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ABSTRACT 

This paper gives a rational method of determining the congruence of m x m real 
symmetric pairs over the reals R. If (S,, T,) and (S,, T2) are nonsingular pairs, then 
( S1, TJ is congruent to (S,, T,) over R if and only if Si- ‘I’, is similar to Ss- ‘Z’s and the 

signatures of Srf(Si-‘T$ g(S;‘T,) and S,f(S,lT,)kg(S;lTZ) are equal for k 
=0,1,2 )..,, m - 1 and for all g(x) in I’, where P is a relatively small set of real 
polynomials and f(x) is a fixed polynomial. This result is then extended to singular 
pairs using theorems on minimal indices. 

We say that a pair of m X m matrices (A, B) is a nonsingular pair if A is 
nonsingular; otherwise the pair is called singular. Two pairs of m x m real 
symmetric matrices, (S,, T,) and (S,, T,), are congruent if and only if there 
exists a real nonsingular matrix C such that C’S,C= S, and C’T,C= T,, 
where C’ is the transpose of C. 

Define @ ={(S,T)/S,T are m X m real symmetric matrices and (S, T) is a 

nonsingular pair}. Now consider two pairs (S,, TJ and (S,, T,) in @ such that 
Sr- IT, is similar to S, ‘TzI,. Let p(x) be the characteristic polynomial of SIP ‘T, 

and S, ‘Tz, and gcd ( p(x), p’( x)) be the greatest common divisor of p(x) and 
p’(x), where p’(x) is the derivative of p(x). Define f(x) = p (x)/gcd 

( P(43 P’(4). 7% en we have f(x) = (x - A,)( x -A,) * . . (x -A,), where the hi’s 
are the distinct real characteristic roots of Sl-‘T, and S,‘T, for i = 1,2,. . , , r, 
and are the distinct nonreal roots for i = r+ 1, r+ 2,. . . ,n. Let us assume that 
h, > A, > . . . A,, and consider 
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Here the fi’s are the (r~ - i)th d erivatives of f divided by a positive constant. 

Let 

( I 

n 7 1 

p= g(x) g(x)= II fi(x)"> iiE{0,1,2}, i=l,2 )...) n-l . (1) 
i=l I 

Now we will state an effective criterion for congruence of pairs in &? in the 
following theorem: 

THEOREM. Let (S,, T,), (S,, T,) be in @; then (S,, T,) is congruent to 

(S,, T2) if and only if SC ‘T, is similar to S, IT2 and 

sigS1f(S;1T~)kg(S;1T1)=sigSef(S,’T,)kg(S;1T2). (*) 

foraZZg(x)EPand k=0,1,2 ,..., m - 1, where sigA denotes the signature of 
symmetric matrix A. 

The corresponding theorem for the Hermitian case is also true, and the 
proof is similar to the real case. The following lemmas will be used in the 
proof of this theorem. 

LEMMA 1. Let (S, T) be in & and h(x) E R [xl, where R is the field of 
real numbers. Then S h( S _ ‘T) is real symmetric. 

The lemma is easily proved by noting that [ S( S -lT)k]’ = S( S -lT)k for any 
natural number k and that h(A)’ = h(A’) for each square matrix A. 

Notation. Eq is the 9 X 9 matrix with l’s on the antidiagonal [i.e., the 
(i, j)th positions for which i + j = 9 + l] and O’s elsewhere; J4 is the 9 X 9 
matrix with l’s on the first superdiagonal and O’s elsewhere; I9 is the 9 x 9 
identity matrix. 

Recall that for aER, sgna is a//al if a#0 and 0 if a=O. 

LEMMA 2. Let h(x),m(r)ER[ ] r and XER with h(h)=O# h’(X). Let 

E=E,,]=],, I=lq. Then h(XZ+J)k=Ofor k>,q, and 

sigEh(AZ+J)4-1m(AI+J)=sgnh’(h)g-1m(X). 

Proof. By Taylor’s Theorem, we have [since Jq = 0 and h (AZ) = h @)I] 

q-1 h”‘(XZ) 
h(hl+J)= 2 7”z 

I=1 * 
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where cI = h(‘+‘)(X)/[( Z+ l)!h’(X)], 1= 1,. . . , q - 2 (in particular, ca = l), and 
h(‘)(x) denotes the Ith derivative of h(x). Hence h(hI + _l)k = 0 for all k > q. 

Let m(x) E R [xl. Then routine calculation gives 

Eh(AI+J)‘-‘m(XZ+J)= h’(h)‘+m(X)E.F-‘. (2) 

The matrix (2) is a q X q matrix whose (q,q)th entry is h’(h)q-‘m(h) and 
whose other entries are all zero. Hence the signature of the matrix (2) equals 
sgn h’(X)Y-‘m(h). n 

LEMMA 3. Let (S,, T,), (S,, T,) be in d . Zf (S,, T,) is congruent to (S,, Ta), 
then S, h( S, ‘T,) is congruent to S,h( S2-1T,) for all h(x) E R [xl. 

The corresponding result is also true for the Hermitian case. 

LEMMA 4. If (S, T) is an m x m nonsingular Hermitian p&r such that 

S - ‘T bus no real characteristic roots, and h(x) E R [xl, then sig Sh (S -‘T) 
= 0. 

Proof. Without loss of generality [2], we may assume that S -lT has only 
one pair of complex conjugate nonreal elementary divisors, (x-X)4 and 
(x-X)4. Then (S, T) is conjunctive with 

Let h(x) E R [xl. Then S h (S -‘T) is conjunctive with 

M= ’ K* , I 1 K 0 

where K = Eqh (hl, + .l,) and K * is the complex conjugate transpose of K. 
Since M is conjunctive with - M, we have sig Sh (S - ‘T) = sig M = 0. W 

COROLLARY 5. Let (S, T) be an m X m nonsingular Hermitian pair. If 
(S, T) is conjunctive with (A, CBA,, B, @ B,), where A,,A,, B,, B, are matrices 
such that A;‘B, has only real roots and A,‘B, has only nonreal roots, then 

sigSh(S-lT)=sigA,h(A,lB,) for aE1 h(x)ER[x]. 
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Notation. F denotes any field; A = (aii) denotes an n X m matrix whose 

(i, j)th element is aii; when A is over R, sgnA denotes the matrix B = (bii) 

such that bii =sgnaii for all i,i. 

LEMMA 6. Let X1,X,, . . . , X, be nonzero n X 1 column vectors over F. lf 
the nx(r-1) matrix [X1,X,,..., X,_ J has rank r - 1 and X, can be expressed 

(uniquely) as 

X,= b,X,+ b,X,+ . . . + b,_,X,_, (3) 

for bi E F (not all zero), say with bi #O, then for each sequence yl, yz, . . . , yr 
in F for which yi # yr, the 2n X r matrix 

(4 

has rank r. 

Proof. We will show that the columns of the matrix (4) are linearly 

independent. Let a,, a2,. . . , a, be any sequence in F. Suppose 

a,X,+a,X,+... +a,X,=O 

a,y,X, + a,y,X, + * * . + a,y,X, = 0. (5) 

Then ~~~~(yi-y,)aiXi=O. Therefore ai(yj-yr)=O for all i. But y,#yj; 

therefore at=O. From (3) and (5), we have a,CIz:b,X, = - Zi::aiXi. Since 

X,, X,, *a., X,_ r are linearly independent, we have a,bi = - ai = 0. But bj # 0, 

so a, = 0. Consequently ai = 0 for all i. n 

LEMMA 7. Let X,, X,, . . . , X, be r distinct nonzero n X 1 column vectors 

over F. Then there exist s row vectors (1 X r matrices) Yi = (ail, aiz, . . . , air), 
i=l, 2 ,...,s with s<2’-‘, having the following three properties: (i) Y,=(l, 

1 , . , . , l), (ii) Yj is a (componentwise) product of at most r - 1 rows of the 

n X r matrix [X,, X,, . . . , X,] for i > 2, and (iii) the sn X r matrix 

(6) 
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Proof. The proof is by induction on r. For r = 1, Lemma 6 is obviously 
true. We can take s = 1 and Y, = (1). For r= 2, if Xi, X, are linearly 
independent, then [Xi, X,] has rank 2 and again we can take s = 1, Y, = (1,l). 
If X1,X, are linearly dependent, then consider a row, which we denote by 

(%,a (~~a), of [Xi, X,] such that (~a~ # (~~a. By Lemma 6 with r = 2 

has rank 2. Clearly we can take s = 2 and Y, = (aai, (~a&, which is (a product 

of) one row of [X1,X,]. 
Assume the lemma is true for r= k. Suppose we have k + 1 distinct 

nonzero vectors, Xi, X,, . . . , X,, 1. 

i=l, 2 ,..., s, with Y,=(l, l,..., 

By the induction hypothesis, there exist Yi, 
l), such that the sn X (k + 1) matrix A = [R,, 

Q?, . . . Rk+J [A is the matrix in (6) with r= k+ l] has rank > k, namely with 

fl,, R,,..., R, linearly independent. Also we can take s < ZkP1, and Yj is a 
product of at most k - 1 rows of [Xi, X,, . . . ,Xk+J for i > 2. If R,, . . . ,Rk+l 
are linearly independent, then we are done. If not, then Rk+l = Z:=l biRi for 
some bi E F, not all zero; say bi #O. Now consider a row, which we denote 

by (Y~,Y~,...,Y~+~), of LX,, x2,...,xk+ll such that Y~#Y~+~. Then by Lemma 
6 with T = k + 1, the 2sn X (k + 1) matrix 

R, R, *** R k+l 

YIR, ~2R2 . . . yk+lRk+l 1 
has rank k + 1. The conclusions of the lemma follow immediately. n 

REMARK. Suppose of the r vectors, Xi, X2,. . .,X, of Lemma 7, the first h 

vectors are linearly independent; then the s of the conclusion can be chosen 
< 2’-h. If, in Lemma 7, the characteristic of F is not 2, and if there exist 

rows (1, 1,. , . , 1) and (1, - 1, I,. . . , ( - l)r-l) of [X,, X2,. . . , X,], then for T > 4, 

we can take s G 2(‘-‘)‘2- 1 if T is odd and < 3.2(‘-4)/2- 1 if r is even. For 
rG3, we can take s=l. 

LEMMA 8. Let f(x) = (x - A,)( x -A,). . * (x - An) E R [xl, where hi is real 
for i = 1, 2,. . . , r, nonreal for i=r+l, r+2,...,n. Assume h,>h,>... >A,, 
and con.siderf(x+t)=C~=,f;(x)t”-i. Let 

xi=[sgn(fO(x~)~fi(~ii)~.~.~fn-l(xi))l’ for i = 1, 2,. . . , r. 

Then the Xi’s are distinct and in fact are pairwise linearly independent. 
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Proof First note that sgnf; (Ai) = sgnf (“-i)(&). Since the hi’s are distinct, 
f’(&)#O for i=l, 2,..., r. Consider XP, X, where r > p > q > 1. Then there 
exists /3 E R, $, < p < Aq such that f’( P) = 0 (by Rolle’s theorem). Now apply 
Budan’s theorem [l] to f’(x) and consider the following sequences: 

f’&J3 f’“‘($J,~. . p&J; (7) 

f’(h,L f’“‘(h,), . . . fn)(Xq). 

Then the numbers of variations of signs of the sequences (7) and (8) are not 
equal, by Budan’s theorem; otherwise it would contradict the existence of p. 
Therefore XP # XV, and since fa( x) = 1, it follows that XP and Xg are linearly 
independent. n 

LEMMA 9. Let f&x), fi(x) ,..., fn_l(x), and P be as in (1). Let P be as in 

(1). Z’ken there exist gr(x), g2(r), . . . ,g,(x) EP such that the rX r matrix 

(sgngd (hj)) is nonsingular. 

Proof. The proof follows easily from Lemmas 7 and 8. n 

Proof of the theorem. Suppose (S,, T,) is congruent to (S,, T,). Then it 
follows easily that Sr- ‘T, is similar to S2- ‘T,. Let f(x), g(x) be as in the 
theorem. Then (by Lemma 3) S,f(S,‘TJkg(Sl-‘T,) is congruent to 
S,f(S,‘TJkg(S2-‘T,) for k=O, 1, 2,... , m - 1 and for all g(x) E P. Hence (*) 
holds. 

Conversely, if SIP ’ T, and S2- ‘T, are similar and (*) is satisfied for 
k=0,1,2 , . . . ,m- 1 and all g(x) E P, then SlelT, and S,‘T, have the same 
real-Jordan canonical form [3, p. 248, Theorem 36.21: 

where the hi’s are the real roots of Sr- ‘T, and S2- ‘T,, M is the real-Jordan 
form which corresponds to the nonreal roots, and 63 denotes direct sum. 
Therefore (S,, T,) is congruent over R to (A,B), where 

A= 

(10) 
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and where H -‘G has only nonreal roots; (S,, T,) is congruent to a pair of 
matrices (9) and (10) with eiqi replaced by F& where eiqi and eZii are equal to 
k 1 for all i, y, i [5]. Let gi(x), ga(x),.. .,g(x) be in P and such that the rx r 

matrix (sgn&(X,)) IS nonsingular (as in Lemma 9). Then 

(11) 

= i 2 simjsgn[ f’(h,)“-‘g(&)]. (13) 
i=i j=l 

(12) follows from Corollary 5, and (13) follows from Lemma 2; in particular, 
the terms for 4 < m are zero by Lemma 2. Similarly, (11) with S, replaced by 
S, and Ti replaced by T, is equal to (13) with &imj replaced by E,:~~ for s = 1, 
2 , . . . , T. Since the r x T matrix (sgn g (Xi)) is nonsingular and f’(x,) # 0, we have 

r kni r kni 
2 x &imj= x CE~,~, i=1,2 ,..., r. 
i=) i=i i=r j=i 

(14) 

To show that (14) holds with m replaced by m - 1, we first observe that (11) 
with m - 1 replaced by m - 2 is equal to 

I L1.t 

2 C. Ei,m-l,jSgnf’(hi)“-2~(h,) 
j=l j=l 

+ izl jzl ‘imi sigErnf(hizm + I712 )“-“G (“WI+ J7n 1. (15) 

Similarly, (11) with S,, T, replaced by S,, T, and m by m - 1 is equal to (15) 
with eiqj replaced by E$~. Therefore (14) is satisfied with m replaced by 
m - 1. Continuing in this way, it follows that (14) holds with m replaced by 
m-l,m-2 , . . . ,2, 1. Therefore (S,, T,) is congruent to (S,, T2). n 

REMARK (the sing&r case). If (S, T) were an m X m real symmetric 
singular pair, then we would consider the pencil of matrices hS + pT, where 
X,p are real indeterminates. Without loss of generality, we may assume that 
the determinant of hS+ pT is identically equal to zero. Then XS+ pT is 
congruent to A 633 B (the congruence operations are rational), where A is the 
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matrix which corresponds to the minimal indices of the pencil hS + pT, and 

B is nonsingular and is uniquely determined (up to congruence) [4,6]. In this 

way, we reduce the singular case to the nonsingular case and then consider 

only the nonsingular core B. 
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