inference rules, which add a dynamic character to establishing
the existence of rewrite proofs.

A basic assumption of this technique is that rewriting terminates for every input term.
When the set of equations contains the associativity and commutativity axioms (here-
after denoted by AC), this assumption cannot be fulfilled. This difficulty has been re-
solved (Lankford and Ballantyne, 1977; Peterson and Stickel, 1981) by building associa-
tivity and commutativity in the rewriting process via AC pattern matching: rewriting
modulo AC; as well as in the computation of AC critical pairs via AC-unification: comple-
tion modulo AC. This has been further generalized to rewriting modulo E and completion
modulo E for an arbitrary equational theory E provided E-unification is finitary and the
subterm ordering modulo E is well-founded (Bachmair and Dershowitz, 1989; Jouannaud
and Kirchner, 1986).

This technique excludes therefore some important sets of axioms like the identity law
(x + 0 = x where + is AC, denoted ACU), group theory, commutative ring theory,
idempotence (x+ x = x, denoted ACI), etc, from being part of the set E. Indeed, in all
these cases, E-rewriting does not terminate in general. For example, rewriting modulo
ACU yields the following infinite derivation, using the rule −(x+ y)→ (−x) + (−y) for
computing the inverse of a sum:

−0 =ACU −(0 + 0) → (−0) + (−0)
=ACU −(0 + 0) + (−0) etc. . .

It is possible to overcome this difficulty using constrained rewriting (Kirchner and
Kirchner, 1989): Baird, Peterson and Wilkerson (Baird et al., 1989) have described a
constrained rewriting technique specialized to ACU, and Jouannaud and Marché (Jouan-
naud and Marché, 1992) have described a corresponding completion algorithm modulo
ACU. Unfortunately, their approach does not work for other theories mentioned above:
for any rule l→ r, taking ACI for E yields:

l =ACI l + l → l + r
=ACI l + l + r etc. . .

and taking now AG (Abelian group theory) for E yields:

0 =AG l + (−l) → r + (−l)
=AG l + (−l) + r + (−l) etc. . .

hence in both cases, rewriting on congruence classes never terminates.
Independently of all this, in the field of computational algebra, an algorithm has been

proposed by Buchberger in 1965 (Buchberger, 1965) for computing Gröbner bases of poly-
nomial ideals. Although Knuth–Bendix completion has been described independently, it
appears that both algorithms proceed similarly, by this technique of orienting equations
into rules and deduction between two rules by critical pair computation. This similarity
has first been mentioned by Loos and Buchberger (Loos, 1981; Buchberger and Loos,
1982). Since that time, many researchers have tried to unify in some sense these algo-
rithms. We can cite the works (Le Chenadec, 1986, Kandri-Rody et al., 1989; Pottier,
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1989; Bündgen, 1991a, b; Bachmair and Ganzinger, 1994) and we miss certainly many
others.

The main motivation of this paper is to make the similarity between Knuth–Bendix
completion and the Buchberger algorithm explicit, by describing a general algorithm
called S-normalized completion where S is a parameter, such that both algorithms are
instances of this general algorithm for a particular choice of S. This has been achieved
in two steps.

The first step is the modification of the rewrite relation. We want to view reduction of
polynomials as rewriting on the algebra of polynomials, that is rewriting modulo commu-
tative ring theory. As remarked before, this is not possible by the technique of Jouannaud
and Kirchner (Bachmair and Dershowitz, 1989; Jouannaud and Kirchner, 1986). To solve
this problem, we define a new rewrite relation, inspiring ourselves by the way polynomials
are reduced in Buchberger algorithm: the distributive law and other polynomial laws are
applied prior to other polynomial reductions. This is done in Section 2 where we define
precisely what normalized rewriting is, and we show that the termination of this new
rewrite relation can be checked by a reduction ordering that need not be compatible with
E (such orderings do not exist in general) like the former rewriting modulo E (but still
has to be compatible with AC if there are AC operators).

The second step is the generalization of the process of orientation. In Buchberger algo-
rithm, when turning a polynomial into a reduction rule, one selects the head monomial
of the polynomial which becomes the left-hand side of the rule. This has been taken into
account in S-normalized completion by using the symmetrization technique proposed
by Le Chenadec (Le Chenadec, 1986) generalized to non-ground (i.e. with variables)
equations. Furthermore, this generalization requires adding new equations called critical
instances as remarked before for ACU-constrained completion (Jouannaud and Marché,
1992), and leads to the notion of normalizing pairs. This is done in Section 3.

One interesting remark about the comparison of Buchberger algorithm and Knuth–
Bendix completion is that Buchberger algorithm always terminates, whereas Knuth–
Bendix completion may loop infinitely. The reason is that when viewing Buchberger
algorithm as a completion procedure, equations to be completed are ground, and it is
known that Knuth–Bendix completion and furthermore AC-completion (Narendran and
Rusinowitch, 1991; Marché, 1991) terminate if the initial set of equations is ground. Now,
the interesting question is whether the results of termination of Buchberger algorithm and
ground AC-completion are in fact the same result of termination of ground S-normalized
completion. Unfortunately, the answer is no: ground S-normalized completion does not
terminate in general, but only for particular S. The interesting point is that we can show
some general results (true for any S) about ground S-normalized completion, which
can be used to prove by simple arguments the termination in the cases of S we are
interested in. This method makes the harder part of the termination proofs of Buchberger
algorithm and ground AC-completion common. This is done in Section 5. We obtain then
an alternative proof of the decidability of the word problem in finitely presented Abelian
groups and finitely presented commutative rings, but our results are in fact more general
since we do not need that the generators are only constants, as it is the case in finitely
presented groups or rings.

Finally, we give in section 6 some examples of normalized completion obtained by our
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implementation CiME†, and we show in particular some interesting benchmarks and also
how normalized completion can be used to compute Gröbner bases of polynomial ideals.

2. Normalized Rewriting

In this section we introduce the new notion of normalized rewriting. We recall first the
usual notions on rewriting, in particular modulo AC.

2.1. basic definitions

Our notations and definitions are consistent with those given in the survey of Der-
showitz and Jouannaud (Dershowitz and Jouannaud, 1990).

We denote T (F ,X ), or T for short, as the set of terms over a signature F and variables
X . We denote Pos(s) and FPos(s) respectively as the set of positions and non variable
positions of a term s. We denote Λ the top position. Two incomparable positions (i.e.
none is a prefix of the other) are said to be parallel and denoted p ‖ q. The subterm of
a term s at position p is denoted by s|p, and s[t]p is the term obtained by putting t at
position p in s. We denote substitutions by Greek letters, sσ is the application of σ on s.

An equation is a pair of terms, denoted s = t. An equation is valid in an F -algebra A if
for any F -morphism g : T → A we have g(s) = g(t). An equation s = t is a consequence
of a set of equations E if s = t is valid in every algebra that validates E. The set of
consequences of E, denoted T h(E) is the equational theory of E.

The equality modulo E, generated by a set of equations E, is the smallest congruence
containing E, denoted =E . Because of Birkhoff theorem (Birkhoff, 1935): s = t is a
consequence of E if and only if s =E t, we may usually confuse E, T h(E) and =E .

An important example is the associative-commutative theory, denoted by AC. Over a
signature F which contains a subset FAC of binary symbols, AC is the set {f(x, y) =
f(y, x), f(f(x, y), z) = f(x, f(y, z)) | f ∈ FAC}. Usually AC operators are used in infix
notation (+, ∗, etc.).

Congruence classes modulo AC can be represented as flat terms, that is terms of the
form (x+ y) + z and x+ (y+ z) are flattened to x+ y+ z. This representation is usually
preferred in implementations, and is also a useful representation from a theoretical point
of view, for example in AC unification algorithms. In this article, we will consider that
terms are flattened with respect to the AC symbols of the signature. Two terms are
equal modulo AC if and only if their flat forms are equivalent modulo the permutation
congruence (denoted ≡), that is the equivalence modulo permutation of direct subterms
of AC symbols.

We say that two terms s and t are unifyable modulo a theory E if there exists a
substitution σ such that sσ =E tσ. Main results on E-unification may be found in the
survey edited by Kirchner (Kirchner, 1990). We denote by CSUE(s, t) a complete set of
E-unifiers of s and t.

We denote D as the subterm ordering, and ·� as the encompassment ordering, that
is s ·� t if there exist p and σ such that s|p = tσ. These definitions are assumed to be
modulo AC (i.e. defined on flat terms) if there are AC operators. We remark that both
orderings are well-founded, and that s ·� t if and only if p 6= Λ or p = Λ and σ is not a
renaming.

† http://www.lri.fr/~demons/cime.html or ftp://ftp.lri.fr/LRI/soft/cime/README
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2.2. AC-rewriting on flat terms

Formal and complete definitions of flattening and rewriting on flat terms can be found
in (Domenjoud, 1991; Kapur et al., 1988; Marché, 1993).

We use rewriting on flat terms, that is we say that s rewrites to t by l→ r at position
p ∈ FPos(s), denoted as

s
p−−→
l→r

t,

if there exists a substitution σ such that s|p = lσ and t = s[rσ]p, or s|p = (l + x)σ
and t = s[(r + x)σ]p if Head(l) = + ∈ FAC and x /∈ Var(l). This way of defining the
rewrite relation builds in the use of extended rules “à la Peterson–Stickel” (Peterson and
Stickel, 1981): indeed, when using flat rewriting, we do not need to introduce extended
rules, it greatly simplifies the proof of completeness of completion. Moreover, not adding
extension rules prevents introduction of new variables, which is essential when completing
a set of ground equations. However we have to generalize the notion of overlapping: two
rules which have the same AC symbol + at the top overlap if they overlap in the standard
way or if their extensions overlap. For example, there is a critical pair between a+ b→ d
and a + c → e since a + b + c can be rewritten either to d + e or b + e. We still denote
by CPE the set of critical pairs modulo E corresponding to this generalized notion of
overlapping.

From now on, we assume we have a signature containing arbitrarily many AC operators
(possibly none), and everything is implicitly modulo the associative-commutative theory
defined by these operators. When R is a set of rules, we denote by →R the rewrite
relation by R (implicitly modulo AC as said before). R is said to be convergent if →R is
well-founded and confluent.

2.3. definition of normalized rewriting

We assume we are given an algebra by a signature and a set of equations defining some
relations between constructors or operators. Our goal is to define a rewriting relation on
this quotient algebra. Let us assume this equational theory has an equivalent convergent
rewriting system S.

Definition 2.1. Let us denote by s↓S the S-normal form of a term s. The S-normalized
rewrite relation, denoted as

s
p−−−−→

l→r/S
t,

is defined by

s′ = s↓S and s′
p−−→
l→r

t.

When R is a set of rules, we denote by →R/S the S-normalized rewrite relation by R.

Example 2.2. Assume we have an algebra containing an AC operator + which has a
unit 0. We take then S = ACU(+, 0) = {x + 0 → x}. Assume now we would like to
rewrite by R = {−(x+ y)→ (−x) + (−y)}. We have −(a+ b)→R/S (−a) + (−b) but we
can not rewrite −(0 + b) to (−0) + (−b) because the S-normal form of −(0 + b) is (−b)
which is not an instance of −(x+ y).
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We see on this example that the idea of normalized rewriting captures the notion of
ACU-constrained rewriting (Baird et al., 1989; Jouannaud and Marché, 1992).

Example 2.3. Assume now our algebra is a ring of multivariate polynomials. We take
for S the convergent rewrite system of commutative rings theory, that is

x+ 0→ x x+ (−x)→ 0
−0→ 0 −(−x)→ x
−(x+ y)→ (−x) + (−y) x ∗ 1→ x
x ∗ (y + z)→ (x ∗ y) + (x ∗ z) x ∗ 0→ 0
x ∗ (−y)→ −(x ∗ y)

Assume now we have R = {X∗X → Y } where X and Y are some constants (representing
indeterminates, hence terms represent polynomials). Then X ∗ X ∗ X →R/S X ∗ Y but
X ∗ (X + (−Y )) + ((−X) ∗X) can not be rewritten since the S-normal form of X ∗ (X +
(−Y )) + ((−X) ∗X) is −(X ∗ Y ) and is not reducible by R.

We see in this case that normalized rewriting captures the notion of polynomial reduc-
tion used in Gröbner basis computation, where the distributivity law is applied before
the rules.

2.4. termination of normalized rewriting

Proving termination of (usual) rewriting modulo an equational theory E requires an
ordering compatible with E. Such an ordering does not exist in general, for example there
is no reduction ordering compatible with idempotence as shown in the introduction.

One interesting property of our new definition of rewriting is that we only need a
reduction ordering compatible with AC. Such an ordering can be defined in various ways.
For general notions on orderings and termination, we refer to (Dershowitz, 1987). For
definitions of AC-compatible orderings, see (Bachmair and Plaisted, 1985; Ben Cherifa
and Lescanne, 1986; Narendran and Rusinowitch, 1991; Nieuwenhuis and Rubio, 1993;
Delor and Puel, 1993).

From now on, we assume we are given an AC reduction ordering º, such that the set of
rules S satisfies →S⊆Â (that is the termination of S can be proved by º). The following
proposition is straightforward:

Proposition 2.4. Let R be a set of rules such that for all l → r in R, l Â r. Then the
S-normalized rewrite relation →R/S is well-founded.

3. Normalized Completion

We still assume we are given a signature containing arbitrarily many AC operators, a
set of equations which has an equivalent convergent rewriting system S, together with a
reduction ordering º such that →S⊆Â. We assume now we have a new set of equations
E0 defining for example some new operations. Our aim is to complete E0 into a set of
rules R such that S-normalized rewriting by R is well-founded and confluent.

In Section 3.2, we give a set of inference rules for completing a set of equations into a
normalized rewrite system. The completeness is proved by the now customary normal-
ization proof method (Bachmair and Dershowitz, 1989; Bachmair et al., 1986). We first
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need to introduce in Section 3.1 the notion of normalizing pairs, which in some sense will
replace the usual notion of orientation in completion procedures.

3.1. proof algebra and normalizing pairs

This section is organized in four parts: first we define formally the proof algebra, second
we give an ordering on this algebra, third we investigate some commutation properties
of the algebra, and fourth we define the notion of normalizing pairs.

3.1.1. proof algebra

We assume here that all terms are flattened with respect to AC symbols.

Definition 3.1. The algebra of equational proofs is generated by the elementary proofs:

(i) AC step: s ←−−→
AC

t if s ≡ t;

(ii) equational step: s
σ,p←−−→
l=r

t where s|p = lσ and t = s[rσ]p for an equation l = r;

(iii) rewrite step: s
σ,p−−→
l→r

t where s|p = lσ and t = s[rσ]p for a rule l→ r;

(iv) S-normalizing step: s −−S−→ t if s→S t;

and the concatenation of proofs, denoted P.Q, where the last term of P is assumed to
equal the first of Q. Concatenation is implicitly associative. We say that a proof is in
E ∪R (or in an E;R-proof) if its equations (resp. its rules) are in E (resp. in R).

We will also write

s
(≥p)∗
−−S−→ t

to denote a sequence of S-reductions at position p or below.
In the following, we need to consider the symmetric proof of proof P defined by:

sym(s ←−−→
AC

t) = t ←−−→
AC

s

sym(s
σ,p←−−→
l=r

t) = t
σ,p←−−→
r=l

s

sym(s
σ,p−−→
l→r

t) = t
σ,p←−−
l→r

s

sym(s −−S−→ t) = t ←−S−− s

sym(P.Q) = sym(Q).sym(P )

3.1.2. proof reduction ordering

For proving completeness of the completion algorithm, we need the proof algebra to
be ordered in a convenient way. Unusually, we define the ordering we will use before
describing the completion itself, because the definition of normalizing depends on this
ordering.

Let s↓p be the result of S-normalizing s at position p, that is s[(s|p)↓S ]p, and c(s, p, t)
be the multi-set {s} if s↓p= s and {s, t} otherwise.
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Normalization of substitutions

s
σ,p←−−→
u=v

t=⇒ s
(≥p)∗
−−S−→ s′

σ′,p←−−→
u=v

t′
(≥p)∗
←−S−− t if σ′ = σ↓S .

Normalization of equations

s
σ,p←−−→
u=v

t=⇒ s
(≥p)∗
−−S−→ s′

σ,p←−−→
u′=v′

t′
(≥p)∗
←−S−− t if u′ = u↓S and v′ = v↓S .

Equational step normalization at a parallel position

s
σ,p←−−→
u=v

t=⇒ s
q,σ
−−S−→
l→r

s′
p,σ←−−→
u=v

t′
q,σ
←−S−−
l→r

t if l→ r ∈ S and p ‖ q.

Equational step normalization at a variable-superposing position

s
σ,p←−−→
u=v

t=⇒ s
σ,q
−−S−→
l→r

s′
(

σ,q.o′←−−→
u=v

) ∗
o′∈P ′

s′′
σ′,q
←−S−−
l→r

t′
(

σ,q.o←−−→
v=u

) ∗
o∈P

t

if s = s↓p, u Â v, l→ r ∈ S, p = qp′ with p′ /∈ FPos(l), p′ = q′p′′ with l|q′ = x ∈ X ,

P = {o ∈ Pos(l)|l|o = x} − {q′}, P ′ = {o′ ∈ Pos(r)|r|o′ = x}, σ′ :
{

xσ′ = xσ[vσ]p′′
if y 6= x, yσ′ = yσ

Rewrite step normalization at a parallel position

s
σ,p−−−→
u→v

t=⇒ s
q,σ
−−S−→
l→r

s′
p,σ−−−→
u→v

t′
q,σ
←−S−−
l→r

t if l→ r ∈ S and p ‖ q.

Rewrite step normalization at a variable-superposing position

s
σ,p−−−→
u→v

t=⇒ s
σ,q
−−S−→
l→r

s′
(

σ,q.o′−−−−→
u→v

) ∗
o′∈P ′

s′′
σ′,q
←−S−−
l→r

t′
(

σ,q.o←−−−
u→v

) ∗
o∈P

t

if s = s↓p, l→ r ∈ S, p = qp′ with p′ /∈ FPos(l), p′ = q′p′′ with l|q′ = x ∈ X ,

P = {o ∈ Pos(l)|l|o = x} − {q′}, P ′ = {o′ ∈ Pos(r)|r|o′ = x}, σ′ :
{

xσ′ = xσ[vσ]p′′
if y 6= x, yσ′ = yσ

Figure 1. Proof reduction: S-normalizations.

Definition 3.2. The ordering ÂP on proofs is defined as follows: the complexity of a
proof is the multiset of the complexities of its elementary subproofs, defined by

C(s ←−−→
AC

t) = 〈{⊥, {s},⊥,⊥〉
C(s

σ,p←−−→
l=r

t) = 〈{s↓p, t↓p}, {s, t},⊥,⊥〉
C(s

σ,p−−→
l→r

t) = 〈c(s, p, t), {s}, l, rσ〉
C(s −−S−→ t) = 〈⊥, {s},⊥,⊥〉

where ⊥ is a new element. Two elementary complexities are compared in the lexicographic
extension of the orderings ºmul for the first and second components, encompassment
ordering ·� for the third, º for the fourth. ⊥ is always considered as minimal. Proofs are
compared by their complexities in the multiset extension of the ordering above.
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lσ

uσ uσ vσ uσ

rσ

uσ
uσ

lσ′

vσ vσ

vσ
uσ

rσ′

vσ
vσ

σ,p←−−−−−−−−→
u=v

q.o′2←−−→
u=v

@@R
q

l→r

@@R@
@Iq.o′1

u=v

��	�
��q.o
v=u

��	
σ′,q

l→r

Figure 2. Equational step normalization at a variable-superposing position.

Notice that C(sym(P )) ≡ C(P ), that is two symmetric proofs have the same complex-
ity (modulo AC).

Lemma 3.3. The ordering ÂP on the algebra of equational proofs is well-founded and
monotonic: if P ÂP P ′ then Q.P.R ÂP Q.P ′.R.

Proof. ÂP is well-founded since it is built up from well-founded orderings with the
functionals lex and mul which preserve well-foundedness, and monotonicity follows from
monotonicity of the multiset functional. 2

We remark that this ordering is not stable by instantiation, since being in S-normal
form is not, but this is not a required property for our purpose (see the definition of
proof reduction below).
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S-confluence

s
+
←−S−− t

+
−−S−→ u=⇒ s

∗
−−S−→ s′

∗←−−→
AC

u′
∗
←−S−− u

Commutation of a disjoint peak

s
σ,p←−−−−

l1→r1
t

σ,q−−−−→
l2→r2

u=⇒ s
σ,q−−−−→

l2→r2
v

σ,p←−−−−
l1→r1

u if p ‖ q.

Commutation of a variable-superposing peak

s
σ,p←−−−−

l1→r1
t

σ,pq−−−−→
l2→r2

u=⇒ s

(
σ,p.o−−−−→
l2→r2

)
o∈P

s′
σ′,p←−−−−
l1→r1

v
∗←−−→
≡

u′
(

σ,p.o′←−−−−
l2→r2

)
o′∈P ′

u

if q /∈ FPos(r1), q = p′q′ with r1|p′ = x ∈ X , P = {o ∈ Pos(r1)|r1|o = x},

P ′ = {o′ ∈ Pos(l1)|l1|o′ = x}, σ′ :
{

xσ′ = xσ[r2σ]q′
if y 6= x, yσ′ = yσ

Figure 3. Proof reduction: commutation of non-critical peaks.

3.1.3. commutation properties of the proof algebra

The algebra of proofs satisfies some commutation properties which allows one to reduce
proofs. This reduction of proofs will be defined from a set of proof reduction rules by
taking the symmetric (if P =⇒Q then sym(P ) =⇒ sym(Q)) and monotonic closure (but
not closure by instantiation, that’s why we don’t need ÂP being stable by instantiation).

Figure 1 shows how to reduce equational steps and rewrite steps by S-normalization.
Notice that the rule Equational step normalization at variable-superposing

position applies only if u Â v; if u ≺ v the symmetrical rule applies, and nothing applies
if they are incomparable. Figure 2 displays graphically what happens in rule Equational

step normalization at a variable-superposing position and analogously in rule
Rewrite step normalization at a variable-superposing position, white parts
representing l and u, grey parts representing v and black parts representing r. Figure 3
shows how to reduce proofs in “peak” pattern.

The following lemma shows why we can talk about these rules as proof reduction rules.

Lemma 3.4. Proof reduction by commutation is well-founded.

Proof. All the commutation rules above decrease with respect to ÂP : verifications are
made on Figure 4; and ÂP is stable by symmetry and is monotonic. 2

In particular, any proof possesses a normal form (not necessarily unique), and we call
irreducible proofs the proofs in normal form.
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rule P =⇒Q C(P ) C(Q) proof of P ÂP Q

Normalization

of substitutions

〈{s↓p, t↓p},
{s, t}, . . .〉

〈{s′ ↓p, t′ ↓p},
{s′, t′}, . . .〉
〈⊥, . . .〉∗

same first component, s Â s′ and
t Â t′

Normalization

of equations

〈{s↓p, t↓p},
{s, t}, . . .〉

〈{s′ ↓p, t′ ↓p},
{s′, t′}, . . .〉
〈⊥, . . .〉∗

same first component, s Â s′ and
t Â t′

Equational step

normalization

at a parallel

position

〈{s↓p, t↓p}, . . .〉 〈{s′ ↓p, t′ ↓p}, . . .〉
〈⊥, . . .〉∗

s↓pÂ s′ ↓p
and t↓pÂ t′ ↓p since S-reduction is
done at a position parallel to p

Equational step

normalization

at a variable-

superposing

position

〈{s↓p, t↓p}, . . .〉 〈{s′ ↓o, s′′ ↓o}, . . .〉∗

〈{t′ ↓o′ , t↓o′}, . . .〉∗

〈⊥, . . .〉∗

since s|p = uσ is S-irreducible,
s′ ↓o= s′, s′′ ↓o= s′′, t′ ↓o′= t′ and
t↓o′= t, and u Â v

Rewrite step

normalization

at a parallel

position

〈c(s, p, t), . . .〉 〈c(s′, p, t), . . .〉
〈⊥, . . .〉∗

c(s, p, t) Âmul c(s′, p, t)
since S-reduction is done at a
position parallel to p, hence s = s↓p
iff s′ = s′ ↓p

Rewrite step

normalization

at a variable-

superposing

position

〈c(s, p, t), . . .〉 〈c(s′, o, s′′), . . .〉∗

〈c(t, o′, t′), . . .〉∗

〈⊥, . . .〉∗

since s|p = uσ is S-irreducible,
c(s, p, t) = {s}, c(s′, o, s′′) = {s′}
and c(t, o′, t′) = {t}; and u Â v

S-confluence 〈⊥, {t}, . . .〉
〈⊥, {t}, . . .〉

〈⊥, {s}, . . .〉
〈⊥, {u}, . . .〉

t Â s and t Â u

Commutation of

a disjoint peak

〈c(t, p, s), . . .〉
〈c(t, q, u), . . .〉

〈c(s, q, v), . . .〉
〈c(u, p, v), . . .〉

t Â s, t Â v hence c(t, p, s) ºmul

{t} Âmul {s, v} ºmul c(s, q, v) and
analogously c(t, q, u) Âmul c(u, q, v)

Commutation of

a variable-

superposing

peak

〈c(t, p, s), . . .〉,
〈c(t, pq, u), . . .〉

〈{. . .}, . . .〉∗,
〈{. . .}, . . .〉∗

analogous to case above

Figure 4. Termination of proof reduction.



      

264 C. Marché

3.1.4. normalizing pairs

There are still some undesirable proofs patterns that are irreducible by the commuta-
tion rules above:

s
σ,p←−−→
u=v

t and s
σ,p−−−→
u→v

t

where s is S-reducible at a position which superposes at p. We will see later that there
might be several ways to reduce them, hence we give for the moment a generic definition
for doing that: normalizing pairs.

Definition 3.5. A function that maps a pair of terms (u, v) to a pair (Θ(u, v),Ψ(u, v))
where Θ(u, v) is a set of equations and Ψ(u, v) a set of rules, is called an S-normalizing
pair (w.r.t. ÂP) if for any terms u and v such that u Â v:

(i) for any elementary irreducible proof of the form

s ←−−→
u=v

t

there exists a smaller proof (w.r.t. ÂP) in Θ(u, v) ∪Ψ(u, v) between s and t;
(ii) for all l → r ∈ Ψ(u, v), for all sets of rules R, for all r′ such that r →∗R/S r′, for

any elementary irreducible proof of the form

s −−−→
l→r′

t

there exists a smaller proof (w.r.t. ÂP) in Θ(u, v) ∪Ψ(u, v) ∪R between s and t;

The role of the two previous properties will become clear when we will give the proof
reduction rules reflecting the completion process.

3.2. inference rules for normalized completion

As now customary, we describe the completion process by a set of inference rules
(Figure 5). º is a reduction ordering, E is a set of equations and R is a set of rules. In
the rule Collapse, the ordering ·Â is the lexicographic combination of ·� and Â, that is
(u, v) ·Â(l, rθ) means p 6= Λ, or p = Λ and θ is not a renaming, or p = Λ, θ renaming and
u Â rθ.

Notice that the rule Orient does not act anymore as usual by simply turning an
equation into a rule, it rather transforms an equation into its normalizing pair.

The rule Deduce computes critical pairs modulo some equational theory T that we can
choose arbitrarily between AC and S, the validity of this fact being justified by the proof
reduction rule we will consider (see second remark after the proof of the completeness
theorem).

This is a very important point for two reasons:

(i) S may not be decidable and finitary with respect to unification. For example, S
may contain distributivity law, and we know that unification modulo ACD is un-
decidable (Kirchner, 1990). In such a case we should use T = AC.

(ii) It is known that ACU-unification and ACUI-unification lead to complete sets of
unifiers which are usually much smaller than AC unification (Bürckert et al., 1988;
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Orient

E ∪ {u = v};R ` E ∪Θ(u, v);R ∪Ψ(u, v) if u = u↓S , v = v↓S , u Â v.

Deduce

E;R ` E ∪ {u = v};R if u = v ∈ CPT (R).

Normalize

E ∪ {u = v};R ` E ∪ {u↓S= v↓S};R

Delete

E ∪ {u = v};R ` E;R if u =AC v.

Compose

E;R ∪ {u→ v} ` E;R ∪ {u→ v′} if v −−−→
R/S

v′.

Simplify

E ∪ {u = v};R ` E ∪ {u′ = v};R if u −−−→
R/S

u′.

Collapse

E;R ∪ {u→ v} ` E ∪ {u′ = v};R if l→ r ∈ R, u
θ,p−−−−→

l→r/S
u′, (u, v) ·Â(l, rθ).

Figure 5. Inference rules of normalized completion.

Domenjoud, 1992; Kirchner, 1990). A well-known example is the equation x+x+x =
y + z + t + u which have 1044569 most general AC solutions but only one most
general ACU-solution.

Definition 3.6. An S-normalized completion algorithm is an algorithm which takes as
input a set of equations E0 and a reduction ordering º and produces a (finite or infinite)
sequence (En;Rn) where R0 = ∅ and for all i, Ei;Ri ` Ei+1;Ri+1. Let:

E∞ =
∞⋃
n=0

( ∞⋂
i=n

Ei

)
, R∞ =

∞⋃
n=0

( ∞⋂
i=n

Ri

)
E∞ and R∞ are respectively the set of persisting equations and the set of persisting rules.
We say that the algorithm fails if E∞ is not empty and succeeds otherwise, it diverges
if the sequence is infinite.

3.3. fairness and completeness

Fairness is fundamental in completion procedures, it expresses completeness of the
search strategy.
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Definition 3.7. A derivation E0;R0 ` E1;R1 ` · · · is fair if all persisting critical
pairs are computed, i.e.

CPT (R∞) ⊆
∞⋃
i=0

Ei

A completion algorithm is fair if all sequences that it produces are fair.

In practice, it is worthwhile to use the simplification rules as much as possible. This
yields sets of rules which are inter-reduced, an important property as far as the uniqueness
of the completion result is concerned.

Theorem 3.8. Assume we have an S-normalizing pair (Θ,Ψ) (w.r.t. ÂP). Assume that
the completion is fair and succeeds. Then for all s and t, s =E0∪AC∪S t if and only if

s
∗−−−−→

R∞/S
u

∗←−−→
S

v
∗←−−−−

R∞/S
t

Proof. This result is proved by the proof normalization method (Bachmair et al., 1986;
Bachmair, 1991; Bachmair and Dershowitz, 1989; Marché, 1993). Let us consider two
terms s and t such that s =E0∪AC∪S t. We have then an equational proof P0 of that
equality. Our aim is to transform this proof into a proof of the desired form. For that,
we reduce this proof P0 by the relation =⇒. To reflect the effect of completion inference
rules, we have to add new rules, given in Figure 6.

Let us comment on the rules Orient and Reorient, which correspond to the two
properties characterizing normalizing pairs: Orient will turn an equational step which
possesses a critical superposition with S into a proof in Θ∪Ψ according to property (i) in
the definition of normalizing pairs. Reorient is needed to be able to do the same with
rewriting steps: one can remark that in the inference rules of the completion, we never
compute the pairs (Θ,Ψ) associated to rules, only to equations. For that reason, to be
able to reduce rewriting steps where a critical superposition with S occurs, we want to
use the pair (Θ(u, v),Ψ(u, v)), u = v being the equation from which the rule comes. But
a rule appearing in the completion may come either from a set Ψ(u, v), or by composition
of another rule: that explains the role of the set of rules R in the property (ii) in the
definition of normalizing pairs and in the rule Reorient.

Let us denote P =⇒E;RQ if P and Q are E;R-proofs and P =⇒Q, and:

Ei =
i⋃

j=0

Ej and Ri =
i⋃

j=0

Rj .

First of all, if E;R ` E′;R′ and P is an E;R-proof then P =⇒∗E∪E′;R∪R′ Q where Q
is an E′;R′-proof: this is a simple but technical verification that rules of Figure 6 reflect
correctly the inferences.

Secondly, for all proofs P and Q, P =⇒Q implies P ÂP Q: Verification of decreasing-
ness of the reductions reflecting inferences is made in Figure 7. One has to remark that
in several cases of a rule P =⇒Q where C(Q) contains a c(s, p, t) but without knowing
we are in the case s = s ↓p or not, we make the proof with {s ↓p, t ↓p}, which is always
greater or equal to c(s, p, t).

Now we know that reduction of proofs terminates, let us denote by P ↓i the normal
form of P with respect to =⇒Ei;Ri . Now, we remark that Pi is actually an Ei;Ri-proof:
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Orient

s
σ,p←−−→
u=v

t=⇒ a proof in Θ(u, v) ∪Ψ(u, v) if u Â v.

Reorient

s
σ,p−−−→
l→r′

t=⇒ a proof in Θ(u, v) ∪Ψ(u, v) ∪R

with l→ r ∈ Ψ(u, v), r
∗−−−→

R/S
r′.

Deduce

s
σ,p←−−−−

l1→r1
t

σ,pq−−−−→
l2→r2

u=⇒ s
(≥p)∗←−−→
S

s′
σ′,p←−−→
u=v

u′
(≥p)∗←−−→
S

u

with θ ∈ CSUT(l1|q, l2) | σ ≡ θσ′, u = v ∈ CPT (l1 → r1, l2 → r2).

Delete

s
σ,p←−−→
l=r

t=⇒ s
∗←−−→

AC
t if l ≡ r.

Compose

s
σ,p−−−→
u→v

t=⇒ s
σ,p−−−−→
u→v′

s′
θσ,pq←−−−
l→r

t′
∗←−−→

AC
t if v

θ,q−−−−→
l→r/S

v′ and s = s↓S .

Simplify

s
σ,p←−−→
u=v

t=⇒ s
θσ,pq−−−→
l→r

t′
σ,p←−−→
u′=v

t if u
θ,q−−−−→

l→r/S
u′ and s = s↓S .

Collapse

s
σ,p−−−→
u→v

t=⇒ s
θσ,pq−−−→
l→r

t′
σ,p←−−→
u′=v

t if u
θ,q−−−−→

l→r/S
u′, (u, v) ·Â(l, rθ) and s = s↓S .

Figure 6. Proof rewriting: rules reflecting inference rules.

if it uses an equation in Ei which is not in Ei then the inference which has removed
this equation can be reflected to a reduction of P , hence P is not in normal form (and
analogously if it uses a rule in Ri not in Ri).

Now, let us consider the sequence of proofs starting from P0 defined by Pi+1 = Pi ↓i+1.
Since =⇒ is well-founded, this sequence cannot decrease infinitely, there exists a n such
that Pn = Pk for all k ≥ n. By the previous remark, Pn is an Ek;Rk-proof for all k ≥ n,
hence it is an E∞;R∞-proof. Since we assume that completion does not fail, E∞ is empty
hence Pn does not contain any equational steps.

We are left to prove that Pn does not contain any peak pattern: by contradiction, if Pn
contains a peak pattern, then first it is necessarily a critic one otherwise a commutation
rule applies, and second, by the fairness property, the critical pairs associated to this
peak have necessarily been computed at some step j of the completion, but then Pn is
not in normal form with respect to =⇒Ei;Ri where i = max(n, j), a contradiction.
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rule P =⇒Q C(P ) C(Q) proof of P ÂP Q

Orient By definition of normalizing pairs

Deduce 〈{t}, . . .〉
〈{t′}, . . .〉

〈⊥, . . .〉∗
〈{s′ ↓p, u′ ↓p}, . . .〉
〈⊥, . . .〉∗

t = t↓S , t Â s º s′ ↓p and
t′ Â u º u′ ↓p

Delete 〈{s↓p, t↓p}, . . .〉 〈⊥, . . .〉 trivial

Compose 〈{s}, {s}, uσ, vσ〉 〈{s}, {s}, uσ, v′σ〉
〈c(t′, pq, s′), . . .〉
〈⊥, . . .〉

v Â v′, c(t′pq, s′) = {t′} or {t′, s′}
and s Â t ≡ t′ Â s′

Simplify 〈{s↓p, t↓p}, . . .〉 〈{s}, . . .〉
〈{t′ ↓p, t↓p}, . . .〉

s = s↓S and s Â t′ º t′ ↓p

Collapse 〈{s}, {s}, uσ, vσ〉 〈{s}, {s}, lθσ, rθσ〉
〈{t′ ↓p, t↓p}, . . .〉

s = s↓S , (u, v) ·Â(l, rθ), s Â t′ and
s Â t

Figure 7. Termination of proof reduction (rules reflecting completion inferences).

As a consequence Pn is of the form

s
∗−−−−→

R∞/S
u

∗←−−→
S

v
∗←−−−−

R∞/S
t

The only if part of the theorem is trivial, since each inference preserves the underlying
equational theory. 2

Let us end this section by two remarks:

(i) Since the definition of normalizing pairs is generic in some sense, it is not satisfactory
that the ordering itself is not generic. Of course things could also have been made
generic w.r.t. the ordering, but it would make less clear the presentation, and in
any case we do not know any other ordering that makes decrease all proof reduction
rules (In fact, the search for such an ordering is certainly the harder part of the
completeness theorem).

(ii) Let us discuss about the use of T -unification in the rule Deduce. We want to
reduce critical peaks of the form

s
σ,p←−−−−

l1→r1
t

σ,pq−−−−→
l2→r2

u
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We know that l1|p ≡ l2 (or with additional extension variables, see Section 2.2)
hence we are able to reduce this peak via an AC-critical pair:

s
(≥p)∗←−−→
AC

s′
σ′,p←−−→
u=v

u′
(≥p)∗←−−→
AC

u

but we know that the equational theory we are completing contains S, hence if T
is a sub-theory of S which behaves well with respect to unification (such as ACU),
we can reduce the peak via a T -critical pair:

s
(≥p)∗←−−→
S

s′
σ′,p←−−→
u=v

u′
(≥p)∗←−−→
S

u

the S-steps above are in fact T -steps (we use S because T -steps are not in the proof
algebra), needed because since we use T -unification, σ is a T -instance of a most
general T -unifier, not necessarily an AC-instance.
Moreover, this shows that in the computation of CPT , we can restrict ourselves to
T -unifiers which have at least one AC-unifier as an instance. This remark can be
used to reduce a bit more the set critical pairs computed in practice: for example,
x+ y and a have two ACU-unifiers x 7→ a, y 7→ 0 and x 7→ 0, y 7→ a but none have
AC-unifiers as instances. We will use this also in the next section.

3.4. a general S-normalizing pair

We show in this subsection how one can define an S-normalizing pair for an arbitrary
canonical rewrite system S.

Definition 3.9. Let u and v be two terms in S-normal form such that u Â v. Let
Θgen(u, v) be the set of equations (called critical instances) of the form uθ[rθ]q = vθ
where q ∈ FPos(u), l → r ∈ S, θ ∈ CSUAC(u|q, l) S-irreducible, and the equations
(called critical contextual equations) of the form lθ[vθ]q = rθ where q ∈ FPos(l), q 6= Λ,
l→ r ∈ S, θ ∈ CSUAC(u, l|q) S-irreducible; and Ψgen(u, v) be {u→ v}.

Proposition 3.10. The pair (Θgen,Ψgen) is S-normalizing with respect to the proof or-
dering defined above, for any AC-convergent set of rules S.

Proof. The proof reduction rules associated to these normalizing pairs are shown in
Figure 8: the first one allows to reduce equational steps already in S normal form, the
second and third ones allow to reduce equational steps where a critical superposition with
S occurs, hence those three rules make property (i) of the definition of normalizing pairs
satisfied. The two last rules allow to reduce rewrite steps hence make satisfied property
(ii). Proof of decreasingness of these rules is made in Figure 9. 2

Notice this definition is not satisfactory since we use AC-unification and in fact Θgen(u,
v) simply contains all critical pairs between u→ v and S, hence S-normalized completion
will behave as AC-completion with a particular strategy. In the next section, we will try
to enhance this definition to obtain a more efficient completion algorithm.
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Make rewrite step

s
σ,p←−−→
u=v

t=⇒ s
σ,p−−−→
u→v

t if s = s↓S and u Â v.

Critical instance of an equation

s
σ,p←−−→
u=v

t=⇒ s
σ,q
−−S−→
l→r

s′
∗←−−→

AC
s′′

λ,p←−−−−−−−−→
uθ[rθ]q′=vθ

t′
∗←−−→

AC
t

if u Â v, q = pq′ with q′ ∈ FPos(u), σ S-irreducible, u|q′σ ≡ s|p|q′σ ≡ s|qσ ≡ lσ hence
∃θ ∈ CSUAC(u|q′ , l)∃λ | σ ≡ θλ.

Critical contextual equation of an equation

s
σ,p←−−→
u=v

t=⇒ s
σ,q
−−S−→
l→r

s′
∗←−−→

AC
s′′

λ,q←−−−−−−→
rθ=lθ[vθ]p′

t′
∗←−−→

AC
t

if s Â t, s|p S-irreducible, p = qp′ with p′ ∈ FPos(l) and p′ 6= Λ, σ S-irreducible, l|p′σ ≡ s|qp′σ ≡ uσ
hence ∃θ ∈ CSUAC(l|p′ ,u)∃λ | σ ≡ θλ.

Critical instance of a rule

s
σ,p−−−−→
u→v′

t=⇒ s
σ,q
−−S−→
l→r

s′
∗←−−→

AC
s′′

λ,p←−−−−−−−−→
uθ[rθ]q′=vθ

t′
∗−−−→

R/S
t

if v
∗−−−→

R/S
v′, q = pq′ with q′ ∈ FPos(u), σ S-irreducible, u|q′σ ≡ s|p|q′σ ≡ s|qσ ≡ lσ hence

∃θ ∈ CSUAC(u|q′ , l)∃λ | σ ≡ θλ.

Critical contextual equation of a rule

s
σ,p−−−−→
u→v′

t=⇒ s
σ,q
−−S−→
l→r

s′
∗←−−→

AC
s′′

λ,q←−−−−−−→
rθ=lθ[vθ]p′

t′
∗−−−→

R/S
t

if v
∗−−−→

R/S
v′, p = qp′ with p′ ∈ FPos(l) and p′ 6= Λ, σ S-irreducible, l|p′σ ≡ s|qp′σ ≡ uσ hence

∃θ ∈ CSUAC(l|p′ ,u)∃λ | σ ≡ θλ.

Figure 8. Proof rewriting: general S-normalizing pair.

Example 3.11. Assume S = {z + 0 → z} where + is AC. Let us compute Θgen(−(x+
y), (−x) + (−y)): we have to unify modulo AC the terms x+ y and z + 0. This leads to
4 most general unifiers: x 7→ v1

y 7→ 0
z 7→ v1

 x 7→ 0
y 7→ v1
z 7→ v1

 x 7→ v1
y 7→ v2 + 0
z 7→ v1 + v2

 x 7→ v1 + 0
y 7→ v2
z 7→ v1 + v2

The last two are S-reducible so we ignore them. Hence Θgen(−(x + y), (−x) + (−y))
contains only the equations −x = (−x) + (−0) and −y = (−0) + (−y).

One can remark that we obtain a set which is the same as the set of forbidden instances
in ACU-constrained completion (Jouannaud and Marché, 1992).
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rule P =⇒Q C(P ) C(Q) proof of P ÂP Q

Make rewrite step 〈{s, t}, . . .〉 〈c(s, p, t), . . .〉 s = s↓S
hence c(s, p, t) = {s} ≺ {s, t}

Critical instance

of an equation

〈{s↓p, t↓p},
{s, t}, . . .〉

〈{s′′ ↓p, t′ ↓p},
{s′′, t′} . . .〉
〈⊥, . . .〉∗

s↓p= s′′ ↓p,
t↓p= t′ ↓p,
s Â s′ ≡ s′′
and s Â t ≡ t′

Critical

contextual

equation of an

equation

〈{s↓p, t↓p},
{s, t}, . . .〉

〈{s′′ ↓p, t′ ↓p},
{s′′, t′} . . .〉
〈⊥, . . .〉∗

same as above.

Critical instance

of a rule

〈{c(s, p, t), . . .〉 〈{s′′ ↓p, t′ ↓p}, . . .〉
〈c(ti, pi, ti+1), . . .〉
〈⊥, . . .〉∗

c(s, p, t) ºmul {s}
, s Â s′ ≡ s′′ º s′′ ↓p; s = s[uσ]q ,
t′ = s[vσ]q and u Â v hence s Â t′;
t′ º ti for all i.

Critical

contextual

equation of a rule

〈{c(s, p, t), . . .〉 〈{s′′ ↓p, t′ ↓p}, . . .〉
〈c(ti, pi, ti+1), . . .〉
〈⊥, . . .〉∗

same as above.

Figure 9. Termination of proof reduction for the general normalizing pair.

3.5. a simple modularity result

Here is a simple result that will allow us for example to complete commutative ring
theory modulo AG(+, 0,−) ∪ACU(∗, 1).

Proposition 3.12. Assume S1 and S2 are two convergent systems over disjoint signa-
tures and included in the same reduction ordering, then we have

(i) S1 ∪ S2 is convergent;
(ii) if (Θi,Ψi) is Si-normalizing (i = 1, 2) then (Θ1∪Θ2,Ψ1∪Ψ2) is S1∪S2-normalizing.

Proof. Part (i) is straightforward since a rule of S1 and a rule of S2 can never superpose
together. Part (ii) is true because whenever we have a proof s ←→ t where a critical
superposition with S1 ∪ S2 occurs, then it is either a critical superposition with S1 or
with S2, and we can reduce the proof either into a proof in Θ1 ∪Ψ1 or in Θ2 ∪Ψ2. 2

4. Optimized Normalizing Pairs

4.1. exploiting left-linearity

When using normalized rewriting modulo a fixed S, we can optimize the definition
of the general normalizing pair. In particular, for the rules of S which are left-linear
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theory S convergent system ΘS(u, v)

ACU(+, 0) x+ 0→ x {uθ = vθ | θ = x 7→ 0, u D x+ w}

ACI(+) x+ x→ x CPAC(u→ v, x+ x→ x)

ACUI(+, 0) x+ x→ x, x+ 0→ x ΘACU(u, v) ∪ΘACI(u, v)

AC0(∗, 0) x ∗ 0→ 0 {uθ = vθ | θ = x 7→ 0, u D x ∗ w}

ACN(+, 0) x+ x→ 0 CPAC(u→ v, x+ x→ 0)

Figure 10. Set ΘS for some simple theories.

we can avoid the use of AC-unification. The fact that general E-unification can be
avoided for left-linear rules (if E congruence classes are finite) has been first mentioned
by Huet (Huet, 1980): to compute E-critical pairs between to left-linear rules, one only
needs to compute standard critical pairs with all E-variants of rules.

4.1.1. some simple theories

Figure 10 shows definitions of ΘS where S is either ACU, ACI, ACUI, AC0 or ACN,
and in all these cases ΨS(u, v) = {u → v}. Notice also that in the cases ACI and
ACN CPAC is the AC-critical pairs of the second rule inside the first: the inverse is not
necessary since rules defining ACI and ACN have depth 1. Also, remember that CPAC

uses the generalized notion of overlapping defined in Section 2.2, that is we also have to
compute overlappings with the extensions x+ x+ y → x+ y and x+ x→ y.

Proposition 4.1. If S is either ACU, ACI, ACUI, AC0 or ACN, the above defined
mappings ΘS, ΨS are S-normalizing.

Proof. Straightforward: ΘS and ΨS are in these cases simply direct computations of
Θgen and Ψgen. 2

4.1.2. associativity

Another interesting case is when S is the theory of associativity of one symbol (in
that case we don’t have AC symbols anymore, but of course what we have done before
is still valid!). For the canonical rewrite system S we can choose an orientation for
associativity (by use of a lexicographic path ordering for example), let’s say for example
S = {(x ∗ y) ∗ z → x ∗ (y ∗ z)}.

In that case we can avoid many useless critical pairs. The idea is that deduction between
S and a rule of the form s1 ∗ · · · ∗ sn → t will only produce one useful deduction, which
can be seen as an A-extension of the original rule: s1 ∗ · · · ∗sn ∗x→ t∗x where x is a new
variable. We have of course also to compute an optimized set Θ: it can be done avoiding
call to unification by simply looking for subterms of the form x ∗ s where x is a variable.
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Definition 4.2. Let ΨA(u, v) = {u→ v} if Head(u) 6= ∗ and

ΨA(u1 ∗ · · · ∗ un, v) =
{
u1 ∗ · · · ∗ un → v
u1 ∗ · · · ∗ un ∗ x→ v ∗ x

otherwise. Let
ΘA(u, v) = {uθ = vθ | θ = x 7→ x ∗ y, u D x ∗ w}

Proposition 4.3. The above defined mapping (ΘA, ΨA) is A-normalizing.

Proof. The part Θgen(u, v) where superpositions of u → v inside rules of S are com-
puted yields the additional rule in ΨA, whereas the part where superpositions of S inside
u→ v are computed yields to ΘA. 2

Example 4.4. We can complete group theory modulo A by giving to the A-normalized
completion the set of equations{

x ∗ e = x e ∗ x = x
x ∗ I(x) = e I(x) ∗ x = e

Unlike Knuth–Bendix completion, the new rule x ∗ (I(x) ∗ y) → y and the new equation
x ∗ (y ∗ I(x ∗ y)) = e will be obtained without calling unification, because they are in
ΨA(I(x) ∗ x, e) and ΘA(I(x) ∗ x, e) respectively.

4.2. using symmetrization

When S contains at least Abelian group theory, we can optimize much further the
normalizing pair by using symmetrization. The idea is that in an equation u1 + · · ·+un =
v1 + · · ·+ vm, we may move one term from one side to the other changing its sign. This
notion of symmetrization is inspired by (Le Chenadec, 1986). We use the abbreviation
nt for t+ · · ·+ t︸ ︷︷ ︸

n times

.

Definition 4.5. The symmetrization of a pair (u, v) is obtained in the following way:
let w be the AG-normal form of u+(−v), written as w = n1w1 + · · ·+nkwk, with ∀j ≥ 2,
w1 Â wj. Then sym(u, v) = (n1, w1,−n2w2 − · · · − nkwk). If there is no maximum wi,
sym(u, v) is undefined.

4.2.1. Abelian group theory

Definition 4.6. For a pair (u, v) that has a symmetrization (n, s, t), let ΨAG(u, v) =
s→ t if n = 1 and

ΨAG(u, v) =
{
ns→ t
−s→ (n− 1)s+ (−t)

if n ≥ 2 (notice that the right-side of the second rule may need further AG-normalization).
Let

ΘAG(u, v) = ΘACU(ns, t) ∪ Σ1(ns, t) ∪ Σ2(ns, t)

where
Σ1(u, v) = CPAC(u→ v, x+ (−x)→ 0)
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Symmetrization 1

s
σ,p←−−−−→

u+v=w
t=⇒ s

σ,p′←−−−−−−→
u=(−v)+w

t′
(≥p)∗
−−S−→ t if s = s↓S , u Â v and u Â w.

Symmetrization 2

s
σ,p←−−−−−−→

u+(−v)=w
t=⇒ s

σ,p′←−−−−→
u=v+w

t′
(≥p)∗
−−S−→ t if s = s↓S , u Â v and u Â w.

Symmetrization 3

s
σ,p←−−−−−−−−−−−−→

(−u)+(−u)+v=w
t=⇒ s

σ,p′←−−−−−−−−→
(−u)+v=u+w

t′
(≥p)∗
−−S−→ t if s = s↓S , u Â v.

Cancelation

s
σ,p←−−−−−−→

u+w=v+w
t=⇒ s

σ′,p′←−−→
u=v

t if s = s↓S .

Figure 11. Proof reduction: symmetrization.

where superpositions are computed only in strict subterms of u, and

Σ2(u, v) = {uσ = vσ | σ = x 7→ 0 or − y or y + z if u D −x}
If (u, v) does not have a symmetrization, the equation u = v will be considered as not
orientable.

Example 4.7. If u = a + a + (−b) + c + c and v = a + b + b + c, then u + (−v)
normalizes to a+ (−b) + (−b) + (−b) + c. If the ordering makes a greater than (−b) and
c, then sym(u, v) = (1, a, b + b + b + (−c)) and ΨAG(u, v) = {a → b + b + b + (−c)}.
If the ordering makes −b greater than a and c, then sym(u, v) = (3, b, (−a) + (−c)) and
ΨAG(u, v) = {b+ b+ b→ (−a) + (−c),−b→ b+ b+ a+ c}.

The pair above defined is AG-normalizing only if the ordering Â satisfies a particular
property w.r.t. the operators + and −.

Proposition 4.8. Let us assume that the term ordering satisfies the following property:
for all terms u, v and w which do not have +, 0 or − at the top, if u Â v and u Â w
then u Â (−v) + w. Then the pair (ΘAG,ΨAG) defined above is AG-normalizing.

Proof. Symmetrization induces new proof reduction rules shown in Figure 11, and
the inference of symmetrization can be reflected by several applications of these rules
and the rules for the general S-normalizing pair. These rules are sufficient for reflecting
symmetrization at the proof level: let us consider an equational step

s
σ,p←−−→
u=v

t

with u Â v, let us assume sym(u, v) = (n, s, t). By the Cancelation rule we can remove
common subterms of u and v (hence reflecting at the proof level the AG-normalization
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of u + (−v)). Furthermore, s occurs necessarily in u since u Â v, hence there are two
cases:

1 s occurs in u under a minus sign: there are no occurrences of −s in v (because of
cancelation), applying Symmetrization rules will move all subterms of u to the
right except one −s, hence the equation applied will be −s→ t.

2 s does occur in u under a minus sign: there are no occurrences of s in v (because of
cancelation), applying the two first Symmetrization rules will move all subterms
of u to the right except all occurrences of s, hence the equation applied will be
ns→ t.

We remark finally that these rules decrease w.r.t. the proof ordering, because of the
property we assumed on the term ordering. 2

An ordering satisfying the property above could be for example a precedence-based
ordering (like the recursive path ordering if there is only + as AC symbol, or the associa-
tive path ordering and its extensions if there are other AC symbols), with a precedence
− > + > 0 and all other symbols greater than −.

This symmetrization technique improves a lot over standard AC completion when the
set of equations to complete contains Abelian group theory. Here are some examples.

Example 4.9. During the completion of commutative ring theory modulo AG, the equa-
tion (x∗y)+(x∗0) = x∗y is generated. The orientation via symmetrization produces the
rule x∗0→ 0. We see in this case that the symmetrization technique includes in particular
cancelation. Another equation generated during this completion is (x∗y)+(x∗(−y)) = 0.
Symmetrization gives directly the rule x ∗ (−y) → −(x ∗ y), without computing any AC
critical pair, as in the usual AC completion.

Improvement in practice will be shown in section 6.
It is possible to apply the symmetrization technique to normalized completion mod-

ulo commutative ring theory, Boolean ring theory, and also to theories defining finite
fields (Marché, 1993). Unfortunately, there is no convergent system for field theory, be-
cause of the negative conditional equation x ∗ x−1 = 1 if x 6= 0.

4.2.2. commutative ring theory

Definition 4.10. For a pair (u, v) that has a symmetrization (n, s, t), let ΨCR(u, v) =
{s→ t} if n = 1 and

ΨCR(u, v) =
{
ns→ t n(x ∗ s)→ x ∗ t
−s→ (n− 1)s+ (−t) −(x ∗ s)→ (n− 1)(x ∗ s) +−(x ∗ t)

if n ≥ 2. Let

ΘCR(u, v) = ΘACU(+,0)(ns, t) ∪ΘACU(∗,1)(ns, t) ∪ΘAC0(∗,0)(ns, t) ∪
Σ1(ns, t) ∪ Σ2(ns, t) ∪ Σ3(ns, t)

where Σ1(u, v) and Σ2(u, v) are the same as for AG, and

Σ3(u, v) = {uσ = vσ | σ = x 7→ x+ y or − x if u D x ∗ z}
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Distribution

s
σ,p.q←−−−−−−→

u+···+u=v
t=⇒ s

∗
−−S−→ s′

σ′,p←−−−−−−−−−−−−→
x∗u+···+x∗u=x∗v

t if s = s↓S , s(p) = ∗ and u Â v.

Negation

s
σ,p.q←−−→
−u=v

t=⇒ s
∗
−−S−→ s′

σ′,p←−−−−−−−−→
−(x∗u)=x∗v

t if s = s↓S , s(p) = ∗ and u Â v.

Figure 12. Proof reduction: distribution and negation.

Proposition 4.11. If we assume the term ordering satisfying the required property for
symmetrization, then the pair (ΘCR,ΨCR) defined above is CR-normalizing.

Proof. ΨCR(u, v) contains critical superpositions of u→ v inside x∗(y+z)→ x∗y+x∗z
and x∗(−y)→ −(x∗y), and this induces new proof reduction rules as shown in Figure 12.
ΘCR(u, v) contains critical superpositions of S inside u→ v. 2

This optimized normalizing pair allows to compute Gröbner bases much more efficiently
than AC-completion, as we will see in Section 6.

4.2.3. Boolean ring theory

Boolean ring theory BR is defined by x+ 0→ x x+ x→ 0 x ∗ (y + z)→ (x ∗ y) + (x ∗ z)
−x→ x x ∗ 0→ 0
x ∗ 1→ x x ∗ x→ x

In this case, the definition of normalizing pair is simpler since rules x + x → 0 and
−x → x implies that after a symmetrization, the leading coefficient will always be 1. It
is not necessary then to have more than one rule in ΨBR.

Definition 4.12. For a pair (u, v) that has a symmetrization (1, s, t), let ΨBR(u, v) =
{s→ t}. Let

ΘBR(u, v) = ΘACU(+,0)(s, t) ∪ΘACU(∗,1)(s, t) ∪ΘAC0(∗,0)(s, t) ∪
ΘACN(+)(s, t) ∪ Σ4(ns, t)

where

Σ4(u, v) = {uσ = vσ | σ = x 7→ x+ y if u D x ∗ z}

Proposition 4.13. The pair (ΘBR,ΨBR) defined above is BR-normalizing.
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4.2.4. finite fields theory

Finite field theory FF(p) for a prime number p is defined by x+ 0→ x x ∗ 0→ 0
x ∗ 1→ x −x→ (p− 1)x
x ∗ (y + z)→ (x ∗ y) + (x ∗ z) px→ 0

We can use in these cases another kind of symmetrization, which will act similarly to
taking the inverse of the leading coefficient: if we have an equation of the form ns = t then
we would like to symmetrize it into s → (n−1 mod p)t in some sense. In the finite field
FF(p) we do not need an inverse operator to do that because n−1 ≡ np−2 (mod p).
More formally, we know that for any terms s and t, and any positive integer n, the
equation s = nt (where n denotes np−2 mod p) is an equational consequence of ns = t
and FF(p) .

Definition 4.14. For a pair (u, v) that has a symmetrization (n, s, t), let ΨFF(u, v) =
{s→ nt}. Let

ΘFF(u, v) = ΘACU(+,0)(s, nt) ∪ΘACU(∗,1)(s, nt) ∪ΘAC0(∗,0)(s, nt) ∪
Σ4(s, nt) ∪ Σ5(s, nt)

where Σ4(u, v) is the same as for CR, and

Σ5(u, v) = CPAC(u→ v, px→ 0)

where superpositions are computed only in strict subterms of u.

Proposition 4.15. The pair (ΘFF,ΨFF) defined above is FF(p)-normalizing.

We will see in Section 6 an example which shows how to compute Gröbner bases of
polynomial ideals over FF(p) with FF(p)-normalized completion, more efficiently than
with AC-completion [it has already been remarked by Bündgen that computation of such
a Gröbner basis can be done by AC completion (Bündgen, 1991a)].

5. Decidability of the Word Problem for Some Classes of Equational
Theories

Now, we investigate termination issues of the completion process when the initial set of
equations is ground. It is already known that ground AC-completion terminates (Naren-
dran and Rusinowitch, 1991; Marché, 1991), and here we extend this result to S-normalized
ground completion for some interesting theories S.

5.1. general results

We first look at some general results, true for arbitrary S. To prevent ground com-
pletion from failure, we need to assume that the AC ordering we use is total on ground
terms. It is not very easy to define such an ordering, but it is possible (Narendran and
Rusinowitch, 1991; Nieuwenhuis and Rubio, 1993; Marché, 1993).

We define the notion of generator set of a term. This extends Narendran and Rusi-
nowitch’s definition (Narendran and Rusinowitch, 1991). Let F be the set of functions
symbols that appear in S or are AC.
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S

u v

γF (u) γF (v)

Figure 13. Decreasingness of generator set (case 2.a).

S

u v

t t′

γF (u) γF (v)

Figure 14. Decreasingness of generator set (case 2.b).

Definition 5.1. Let u be a (flat) term. The generator set of u (w.r.t F ) is defined by
γF (u) = {} if u is a variable, otherwise γF (u) = {u} if Head(u) /∈ F and γF (u) =⋃

1≤i≤n γF (ui) if u = f(u1, . . . , un) with f ∈ F . For a set of equations E and a set of
rules R, we denote by ΓF (E) (resp. ΓF (R)) the union of generator sets of all members
of equations of E (resp. rules of R). Finally, the generator set of E and R, denoted
GF (E,R), is the union of ΓF (E) and ΓF (R).

Notice that all these sets are true sets, not multisets. Intuitively, γF (u) is the set of
subterms of u obtained by erasing each top symbol of u which is in F . Note that a symbol
of F occurring below a non-F is not erased. For example γ+,−,0(f(a, b+ c)+ (−d)+0) =
{f(a, b+ c), d}.

We are going to prove that along any derivation of the ground completion process,
GF (En, Rn) cannot increase between two steps where En and Rn are completely simpli-
fied.

Let us first remark that in the case S = CR completion may generate rules with
variables even if the initial set is ground. We cannot assume then in the following that
the rules we work with are ground, but they still have a particular property: paths
between root and variables contain only symbols in F . This is enough to insure that
generator sets do not contain variables.

In the following, we consider a set of rules R satisfying this property.
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u v

γF (u) γF (v)

Figure 15. Decreasingness of generator set (case 3.a).

Proposition 5.2. Assume E;R
∗
` E′;R′ is a sequence of simplifications, that is in-

ferred by Normalize, Delete, Simplify, Compose or Collapse, such that E′;R′ is
no longer simplifyable. Then

GF (E,R) ºmul GF (E′, R′)

Proof. In the figures mentioned below, the white parts represent symbols in F , the
black parts symbols not in F , and gray parts represent redexes.

We reason by induction on the length of the sequence. Let us consider the first step of

the derivation E;R ` E′′;R′′
∗
` E′;R′ (and assume GF (E′′, R′′) ºmul GF (E′, R′) by

induction the hypothesis).

1 If it is Delete: trivial.
2 If it is Normalize: there is a term u in E which is rewritten to v by a rule in S.

There are two cases depending whether the position where the rule is applied is
inside γF (u) or not:

(a) if rewriting is done in the top part (Figure 13), the generator set stays the
same, or decreases if there rules in S that erase variables (like x ∗ 0→ 0);

(b) otherwise, rewriting is inside a generator subterm t (Figure 14). We cannot
be sure that γF (u) decreases because there may have been several occurrences
of t in E;R. We can only say that GF (E;R) = M ∪ {t} and GF (E′′;R′′) =
M ∪ {t, t′}. We will conclude at the end of the proof

3 If it is Simplify, Compose or Collapse: there is a term u in E or R which is
rewritten to v by a rule l→ r in R.

(a) if there exists t ∈ γF (u) such that u|p is a subterm of t then γF (v) = γF (u)−
{t}+ {t[r]q} (where q is the position of t such that t|q = u|p), we have t Â t′ =
t[r]q (Figure 15), but we have the same remark as before: there may exist several
occurrences of t, hence GF (E;R) = M ∪ {t} and GF (E′′;R′′) = M ∪ {t, t′}.

(b) otherwise, l is built from terms of γF (u) and symbols in F , in particular
γF (l) ⊆ γF (u), and γF (v) contains terms that are already in γF (u) or in γF (r)
(Figure 16). Notice that this is essential here that rules are ground or that vari-
ables do not occur below a symbol not in F , because this implies that γF (v)
really contains terms in γF (r), not only instances of terms in γF (r).
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u v

l r

γF (u) γF (v)

Figure 16. Decreasingness of generator set (case 3.b).

We are left to finish the proof of cases 2.b and 3.a: in both cases we have GF (E;R) =
M ∪ {t}, GF (E′′;R′′) = M ∪ {t, t′} where t Â t′. Moreover we know that t is R-
simplifyable. This implies that t cannot occur anymore in GF (E′;R′) because E′;R′

is no longer simplifyable and if t is R-simplifyable, it is also R′-simplifyable. (Notice
that we don’t say that t has to be rewritten to t′ because we do not know whether R is
confluent, and we do not impose any strategy of application of simplification. It is even
possible that for example, an occurrence of t is rewritten by a rule, then this rule being
collapsed by another, hence one could imagine that the other occurrences of t could not
be rewritten anymore: this is not true because t is still simplifyable, by the rule which
collapsed the first rule !)

Let us denote GF (E′;R′) by M ′. We are now in this situation: GF (E;R) = M ∪ {t},
GF (E′′;R′′) = M∪{t, t′}, t Â t′, t /∈M ′ andM∪{t, t′} ºmul M

′ by induction hypothesis.
By definition of multiset ordering and since t /∈M ′ we know that M ′ = M ′′∪{t1, . . . , tk}
where M ∪ {t′} ºmul M

′′ and t Â ti for all i (k may possibly be 0). But then M ∪
{t} Âmul M ∪ {t′, t1, . . . , tk} since t Â t′, hence M ∪ {t} Âmul M

′′ ∪ {t1, . . . , tk} since
M ∪ {t′} ºmul M

′′, hence M ∪ {t} Âmul M
′ by definition of M ′′. Hence we have finally

obtained GF (E;R) ºmul GF (E′;R′). 2

Definition 5.3. We say that the strategy simplifies first if the simplification rules Nor-

malize, Delete, Simplify, Compose and Collapse have priority on Orient and
Deduce.

This condition on the strategy is essential. Otherwise, completion could diverge whereas
R∞ is finite indeed (Marché, 1991). Now let us show the main result of this section.

Theorem 5.4. Let us assume the normalizing pair used in completion keeps the same
or decreases GF when rule Orient or Deduce is applied. Assume that the strategy
simplifies first. Then if completion does not terminate, R∞ is infinite and there are
infinitely many rules such that the top symbol of their left-hand side is in F .

Proof. By contradiction: if R∞ is finite, there exists a j such that Rj = R∞, and then
all the following derivation steps produce equations that are simplified and then deleted
(because they are joinable by R∞) before being eventually used for deduction. Hence
derivation as to be finite since CPT (R∞) is finite itself.

Now, let us assume there are infinitely many rules l → r such that Head(l) /∈ F .
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Derivation is of the form

E0; ∅
∗
` En1 ;Rn1

+

` En2 ;Rn2

+

` · · ·

where all Eni ;Rni are inter-reduced. By proposition 5.2 the sequence of generator sets
GF (Eni , Rni) is decreasing with respect to the well-founded ordering ºmul, hence it
eventually becomes constant. Let us call G∞F this constant value. The left-hand sides of
rules of R∞ whose head symbol is not in F are in the finite set G∞F , hence there are some
rules that have the same left-hand side. But this is not possible if Â is total because
Collapse can then be applied. 2

Let us now discuss the hypothesis that neither Orient nor Deduce increase the
generator set. For Orient, this depends upon the choice of the normalizing pair, but
the fact is that the hypothesis is true for each choice of normalizing pair we considered
earlier: the reason is that in the case of ground completion, the Θ set is always empty
(unification of a rule of S and a ground rule produces only joinable critical pairs, since
unification is equivalent to matching in this case).

For Deduce, this depends upon the choice of the theory T modulo which unification
is done, but we have the following result which can be applied in each case.

Lemma 5.5. When equations are ground, and the theory T used for unification is AC or
ACU or ACI or ACUI, then Deduce keeps the same GF .

Proof. AC-deduction between two ground rules is always of the form (Narendran and
Rusinowitch, 1991; Marché, 1991):{

s+ t1 → u1

s+ t2 → u2
` t1 + u2 = t2 + u1

because superpositions not at top or superpositions at top between rules whose top
symbols are not AC are useless, since in such a case Collapse can be applied.

This is also the case for ACU, ACI or ACUI deduction, by the second remark following
proof of Theorem 3.8. 2

5.2. termination of completion in several interesting cases

In each case considered in the following, we consider the cases above to insure that the
inference rules Orient and Deduce do not increase GF (E,R). Then, by assuming that
completion does not terminate, we use the previous theorem to build a contradiction.
This will use also the following variant of Higman Lemma (Higman, 1952).

Lemma 5.6. If E is a finite set, in any infinite sequence M1,M2,M3, . . . of multi-sets on
E there exists an infinite sequence of indices i1, i2,. . . such that Mi1 ⊆Mi2 ⊆ · · ·.

We first have to show how to define a total ordering in each case we are interested in.
In the case of simple theories ACU, ACI, ACUI, AC0 and ACN, we can use the total AC
ordering of Narendran and Rusinowitch (Narendran and Rusinowitch, 1991) or the one
of Nieuwenhuis and Rubio (Nieuwenhuis and Rubio, 1993) (with the condition + > 0 for
ACN, in order to orient x+ x→ 0).
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In the case of Abelian group theory (AG), we can use a recursive path ordering with a
total precedence of the form F > − > + > 0, and such that + has multi-set status and
all other operators have lexicographic status (for totality).

In the case of commutative ring theory (CR), it is a bit more complicated since the
total AC orderings above always orient distributivity in the wrong way! The solution is
to use the lexicographic extension of the modified associative path ordering (Delor and
Puel, 1993) with precedence 1 > ∗ > − > + > 0, and then any total AC-compatible
ordering (Marché, 1995). Such an ordering can be used also for Boolean ring (BR) and
finite fields theories FF(p).

Theorem 5.7. If the initial set of equations is ground, then the S-normalized completion
terminates when S is either AC, ACU, ACI, ACUI, AC0, ACN, AG, CR, BR or FF(p).
As a consequence, every equational theory presented by C ∪S, where C is a set of ground
equations and S is one of the previous theories, has a finite S-normalized canonical
rewriting system, in particular it has a decidable word problem.

Proof. If S is either AC, ACU, ACI, ACUI, AC0, ACN: if completion does not termi-
nate, we know from theorem 5.4 that there are infinitely many rules whose top symbol
is in F , but since there are finitely many symbols, we know in fact that there is a
function symbol f in F such that infinitely many rules have f as top symbol in the
left-hand side. But F in these cases contains only AC operators and constants, and it is
not possible that several rules have a given constant as left-hand side (or else Collapse

should be applied), f is necessarily an AC operator, say +. Hence we have an infinite
sequence of rules l1 = l1,1 + · · · + l1,k1 → r1, l2 = l2,1 + · · · + l2,k2 → r2, . . . in R∞. We
know that li,j belongs to the finite set GF (R∞). Applying lemma 5.6 on the multi-sets
M1 = {l1,1, . . . , l1,k1},M2 = {l2,1, . . . , l2,k2}, . . . we know that there exist i and j such
that Mi ⊆ Mj (modulo AC), hence li is a sub-term modulo AC of lj , hence lj → rj is
simplifyable, a contradiction.

if S is AG: the difference between this case and previous ones is that there is also
the unary operator − in F , so it is possible that we have in fact infinitely many whose
top symbol at left-hand side is −. Hence we have an infinite sequence of rules −l1 →
r1,−l2 → r2, . . . in R∞, but li cannot have a + at top because it would not be in S-
normal form, hence li belongs to the finite set GF (R∞), hence there are i and j such
that li = lj and then R∞ is not reduced.

if S is CR: there is a little difficulty here since the completion generates rules with
variables. Lemma 5.5 cannot be applied here since there are rules with variables, but
it is still true that GF does not increase, because of the particular forms of rules we
have: deduction between rules whose left-hand sides are either of the form l, l + · · ·+ l,
x ∗ l+ · · ·+ x ∗ l, −l→ r or −(x ∗ l) where l is ground, can produce only ground critical
pairs — or pairs of the form x ∗ s1 + · · ·+ x ∗ sn = x ∗ t1 + · · ·x ∗ tm where each si and
tj is ground — which have the same GF . We know then that GF (R∞) is finite. If there
are infinitely many rules whose top symbol is ∗ or −, we conclude just as before. If there
are infinitely many rules whose top symbol is +, of the form l1 + · · · + lk → r: thanks
to symmetrization we know that the subterms l1,. . . ,lk are identical. We know then that
we have an infinite sequence of rules n1l1 → r1,n2l2 → r2,. . . from which we can extract
a sub-sequence such that the top symbols of the lis are the same symbol f . If this f is
not ∗ we can conclude easily, but if f is ∗ we need Higman Lemma. We know that each
li is of the form li,1 ∗ · · · ∗ li,ki , where each li,j is in the finite set GF (R∞). By Higman
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AC ACU AG AG∪ACU RRL REVEAL REDUX

Computation time 10”18 8”70 1”37 1”42 4”9 22”6 9”50

Number of critical
pairs generated

375 299 46 39 108 406 109

Figure 17. Commutative ring theory modulo AC, ACU and AG.

Lemma we can assume without lost of generality (by extracting again a subsequence)
that {l1,1 ∗ · · · ∗ l1,k1} ⊆ {l2,1 ∗ · · · ∗ l1,k2} ⊆ · · ·, hence l1 is a subterm of l2, which is a
subterm of l3, etc. Let us remark finally that the infinite sequence of natural numbers
n1, n2, . . . cannot infinitely decrease hence there are i and j such that ni ≤ nj , and then
nili is a subterm of nj lj , hence Collapse could be applied.

if S is BR or FF: we conclude as in the case S = CR (even more easily since there are
no extra variables in these cases). 2

Remark: an interesting open question is what property do the S above have in common
which insure termination of S-normalized completion? One could think about the fact
that each associative operators is also commutative, but this is not sufficient: we will see
that it does not work with S =ACD.

6. Some Implementation Results

All the computation times below are of course machine-dependent. We give them for
information, but the really significant data are the number of critical pairs computed.

6.1. commutative rings modulo AC, ACU and AG

We first show what happens when completing commutative ring theory modulo AC,
ACU, AG and AG ∪ ACU. Figure 17 shows practical results obtain by CiME and also
compares with the other AC completion systems RRL (Kapur and Zhang, 1989), RE-
VEAL (Anantharaman, 1993) and REDUX (Bündgen, 1993). We can see that completion
modulo ACU, and moreover AG, are more efficient than AC completion. Our implemen-
tation is not as optimized as the other systems above hence AC completion is less efficient,
but when completing modulo AG, it is more efficient indeed. The following example shows
well why normalized completion is “optimized” w.r.t. AC completion: it is not only be-
cause some equations are already built in, it is also because new equations are inferred
faster. When orienting the equation x + (−x) = 0 in ACU-normalized completion, the
equation 0+(−0) = 0 appears to be in Θ, from which you obtain the rule −0→ 0. In AC
completion you need to compute some critical pairs to obtain this equation, that is to say
you need AC unification to infer this new rule but not in ACU-completion. Note that this
happens even if you still use AC unification, not ACU, as it is the case for the moment in
our implementation. In the case of AG-normalized completion, the improvement is even
more spectacular as mentioned in Example 4.9.
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6.2. a canonical rewriting system for a finitely generated Abelian group

Consider the Abelian group G presented by E = {2a − 3b + c = 0,−3a + 2b + 3c =
0, 2a + 2b − 2c = 0} (Lankford et al., 1984). We give the set of equations above to the
AG-normalized completion algorithm, and the result is {b→ 9a, c→ 25a, 30a→ 0,−a→
29a}. The AG-normalized completion of this system with our implementation takes 5”67
and computes only 11 critical pairs, whereas the AC completion of E ∪ AG by RRL
takes 3’27” and computes 837 critical pairs and by REVEAL takes 22” and computes
183 critical pairs. The differences between AC-completions with the different systems
are certainly due to different choices in the completion strategy, but of course, the main
remark is that AG-normalized completion using symmetrization is the good strategy!

6.3. computation of a Gröbner basis of a polynomial ideal

Now we show an example of Gröbner basis computation using normalized comple-
tion. When polynomials have integer coefficients, computing a Gröbner basis amounts to
normalized completion modulo commutative ring theory.

Example 6.1. To compute a Gröbner basis of the ideal (2X2Y − Y, 3XY 2 − X) over
Z (Kandri-Rody and Kapur, 1984) we give to CR-normalized completion the set of equa-
tions {2XXY − Y = 0, 3XY Y −X = 0} where X,Y are two constants, Y > X in the
precedence. The completion will produce:

2XXY → Y 2XXY x→ Y x
−XXY → XXY − Y −XXY x→ XXY x− Y x
XXY Y → XX − Y Y
3Y Y → 2XX 3Y Y x→ 2XXx
−Y Y → 2Y Y − 2XX −Y Y x→ 2Y Y x− 2XXx
2XXX → X 2XXXx→ Xx
−XXX → XXX −X −XXXx→ XXXx−Xx

which corresponds to the Gröbner basis {2X2Y −Y,X2Y 2−X2+Y 2, 3Y 2−2X2, 2X3−X}.
It takes 18” to be completed by CiME and computes 103 critical pairs. AC-completion with
RRL takes 35” and compute 661 critical pairs, takes 5’50” with REDUX and computes
630 critical pairs, and takes 12’30” with REVEAL and computes 1933 critical pairs.

For polynomials with coefficients in a finite field, we have seen this can be done by
FF (p)-normalized completion.

Example 6.2. The same example as above over F5 produces XXX → 3X
YXX → 3Y Y
Y Y → 4XX

which corresponds to the Gröbner basis {X3− 3X,X2Y − 3Y 2, Y 2− 4X2}. It takes 4”23
to be completed by CiME and computes 16 critical pairs.

The implementation results above shows of course that normalized completion is cer-
tainly not as efficient as a dedicated Gröbner bases computation techniques, but that’s
not surprising at all.
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The problem of embedding the computation of a Gröbner basis of a polynomial ideal
with coefficients in an infinite field likeQ, in an S-normalized completion for a well-chosen
S remains open.

An interesting remark is that the termination result of the well-known algorithms for
computing Gröbner bases are particular cases of the termination result we have given.

6.4. theory of rings homomorphism

Let us finish this list of examples by a CR-normalized completion of a non-ground set of
equations. Given two commutative rings with operators (+, 0,−,×, 1) and (⊕, O,ª,⊗, I)
respectively, the theory of an homomorphism h is given by{

h(x+ y) = h(x)⊕ h(y)
h(x× y) = h(x)⊗ h(y)

The normalized completion modulo CR(+, 0,−,×, 1)∪CR(⊕,O,ª,⊗, I ) returns the set
of rules  h(x+ y)→ h(x)⊕ h(y) h(x× y)→ h(x)⊗ h(y)

h(0)→ O h(−x)→ ªh(x)
h(x)⊗ h(1)→ h(x)

Notice that the last rule corresponds to the fact that h(1) is an identity for ⊗ on the
codomain of h only (the equation h(1) = I is not an equational consequence of our
specification).

Normalized completion takes 5”5 and computes 54 critical pairs, whereas AC-completion
by RRL takes 14” and computes 491 critical pairs. In fact, to be honest we should com-
pare the results obtained by AC-completion and the addition of the results obtained by
completion of ACU modulo AC (1 critical pair), AG modulo ACU (135 critical pairs), CR
modulo AG (39 critical pairs) and homomorphism modulo CR: the total is 229 critical
pairs, still significantly lower than the 491 critical pairs obtained by AC-completion.

We see in fact that normalized completion behaves as a kind of modular completion,
and it is significantly more efficient than AC-completion.

7. Conclusions

Figure 18 shows, for various E, known results on decidability or undecidability of the
word problem of the classes of equational theories defined by E and an arbitrary set of
ground equations. In the cases where the word problem is decidable, this is a consequence
of the termination of E-normalized completion, so the result is much stronger: every
E-ground theory has an E-normalized rewrite system. The undecidability of the word
problem for ground theories modulo associativity was proved independently by Post and
Markov in 1947 (Markov, 1947; Post, 1947), for group theory it is a result of Novikov in
1955 (Novikov, 1955; Stillwell, 1982) and for ground theories modulo ACD it is a recent
result (Marché, 1992).

As a conclusion, we have obtained theoretical results: the unification and the gen-
eralization of decidability results, and a new completion algorithm, which generalizes
the already known completion modulo a theory. It also enjoys practical advantages: it
needs an AC-compatible ordering only, not E-compatible, it allows to choose the most
efficient unification algorithm, and allows in particular cases the use of optimized nor-
malizing pairs (Θ,Ψ) of equations and rules. It has also the interesting property that it
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Figure 18. Decidability of the word problem of ground theories modulo E, for some E.

unifies Knuth–Bendix completion (and its extensions AC completion, ACU-constrained
completion) and Buchberger algorithm for computing Gröbner bases.

Future work will be to find other interesting particular theories, like non-commutative
groups. To solve the problem of fields theory, it may be interesting to see if we can use
a conditional rewrite system for S. From a practical point of view, it remains to check
whether using ACU or ACI unification is really interesting (our implementation uses only
AC unification). We also have to study whether the well-known critical pair criteria can
be applied to normalized completion.
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