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Paperboard is a widely used material in industrial processes, in particular for packaging purposes. Pack-
ages are obtained through a forming process, in which a flat laminated sheet is converted into the final 3-
D solid. In the package forming process, it is common practice to score the paperboard laminate with
crease lines, in order to obtain folds with sharp edges and to minimize the initiation and propagation
of flaws during the subsequent folding procedures. In this work, a constitutive model for the mechanical
response of crease lines is proposed and validated on the basis of experimental tests available in the lit-
erature. The model has been implemented in an interface finite element to be placed between adjacent
shell elements and is intended for large-scale computations of package forming processes. For this rea-
son, the material model has been developed at the macroscopic scale in terms of generalized variables,
aiming at computational effectiveness.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction shape, i.e. the folding lines are scored onto the paperboard by
Packaging is a key factor for the production and distribution of
consumer goods and it is itself a fast growing industry. Reliable and
economical packaging is required for storage, transportation and
distribution, until the product is delivered to its final destination
and the package is opened. Increasing consciousness of environ-
mental issues and more advanced legislations together with
expanding competition in this fast growing market are also driving
the industry towards lighter, more economical, reliable and recy-
clable solutions, which require substantial investments in the
development of new technological solutions.

Paperboard is one of the most widely used materials in the
packaging industry, since it can be easily converted from a flat con-
figuration into a box shaped solid. Carton boxes are light and at the
same time can be very stiff and sustain significant loads. Paper-
board packaging can be achieved in several ways, e.g. by erecting
a ‘skillet’ (a flattened prefolded element of carton board) into a
box shaped container, or by forming a box from a cylindrical sleeve
filled with liquid, using mechanical clamps. In all cases, the final
shape is achieved by folding the paperboard flat blank around pre-
determined lines. The final package performance depends heavily
on the folding quality which has to produce well defined edges
and corners, without damaging the container’s external surface.

To facilitate paperboard folding around the prescribed lines, the
paperboard blank is ‘creased’ before being converted into its final
ll rights reserved.
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pressing it into a grooved female die by a male die with a rule
(Fig. 1a). The creasing produces a local, shear induced delamination
into the paperboard structure which reduces its bending stiffness
and promotes the folding around the design lines. After being
creased, the paperboard presents a residual indent where the
material is delaminated. The delamination extent depends on the
creasing severity (i.e. the indentation depth h) and on the creasing
tool geometry (width W of the groove in the female die and width b
of the rule of the male die).

In the present work, creasing of non-corrugated paperboard is
considered. For recent studies on creasing and folding of
corrugated paperboard, see e.g. Isaksson and Hagglund (2005),
Harrysson and Ristinmaa (2008) and Thakkar et al. (2008).

Packaging paperboard is a layered material with typically 3 or
more plies. Each ply consists of a network of fibers, entangled or
chemically bonded together. The outer plies are usually stiffer
(chemical pulp layers), while the inner plies (mechanical pulp lay-
ers) are softer. The forming process of the plies produces an orien-
tation of the fibers in the lamination direction (machine direction,
MD). Typically, the in-plane mechanical properties of the plies are
such that stiffness and strength in cross-direction (CD) are a factor
of two weaker than in MD. Individual plies are glued together, so
that interfaces exist between plies. Stiffness and strength of the
thicker middle layer in the out-of-plane direction are provided
by weak bonds mainly due to fiber entanglement. Even though
adhesion between plies can be improved using chemical treat-
ments, stiffness and strength in the thickness direction (ZD) can
be two orders of magnitude lower than in MD. The anisotropic
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Fig. 1. (a) Schematic description of creasing tool. (b) Definition of initial shearing
strain parameter c.
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paperboard behavior reflects on the crease behavior which
depends on the crease line orientation with respect to the material
orientation, especially for shallow creasing depth.

Accurate modeling of the crease behavior is a key ingredient for
the design and possible numerical simulation of the package form-
ing process. Besides the abundant literature on constitutive model-
ing of in-plane and through the thickness behavior of paper (see
e.g. Sawyer et al., 1998; Xia, 2002; Xia et al., 2002; Stenberg
et al., 2001; Castro and Ostoja-Starzewski, 2003; Makela and
Östlund, 2003), there are in the literature a number of contribu-
tions specifically concerned with creasing and folding of paper-
board. Carlsson et al. (1983) used a simple parallel beam model
to account for stiffness loss in the creased region due to delamina-
tion and subsequent buckling of the compressed layers. Cavlin
et al. (1997) proposed a creasability testing methodology based
on the use of an inclined rule allowing to span different penetra-
tion depths in a continuous way in a single test. Nygårds et al.
(2005, 2009) used a user defined subroutine, implemented in the
finite element code Abaqus, to simulate the damage produced by
the paperboard creasing and subsequent folding. The material
model was inspired to the work of Xia et al. (2002) for the in-plane
material behavior, with the addition of interface elements to ac-
count for delamination between layers. The numerical simulations
were validated against experimental creasing tests showing good
agreement. Beex and Peerlings (2009) proposed a contribution in
the same line, whereby the results of a combined continuum-
delamination numerical model constructed in the MSC.Marc finite
element code are compared to the experimental creasing and fold-
ing results obtained on a relatively thick paperboard. Recently,
Nagasawa et al. (2003) carried out an experimental campaign on
thin coated paperboard aimed at assessing the effect of crease pen-
etration and geometry on the subsequent folding behavior of the
creased paper. In Nagasawa et al. (2008) the study was extended
to aluminum coated and white-coated paperboard.

In the present paper, a material model, implemented in an
interface finite element for the simulation of the crease presence
in a curved shell structure, is presented. The interface element is
designed to be placed between adjacent 4 node shell finite ele-
ments of the Mindlin–Reissner type and is formulated in terms
Fig. 2. Creasing
of generalized internal forces (moments and forces per unit length)
and strains (displacement jumps at the shell middle surface and
relative rotations), allowing for large displacement and rotation
jumps. The element is intended to be used in full-scale simulations
of package forming processes and for the optimization of creasing
patterns in paperboard or other thin membranes. The main feature
of the constitutive model is therefore to be computationally inex-
pensive and to be based on a limited number of parameters. In this
paper, the focus is on the formulation of the material model for the
description of the membrane-bending behavior of a crease line,
assuming that the parameters of the preceding creasing process
are known, while a detailed description of the interface element
kinematics can be found in Giampieri and Perego (2011). The
material model accounts in a phenomenological way for the per-
manent elastoplastic deformation of paper and for both the initial
and progressive damage due to paperboard creasing and subse-
quent folding. Particular attention has been devoted to the defini-
tion of the dependency of material parameters on the crease
penetration depth. The model has been calibrated on the experi-
mental results provided by Nagasawa et al. (2003) showing good
agreement in the simulation of the folding tests.
2. Physical evidences of crease behavior during folding

Below, a brief account of the main features of the crease behav-
ior during creasing and subsequent folding is reported, mainly
based on the results of the experimental tests described in
Nagasawa et al. (2003), Nygårds et al. (2009), Beex and Peerlings
(2009).

Paperboard creasing is intended to facilitate folding along pre-
defined lines during the paperboard transformation process from
a flat blank into a 3D package. A creasing sequence is sketchily
illustrated in Fig. 2. The paperboard blank is pushed by a male
die with a rule into a groove of the female die. The rule can have
sharp or rounded corners or, in certain cases, a rubber fixture.
The rule and groove geometrical data (width, depth, relative clear-
ance, geometry of the indenter) are important parameters which
affect the final behavior of the creased material.

Paper is a layered material. The creasing produces a permanent
delamination damage, promoted by interlaminar shear, in addition
to in-plane and compressive out-of-plane plastic deformation of
the plies, whose extent depends on the crease severity. For higher
creasing levels, damage diffuses inside the individual layers start-
ing from the softer mechanical pulp layers in the core of the lam-
inate. These defects will represent initiation sites for propagation
of delamination inside the middle layers during the subsequent
folding of the crease (Beex and Peerlings, 2009).

When the rule is removed, the paperboard exhibits a residual
indent which represents an initial planarity defect for the subse-
quent folding process. During folding, the delaminated layers on
sequence.
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Fig. 3. Schematic description of bending test rig used in Nagasawa et al. (2003).
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the compressed side are subjected to a compressive force and
undergo large transverse deflections, promoted by the initial de-
fect, under combined bending and compression. The bending and
axial behavior of the delaminated layer is a consequence of the
creasing operation: the width of the groove and the penetration
depth affect not only the length and thickness of the delaminated
layers, but also their initial deviation from planarity due to the
plastic indent.

Nagasawa et al. (2003) carried out an extensive experimental
investigation on paperboard creasing, trying to assess the mechan-
ical effects of the creasing parameters. As a first step, to synthesize
the characteristics of the creasing process, they defined the ‘‘nom-
inal initial shearing strain’’ c (Fig. 1b)

c ¼ 2h
W

ð1Þ

where h denotes the rule penetration depth and W is the groove
width. c is a nondimensional parameter, related to the initial shear-
ing deformation imposed to the paperboard, as shown in Fig. 1b,
which increases with the severity of the creasing process.

Using a carbon-steel rule of thickness b = 0.72 mm, tip radius
r = 0.36 mm and a female die, with a groove of width W = 1.5 mm
and depth 1.0 mm, they creased three types of paperboard of the
same nominal grammage of 350 g/m2 but of slightly different
thickness and mechanical properties, both in transverse and paral-
lel direction to MD.

After the creasing, the bending moment Mc versus rotation #c

response of the creased specimen was measured using a testing
rig of the type sketchily shown in Fig. 3, whereby one side of the
specimen is secured by rotating clamps while the other one is con-
trasted by a load cell measuring the reaction force. The specimen is
placed in the clamps in such a way that the crease line is aligned
with the rotation axis of the clamps. Three specimens were tested
for each value of initial strain c, imposing rotations from 0� to 90�.
γγ

γ γ

Fig. 4. 90� bending test on creased specime
A sectional view of the deformation at 90� for different values of c
is shown in Fig. 4 for a transversally creased paperboard (i.e. the
crease line is parallel to CD), with thickness t = 0.46 mm, surface
density q = 368 g/m2, tensile strength in MD r0 = 45.8 MPa. The
Mc–#c response for varying c is plotted in Fig. 5.

From the images of Fig. 4, it can be seen that: (i) for c = 0 (non-
creased specimen) the corner is not well defined and there is
visible damage in the outer layer of the paperboard; very little
delamination can be observed between the inner layers; (ii) for
c = 0.61 � 0.88 the creasing appears to be optimal: the corner re-
gion is regular and well defined; there is no visible damage on
the outer layer; the delamination inside the inner ply is contained
within the crease region; the bulging profile is symmetric with re-
spect to the crease axis; (iii) for higher values of c, the crease width
increases and the corners loose their definition with loss of sym-
metry: delamination extends outside the crease region, giving
place to longer and longer delaminated layers.

The Mc–#c plot of Fig. 5 refers to bending of the same paper-
board, transversely creased with different values of c. From the
plot one can qualitatively observe that: (i) for all values of c, be-
yond a certain rotation, the creased paperboard exhibits a ductile
bending behavior with an almost flat plateau up to a rotation of
90�; (ii) there exists a transition value c � 0.6 for which the quali-
tative response changes; (iii) for c < 0.6 (shallow crease), after an
initially linear path, followed by a nonlinear hardening branch,
the Mc–#c curve reaches a peak followed by a softening branch;
the progression of delamination promoted by buckling of the com-
pressed layers leads to an abrupt release of elastic energy with a
sharp reduction of bending strength (Chai et al., 1981; Carlsson
et al., 1983), followed by an almost perfectly plastic plateau; (iv)
for growing values of c < 0.6, the peak value Mmax

c decreases and
it is reached for decreasing values of the rotation angle #c; (v) for
c P 0.6 (deep creasing), damage progresses in a stable manner
during folding, with a gradual energy release, and there is no visi-
ble peak, meaning that the damage process stops in correspon-
dence to the activation of a plastic dissipation mechanism. This
can be interpreted as being due to the fact that the initial damage
produced by the deep creasing was already close to its maximum
attainable value.

3. Crease interface kinematics and balance equation

The geometry of a shell body of thickness t in the original and
deformed configurations can be described by the mappings
γ

γ

n (courtesy of Nagasawa et al. (2003)).
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Fig. 5. Mc–#c response from bending tests for varying c (Nagasawa et al., 2003).
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X ¼ Uðn1; n2; n3Þ ¼ Uðn1; n2Þ þ n3Tðn1; n2Þ

x ¼ uðn1; n2; n3Þ ¼ �uðn1; n2Þ þ n3tðn1; n2Þ � t
2
6 n3

6
t
2

ð2Þ

where X in Eq. (2)a is the position vector of a material point in the
shell body in the initial configuration, identified by the convective
system of coordinates n1; n2; n3; X ¼ Uðn1; n2Þ is the position vector
of points belonging to the shell middle surface M ðn3 ¼ 0Þ, with
boundary @M, and the unit vector T(n1,n2) denotes the inextensible
director field. Eq. (2)b describes the displaced configuration, with
obvious meaning of symbols. According to the Mindlin–Reissner
assumption, T is not forced to remain normal to the middle surface
during the deformation.

The displacement u at a point X(n1,n2,n3) follows from this kine-
matic description as

uðn1; n2; n3Þ ¼ xðn1; n2; n3Þ � Xðn1; n2; n3Þ
¼ �uðn1; n2Þ þ n3 tðn1; n2Þ � Tðn1; n2Þ

� �
ð3Þ

In the initial configuration, the crease region is described as a zero-
thickness surface defined by its intersection Cc with the shell mid-
dle surface and the corresponding director field. Hence, points
belonging to the interface are defined by the mapping

Xc ¼ Ucðn1ðfÞ; n2ðfÞÞ þ n3Tcðn1ðfÞ; n2ðfÞÞ ð4Þ

where UcðfÞ is the parametric representation of Cc on the middle
surface and f is a scalar parameter.

In the deformed configuration, it is convenient to define the
interface reference line as the average curve eCc between the two
sides Cþc � � t

2 ;
t
2

� �
and C�c � � t

2 ;
t
2

� �
of the interface, where the

two curves, Cþc and C�c have the same parametric representation
Fig. 6. Interface ref
in terms of the convective coordinate f. (see Fig. 6). The deformed
interface reference surface eCc � � t

2 ;
t
2

� �
is then defined as the locus

of points of coordinates

~x ¼ ~�u n1ðfÞ; n2ðfÞ
� �

þ n3~t n1ðfÞ; n2ðfÞ
� �

� t
2
6 n3

6
t
2

ð5Þ

where

~�u ¼ 1
2
ð�uþ þ �u�Þ; ~t ¼ 1

2
ðtþ þ t�Þ ð6Þ

The interface allows for displacement jumps across the two sides of
the crease

sut ¼ uþ � u� ¼ s�utþ n3
stt ð7Þ

Equilibrium of the shell structure is imposed in weak form as

dPint � dPext ¼ 0 ð8Þ

where

dPext ¼
Z

V
b � dudV þ

Z
@V

f � dudS

dPint ¼ dPint;V þ dPint;c ¼ dPint;V þ
Z

Cc

Z t
2

�t
2

P � dwldn3dCc

ð9Þ

In Eq. (9), V is the volume occupied by the shell body in the refer-
ence configuration, @V is the portion of the boundary where traction
boundary conditions are prescribed, b and f denote the assigned
body and traction forces, respectively, dPint,V is the virtual internal
work carried out in the shell body V n Cc � � t

2 ;
t
2

� �
; PdS is the inter-

nal force, due to the interface deformation, acting on the elemen-
tary area dS of the undeformed interface reference surface
Cc � � t

2 ;
t
2

� �
; l accounts for the curvature of the crease reference

line so thatZ
Cc� �t

2;
t
2½ �

PdS ¼
Z

Cc

Z t
2

�t
2

Pldn3dCc ð10Þ

and dw denotes the interface strain variation, conjugate to P, which
will be defined below. The variation dsut of the displacement jump
in (7) is defined as

dsut ¼ ds�utþ n3dstt ð11Þ

and requires the definition of the virtual director jump dstt. In view
of the director inextensibility, the variation dt can be expressed as

dt ¼ d#� t ð12Þ

where d# denotes a virtual rotation of the director t in the current
configuration around an axis belonging to the plane orthogonal to t.
The virtual director jump dstt is then defined as:
erence surface.
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dstt ¼ dtþ � dt� ¼ d#þ � tþ � d#� � t�

¼ ds#t� ~tþ d~#� stt ð13Þ

where d~# ¼ 1
2 ðd#

þ þ d#�Þ and ~t is defined in Eq. (6)2. Hence,

dsut ¼ ds�utþ n3ds#t� ~tþ n3d~#� stt ð14Þ

As discussed in Giampieri and Perego (2011), the above definition of
dsut contains a rigid rotation dsut

r ¼ d~#� s�utþ n3d~#� stt of the
interface, which may be not negligible when the crease opening be-
comes large. A pure opening mode dw of the interface is obtained
from (14) by subtracting dsutr, i.e.

dw ¼ dgþ n3ds#t� ~t ð15Þ

where dg is defined as

dg ¼ ds�ut� d~#� s�ut ð16Þ

With these definitions, the virtual internal work in (9) is rewritten
as

dPint;c ¼
Z

Cc

N � dgdCc þ
Z

Cc

M � ds#tdCc ð17Þ

where

N ¼
Z t

2

�t
2

Pldn3; M ¼
Z t

2

�t
2

~t� P
� �

n3ldn3 ð18Þ

are the generalized internal forces, work conjugate to the general-
ized strains dg and ds#t. For the definition of the constitutive
behaviour of the interface, it is convenient to introduce at points
on eCc a local co-rotational orthogonal reference frame êc; êt; ênf g
defined as (see Fig. 6)

êc ¼
~ac

k~ack
; ên ¼ ~an; êt ¼ ên � êc ð19Þ

where the tangent direction ~ac to the deformed interface line eCc and
the unit normal vector ~an ¼ ~an are defined as

~ac ¼ ~�u;a@n
a=@f; ~an ¼

~ac � ~t
k~ac � ~tk

¼ ~an ð20Þ

Since large rotations are expected only around ~ac; êt and ~t are ex-
pected to remain almost parallel throughout the interface deforma-
tion process. The components of the generalized forces per unit
length in the co-rotational basis are therefore given by (see Fig. 7):

Vc ¼ N � êc; N ¼ N � ên; Vt ¼ N � êt ð21Þ
Mc ¼M � êc; Mn ¼M � ên; Mt ¼M � êt ’M � ~t ¼ 0 ð22Þ

where N is the normal force to the reference interface surface, Vc

and Vt are the components of the shear force V ¼ ðI� ên � ênÞ � N,
ˆ
ne

ˆ
ce

ˆ
t te

cΓ
N

nM

tV
cV

cM

Fig. 7. Co-rotational components of internal forces and couples.
Mc is the bending moment around the interface axis, Mn is the tor-
que around the normal axis and the drilling moment Mt is taken
equal to zero as discussed above.

The generalized strains dg and ds#t are similarly projected onto
the co-rotational axes to obtain the kinematic quantities conju-
gated to the generalized forces and couples

dgn ¼ dg � ên; dgc ¼ dg � êc; dgt ¼ dg � êt

d#n ¼ ds#t � ên; d#c ¼ ds#t � êc

With this notation, the internal work is written as

dPint;c ¼
Z

Cc

Ndgn þ Vcdgc þ Vtdgt þMnd#n þMcd#c½ �dCc ð23Þ
4. Crease interface constitutive model

The paperboard is here considered as an elastic medium with
inelastic dissipation localized in the crease interface. The interface
constitutive law is expressed in terms of the generalized stresses
and strains defined in the previous section in the interface co-
rotational reference frame. The model will therefore represent
the behavior of a section of unit width of the interface, as it is after
the creasing process, i.e. for an assigned value of the nominal initial
shearing strain c.

As discussed in Section 2, when folding tests are performed on
shallow-indented crease lines, a softening post-peak branch is ob-
served in the bending response, while for deep-indented crease
lines, perfect-plasticity can be regarded as the dominant dissipa-
tive mechanism. Therefore, since small deformations are expected
in directions other than around the interface axis, unlimited and
uncoupled linear elasticity is assumed for the shear sliding gc, gt

and for the torque rotation #n, while a coupled damage-elastoplas-
tic response is postulated for the membrane-bending deformation
gn, #c around the interface axis.

The constitutive model is formulated starting from the defini-
tion of a Helmoltz free energy density potential cW (where the
superscript c on the left of the symbol means that reference is
made to a crease line obtained by a creasing process of intensity
c) in the form

cW ¼ 1
2

kcg2
c þ

1
2

ktg2
t þ

1
2

kþn hgn � gp
ni

2
þ þ

1
2

ck�n hgn � gp
ni

2
�

þ 1
2
ð1� dÞck#c #c � #p

c

� �2 þ 1
2

k#n#
2
n ð24Þ

where ki, i = c, t, #n denotes the generalized elastic stiffness, ck#c and
ck�n denote the elastic bending and membrane compression stiff-
nesses which are assumed to be affected by the preceding creasing
process, the superscript p denotes the plastic part of the generalized
strains and the symbols h�i+ and h�i� denote the positive and nega-
tive parts, respectively, of the contained quantity. Different elastic
stiffnesses kþn and ck�n have been adopted for the membrane behav-
ior in tension and compression, according to the experimental evi-
dences. Additive decomposition in the co-rotational frame of elastic
and plastic strains has been implicitly assumed in (24). It is worth
remarking once more that the elastic stiffnesses ki represent the
generalized stiffnesses of the creased material as it results after it
has been damaged in the creasing process. In the same way, the
plastic strains due to folding are additional with respect to those
generated during creasing, which are not considered here in an ex-
plicit way.

The linear elastic relations between the generalized static and
kinematic quantities are obtained through the state equations of
cW (see e.g. Lemaitre and Chaboche, 1994)
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Vc ¼
@cW
@gc
¼ kcgc; Vt ¼

@cW
@gt
¼ ktgt ;

N ¼ @cW
@hgn � gp

niþ
þ @cW
@hgn � gp

ni�
¼ kþn hgn � gp

niþ þ ck�n hgn � gp
ni�

Mc ¼
@cW

@ð#c � #p
c Þ
¼ ð1� dÞck#c ð#c � #p

c Þ; Mn ¼
@cW
@#n
¼ k#n#n

ð25Þ

The thermodynamic force conjugate to the damage variable is de-
fined as

Y ¼ � @
cW
@d
¼ 1

2
ck#c ð#c � #p

c Þ
2 ð26Þ

The dissipation rate density is therefore given by

D ¼ N _gp
n þMc

_#p
c þ Y _d P 0 ð27Þ
c
−Γ

c
+Γ

Fig. 9. Mesoscopic view of delaminating crease region.
4.1. Elastoplastic model

The crease region plastic response is formulated in the general-
ized stress effective space according to the hypothesis of strain
equivalence (Lemaitre and Chaboche, 1994) and concerns the
membrane-bending crease behavior only. Effective stresses are de-
noted by a superposed bar and are defined as

Mc ¼
Mc

1� d
; N ¼ N ð28Þ

Since the crease element allows for large membrane displacement
jumps across the interface, membrane-bending coupling is ac-
counted for in the definition of the yield criterion. Inelastic stress
redistribution across the element thickness is however neglected,
with a sharp transition from a purely elastic state to a fully plastic
regime. This is motivated by the fact that the pre-peak behavior of
the crease response is dominated by the progression of damage, as
it will be discussed in the next subsection.

Denoting by rþy > 0 and r�y < 0 the material yield limits in ten-
sion and in compression, respectively, the limit membrane forces
Nþy and cN�y , their ratio r > 0 and the limit bending moment My

are defined as

Nþy ¼ rþy h; cN�y ¼ cN�y ðr�y h; cÞ; r ¼ �cN�y =Nþy ;

My ¼ �
t
2

Nþy
cN�y

Nþy � cN�y
ð29Þ

It should be noted that in (29), the limit compression force cN�y is
assumed to be affected by the severity c of the preliminary creasing
operation. This aspect will be discussed in depth in Section 5.1.

For notation convenience, it is useful to introduce the nondi-
mensional variables

n ¼ N
Nþy

; m ¼ Mc

My
ð30Þ

With this notation, the interface material elastic domain is assumed
to be defined by the conditions (Fig. 8)

f1ðn;mÞ ¼
n2

r
� 1� r

r
nþm� 1 6 0 ð31Þ

f2ðn;mÞ ¼
n2

r
� 1� r

r
n�m� 1 6 0 ð32Þ

The generalized plastic strain rates _gp
n and _#p

c are defined according
to an associated flow rule as
_gp
n ¼

@f1

@N
_k1 þ

@f2

@N
_k2 ¼

1
Nþy

@f1

@n
_k1 þ

@f2

@n
_k2

� �
ð33Þ

_#p
c ¼

@f1

@Mc

_k1 þ
@f2

@Mc

_k2 ¼
1

My

@f1

@m
_k1 þ

@f2

@m
_k2

� �
ð34Þ

where _k1 and _k2 are nonnegative plastic multipliers, defined by the
Kuhn–Tucker loading–unloading conditions

f1 6 0; f 2 6 0; _k1 P 0; _k2 P 0; f 1
_k1 ¼ f2

_k2 ¼ 0 ð35Þ

The backward-difference time-integration and the derivation of the
consistent tangent moduli can be carried out following a standard
approach and are not discussed here. Details of the derivation can
be found in Giampieri and Perego (2011).

4.2. Damage model

The damage variable d in (24) is related to the development of
delamination inside the creased region during folding. The creasing
operation produces an initial damage in the creased material,
nucleating defects and producing permanent deformation. During
folding, the stress developing in the compressed side of the inter-
face promotes buckling delamination of the compressed layers,
facilitated by the presence of the pre-existing defects. Adopting a
mesoscopic point of view (Fig. 9), damage can be thought of as a
progressive reduction of the bending stiffness, due to the propaga-
tion of delamination through the interface thickness, departing
from the compressed side.

Let the initially compact interface section of thickness t be
imagined as composed of n‘ initially joined layers of equal thick-
ness ti = t/n‘. Let m‘ be the number of delaminated layers due to
buckling. A mesoscopic damage indicator dmeso can be defined as
the ratio between the numbers of buckled and total layers

dmeso ¼ m‘

n‘
ð36Þ

Delaminated layers contribute to the sectional bending stiffness in
an additive way, and the sectional moment of inertia of the partially
delaminated section is given by

Ic ¼
1

12
t3

i m‘ þ
1

12
tiðn‘ �m‘Þ½ �3 ¼ I0

c
dmeso

n2
‘

þ ð1� dmesoÞ3
� 	

ð37Þ

where I0
c ¼ 1=12 t3 is the moment of inertia of the compact section.

This corresponds to a highly simplified view of the phenomena
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occurring through the thickness during folding, since the progres-
sion of delamination in the longitudinal direction is not accounted
for, as much as the possible contact between delaminated layers.
Since the layer structure is not clearly defined through the crease
thickness and, as it can be observed from Fig. 4, damage can develop
anywhere in the interface thickness, a better description is obtained
considering an infinite number of layers of vanishing thickness

Ic ¼ lim
n‘!1

I0
c

dmeso

n2
‘

þ ð1� dmesoÞ3
� 	

¼ ð1� dmesoÞ3I0
c ¼ ð1� dÞI0

c ð38Þ

where

d ¼ ðdmesoÞ3 � 3ðdmesoÞ2 þ 3dmeso ð39Þ

is the macroscopic damage variable introduced in (24).
The evolution of the macroscopic damage is promoted by the

shortening of the compressed layers. An equivalent measure of
the effective compressive strain can be defined as

eeq ¼
t
2
ð#e

c þ #
p�
c þ #

pþ
c Þ � cgn ð40Þ

where #e
c is the elastic part of the crease rotation, #p�

c and #pþ
c are the

modules of the cumulated positive and negative parts of the plastic
rotation and c is a material parameter. #p�

c and #pþ
c are permanent

strains and their effects do not cancel out when loading is reversed.
(�gn) is the membrane shortening of the crease, which also contrib-
utes to the damage growth by increasing the lateral deflection of
the buckled layers.

The damage evolution law is then defined as

_dmeso ¼
ca _eeq if eeq > �eeq; _eeq P 0 and dmeso

6 dmeso
lim

0 otherwise

(
ð41Þ

where ca is a material parameter affected by the initial degree of
creasing,

�eeqðtÞ ¼max
s6t

eeqðsÞ ð42Þ

is the maximum value attained by the equivalent strain during the
crease deformation and dmeso

lim 6 1 defines the maximum level of
damage which can be reached within the crease section. The exis-
tence of an upper bound follows from the fact that sectional damage
is promoted by layers compression which, during bending, has to be
confined below the neutral axis and cannot extend throughout the
section. The mesoscopic limit damage dmeso

lim can be expressed in
terms of the corresponding macroscopic quantity dlim, which can
be obtained measuring the residual bending stiffness in experimen-
tal tests on creased laminates, by means of Eq. (39)

dmeso
lim ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dlim � 13

p
ð43Þ

Summarizing, the crease behavior is defined by the six elastic stiff-
ness parameters kc ; kt; k

þ
n ;

ck�n ;
ck#c ; k#n , the two membrane elastic

limits Nþy and cN�y , obtainable from tension and compression mem-
brane tests on the creased paperboard, and by the three damage
parameters c, ca and dlim, obtainable from bending tests.

4.3. Dissipation inequality check

The second principle of thermodynamics requires that the dissi-
pation rate (27) is nonnegative for all possible deformation pro-
cesses. Substituting in (27) the expressions (33) and (34) for _gp

n

and _#p
c , one can write
D ¼ 2n2

r
� 1� r

r
nþ ð1� dÞm

� �
_k1

þ 2n2

r
� 1� r

r
n� ð1� dÞm

� �
_k2 þ Y _d P 0 ð44Þ

When damage is zero, the inequality is certainly satisfied because
the plastic model satisfies Drucker’s postulate. When both damage
and plasticity are active, a sufficient condition for (27) to hold can
be sought as follows.

First of all, let us discard the always nonnegative term Y _d. In the
case that both _k1 P 0 and _k2 P 0, the vertex on the m = 0 axis is ac-
tive. But if m = 0, the contribution of damage to (44) vanishes and,
again, the inequality is satisfied.

Let us consider then the case _k1 P 0; f 1 ¼ 0; _k2 ¼ 0 (the case
_k2 P 0; f 2 ¼ 0; _k1 ¼ 0 can be treated in a similar way). In this case,
exploiting the fact that m can be eliminated using the condition
f1 = 0, the sufficient condition can be written as

1þ n2

r
� d 1� n2

r
þ 1� r

r
n

� �� 	
_k1 P 0 ð45Þ

and hence, in view of the nonnegativeness of _k1,

d 6
1þ n2

r

1� n2

r þ 1�r
r n

ð46Þ

A sufficient condition can be found imposing that

d 6min
n

1þ n2

r

1� n2

r þ 1�r
r n

 !
ð47Þ

For r = 1 (equal yield limits in tension and compression), one ob-
tains that the r.h.s. in (47) is equal to 1, leading to the trivial condi-
tion d 6 1. This would mean that the sufficient condition is always
satisfied. The r.h.s. of (47) is an increasing function of r. E.g., for
r = 1/10 one obtains the condition d 6 0.58. In the proposed model,
damage is bounded to be not greater than the limit damage dlim,
which is a constitutive parameter. The condition (47) can be re-
placed therefore by the condition

dlim 6min
n

1þ n2

r

1� n2

r þ 1�r
r n

 !
ð48Þ

which turned out to be satisfied in all the practical cases considered
in the present work.

5. Creasing process effects on interface behavior

5.1. Effects on elastic and plastic parameters

The creasing process produces a degradation of the paperboard
elastic stiffness and strength. This degradation is due to the com-
bined effects of the propagation of damage delamination, through
the width W of the creased region (W being the width of the chan-
nel die defined in (1)) and through the paperboard thickness t, and
to the geometric effects produced by the permanent deflection.
Depending on the intensity c of the creasing, a more or less signif-
icant permanent out-of-plane deflection is observed after creasing,
which boosts the buckling of compressed delaminated layers dur-
ing bending.

Several micro and meso-mechanical models have been pro-
posed in the literature (Xia et al., 2002; Nygårds et al., 2005; Beex
and Peerlings, 2009) to simulate damage propagation during the
creasing process. These gave rise to accurate 3D numerical models,
which however appear to be unsuitable for large scale computa-
tions of whole packages. A different point of view, at the
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meso-scale level, was adopted by Carlsson et al. (1983) to capture
the basic feature of the bending behavior of the creased paper-
board. In their model, two parallel beams, connected to each other
at their ends, are bent together. The beam on the compressed side
is given an initial deflection (accounting for the creasing perma-
nent deformation) and buckles under compression, while the other
beam elongates in tension. The point of view adopted in this work
is inspired by Carlsson et al. (1983) model, even though a purely
phenomenological approach is followed here. Based on the obser-
vation of the physical processes taking place during creasing, it is
assumed that:

	 both strength and stiffness of the crease line deteriorate during
creasing, proportionally to the intensity of the creasing process,
measured by the nominal initial shearing strain c defined in Eq.
(1);
	 a greater penetration depth (higher c) of the indenter during

creasing has the following two main effects: (i) the formation
of thinner delaminated layers; (ii) a greater permanent out-of-
plane deflection (Fig. 10a);
	 the deterioration of mechanical properties is a consequence of

the increasing slenderness, driven by the thickness reduction,
and of the permanent out-of-plane deflection of the delaminat-
ed layers.

The attention is now focused on a typical delamination layer, of
thickness ct, generated by a creasing process of intensity c which is
compressed during paperboard folding, occurring after creasing.
During folding, the compressed delaminated layer is assumed to
behave as the beam in Fig. 10b, of unit width, of length W, equal
to the width of the channel die, and with initial deflection h, equal
to the indentation depth (see Fig. 1). The initial deflected shape is
expressed as

�vðxÞ ¼ h
2

cos
2px
W
� 1

� 	
ð49Þ

Adopting a linearized theory, the beam elastic deflection due to the
application of a compression axial force P is then given by

vðxÞ ¼ 1
1� P

PE

�vðxÞ ð50Þ

where

PE ¼
4p2EcI

W2 ð51Þ

is the Eulerian buckling load, cI = 1/12ct3 being the layer moment of
inertia. The bending moment (assumed positive for the deflected
shape in Fig. 10b) at the beam midspan is given by

Mc
W
2

� �
¼ 1

1� P
PE

h
2

P ð52Þ
Fig. 10. (a) Effects on indentation depth during creasin
Defining the beam slenderness v as

v2 ¼W2ct
4cI

ð53Þ

the buckling load can be expressed as

PE ¼
p2Ect
v2 ð54Þ

Assuming for the present purposes that the layer material has sym-
metric elastic strength in tension and compression and setting
N ¼ �P; NE ¼ �PE; Nþy ¼ �N�y ¼ Ny ¼ ry

ct; ~n ¼ N=Ny, one can
write

P
PE
¼ N

NE
¼ N

Ny

Ny

NE
¼ �~n

v2

v2
y

with v2
y ¼

p2E
ry

ð55Þ

Substituting for P/PE and P in (52) and taking into account that
My = Ny

ct/4 for the considered rectangular section, one has for
~n < 0 and v P vy

~m
W
2

� �
¼

Mc
W
2

� �
My

� �
¼ � 1

1þ ~n v2

v2
y

2h
ct

~n for v P vy ð56Þ

For v < vy the axial compression is assumed to have reached its
plastic limit, independent of the geometric effect, and (56) does
not hold.

According to a standard approach, the beam limit state is ob-
tained for v P vy by assuming that the axial force and the bending
moment reach the boundary of the elastic domain, defined in (31)
with r = 1, in the most stressed section. Substituting (56) in (31)
one has

v2

v2
y

~n3 þ ~n2 � v2

v2
y
þ 2h

t
t
ct

 !
~n� 1 ¼ 0 ð57Þ

The values ~nðcÞ satisfying (57) are taken as effective current values
of the yield limit in compression cN�y ¼ �~nðcÞ 0N�y , with ~nð0Þ ¼ �1,
of the creased paperboard, where Nþy is the paperboard yield limit
in tension, defined in (29), which is assumed to be unaffected by
c, and 0N�y is the yield limit in compression of the uncreased paper-
board. The corresponding limit bending moment cMy is obtained by
means of (29)4.

The penetration depth h in (57) is replaced by an effective value
~h which, on the basis of Eq. (1), is expressed as

~h
t
¼

0 for 0 6 c 6 �c
W
2t ðc� �cÞ for �c 6 c

(
ð58Þ

where �c is a limit value of the nominal shearing strain below which
there is no geometric effect (e.g. because the imposed deflection is
recovered upon unloading). The relation (58) can be expressed in
regularized form as (see Fig. 11a for W/t = 3.26, and �c ¼ 0:2)
g. (b) Deflected beam model for compressed layer.



Fig. 11. Effects of nominal initial shearing strain c: (a) effective indentation depth. (b) thickness ct of compressed layer.
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Fig. 12. Effects of nominal initial shearing strain c on effective membrane
compression strength ~nðcÞ (solid line). Hyperbolic tangent approximation (dashed
line).
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~h
t
¼W

4t
ðc� �cÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� �cÞ2 þ 4j

q� 	
ð59Þ

j being a sufficiently small regularization parameter (here it is
taken j = 10�3).

In view of its definition (53), the slenderness v can be expressed
as

v ¼
ffiffiffi
3
p W

t
t
ct

ð60Þ

As previously mentioned, a creasing process of increasing severity
produces thinner delaminated layers. Since for c 6 �c the geometric
effect in (57) is negligible, the ratio t/ct in (60), between the paper-
board and the delaminated layer thicknesses, is then taken to re-
main constant for c 6 �c and to increase linearly with c for c > �c,
according to the empirical relation

t
ct
¼ 1

2
bðc� �cÞ þ 2aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½bðc� �cÞ þ 2a�2 � 4a½bðc� �cÞ þ a� þ 4j

q� 	
ð61Þ

depending on the two scalar parameters a and b (see Fig. 11). For
c < �c, one has t/ct = a. This is the limit situation of thick layer corre-
sponding to a slenderness v < vy. Hence, the parameter a is ob-
tained imposing that v = vy for t/ct = a, i.e.

a ¼ t
W

vyffiffiffi
3
p ð62Þ

Replacing h in (57) with ~h from (59) and t/ct with its expression
in (61), one obtains an implicit equation for ~n as a function of c,
depending on the empiric parameters �c and b. For the particular
geometry and material considered by Nagasawa et al. (2003) in
their experimental tests and for �c ¼ 0:2 and b = 1, the solid curve
shown in Fig. 12 is obtained (using a symbolic algebra manipula-
tor) from Eq. (57), modified as mentioned above.

Since Eq. (57) cannot be given a simple explicit expression, the
solid curve is approximated using a hyperbolic tangent function
(dashed curve in Fig. 12)

~nðcÞ ¼ 1� ~nðcmaxÞ
2

� �
tanh½gðcÞ� þ 1þ ~nðcmaxÞ

2

� �
ð63Þ

where
gðcÞ ¼ cc

c

� �2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cc � cmax

c� cmax

s
ð64Þ

is a function which scales c from the interval c 2 [0,cmax] to
g(c) 2 [0,1], and cc defines a center for the hyperbolic tangent.
The result of the approximation for cmax = 4/3, cc = 0.25 and
~nðcmaxÞ ¼ 0:13 is given by the dashed curve in Fig. 12. The evolution
of the elastic domain in the effective generalized stress plane Mc—N
is shown in Fig. 13.

The same type of dependence on the severity c of the creasing is
postulated also for the membrane and bending elastic stiffnesses.

ck�n ¼
0k�n � k�n ðcmaxÞ

2

� �
tanh½qðcÞ� þ

0k�n þ k�n ðcmaxÞ
2

� �
ck#c ¼

0k#c � k#c ðcmaxÞ
2

� �
tanh½qðcÞ� þ

0k#c þ k#c ðcmaxÞ
2

� � ð65Þ

where
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Fig. 13. Evolution of elastic domain in M—N plane for growing initial nominal
shearing strain c.

Fig. 14. Numerical model geometry.
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qðcÞ ¼
cc

ka

c

� �
� cc � cmax

c� cmax

� �
ð66Þ

is a scaling function and cc
ka
ða ¼ n; #cÞ has to be identified for each

curve from a best fitting of experimental data.

5.2. Effects on damage behavior

The bending stiffness ck#c decreases during the creasing process
according to (65). When, after creasing, the paperboard is folded
around the crease line, the bending stiffness further deteriorates
due to damage growth, measured by the damage variable d in
(24), which evolves according to (39) and (41) until the limit value
dlim is reached. dlim represents the maximum fraction of the bend-
ing stiffness of the creased material which can be lost during fold-
ing and here it is assumed to be independent of the creasing
intensity c. On the other hand, the damage rate is not constant,
as in pure bending it depends on the rotation rate around the
crease line through the constant ca in (41), which is affected by
the creasing depth. To establish the dependence of ca on the initial
nominal shearing strain c, let us consider the case of monotonic
pure bending after creasing. According to (40) and (41), one has

dmeso
lim ¼ ca

t
2

c#y þ c#p
lim

� �
ð67Þ

where c#y is the rotation corresponding to the attainment of the
elastic limit and c#p

lim is the subsequent plastic rotation correspond-
ing to the achievement of the limit damage dlim. While c#y is easily
obtained from the corresponding values of the limit bending mo-
ment cMy and bending stiffness ck#c , discussed in the previous sec-
tion, as

c#y ¼
cMy
ck#c

ð68Þ

the limit c#p
lim needs some further discussion. As observed by

Carlsson et al. (1983), in uncreased and shallow creased paper-
board, there is experimental evidence that plastic strains start
developing on the compression side before the peak moment resis-
tance is reached. This suggests that the limit damage is attained
when the crease material is already in the plastic range. On the con-
trary, for a deeply creased paperboard (c P ctrans = 0.6 in Fig. 5),
where significant delamination has already taken place during
creasing, no peak is observed in the moment-rotation curve, mean-
ing that plasticity starts developing when damage has already
reached its limit value and, hence, c#p

lim ¼ 0 for c P ctrans. In view
of this experimental evidences, it is here assumed that for deep
creasing (c P ctrans) the damage limit is attained in pure bending
for the rotation c#y corresponding to the elastic limit. The expres-
sion (67) modifies as
dmeso
lim ¼

ca t
2

c#y 1þ
c#p

lim
c#y

� �
for c < ctrans

ca t
2

c#y for c P ctrans

8<: ð69Þ

and hence

ca ¼

dmeso
lim

t
2
c#y

1

1þ
c#p

lim
c#y

� � for c < ctrans

dmeso
lim

t
2
c#y

for c P ctrans

8>><>>: ð70Þ

While c#y is defined in (68), for c < ctrans, c#p
lim depends on the creas-

ing depth c and is a parameter to be identified by experimental
tests. The value of c#p

lim affects the damage rate through ca and is
a decreasing function of c. In the numerical results presented in
the next section, the following simple quadratic function of c has
been empirically adopted

c#p
lim ¼

0#p
lim 1� c

ctrans

� �2

ð71Þ

where 0#p
lim denotes the plastic rotation corresponding to the attain-

ment of the limit damage during folding of an uncreased
paperboard.

6. Numerical results

The proposed constitutive model has been implemented in a
2-node interface element based on the kinematic description of
Section 3. The interface element is to be interposed between two
adjacent 4-node shell finite elements. A complete discussion of
the implementation can be found in Giampieri and Perego
(2011). The crease interface element has been used for the simula-
tion of the bending tests carried out by Nagasawa et al. (2003).

6.1. Numerical model description

A strip of paperboard of 60 mm (MD) �40 mm (CD) �0.46 mm
(ZD) has been used for the tests and has been discretized by 4-node
shell finite elements. As described in Section 2, part of the strip is
secured to rotating clamps (Figs. 3 and 14). The element nodes in
this region have been assigned a quasi-static motion along a circu-
lar trajectory, from H = 0� to H = 90� with rotation increments
DH = 0.5�. A line of interface crease elements, aligned in cross-
direction (CD) has been placed at the end of the constrained region
(Fig. 14), while the ZD displacement of elements in contact with
the load cell, aligned in CD at a distance of 25 mm from the crease
line, is constrained to be zero. The ZD reaction forces at these nodes
are used for the computation of the bending moment around the
crease line. As it is clear from the description of the test setup,
the test measures the response of the paperboard strip and not
of the crease line. Several factors may contribute to make these re-
sponses different, such as the elastic curvature of the strip portion
comprised between the clamps and the load cell (which is however
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easily discounted) and, most of all, a possible misalignment be-
tween the crease axis and the imposed rotation axis. As discussed
by Nagasawa et al. (2003), this can be caused e.g. by misalignment
of the indenting rule during the creasing process. However, from a
visual inspection of the deformed shapes of the tested specimens
in Fig. 4, all exhibiting a rotation substantially centered on the
crease axis, one can conclude that the effects of misalignment on
the results is negligible in the reported cases. The finite element
analyses have been carried out under quasi-static conditions,
adopting the Adaptive Dynamic Relaxation (ADR) incrementation
strategy (Oakley and Knight, 1995a,b) as described in Giampieri
and Perego (2011).

The experimental tests were carried out on three kinds of low
quality white paperboard with slightly different tensile strength.
A reference value of ry = 46.0 MPa, symmetric in tension and com-
pression for the uncreased paperboard, has been used for the sim-
ulations. The authors do not report about the paperboard elastic
properties, with the exception of the bending stiffness, whose deg-
radation due to the creasing process has been measured. The other
elastic stiffnesses of the crease line material have been found to
have little influence on the bending behavior and have been
assigned the values in Table 1, based on information from the liter-
ature. As for the membrane stiffness, symmetric tension–compres-
sion behavior has been assumed for the uncreased paperboard (i.e.
0k�n ¼ kþn ) while a 75% degradation of the compression stiffness has
been assumed in correspondence of the maximum value cmax = 1.7
of the nominal shearing strain (i.e. k�n ðcmaxÞ ¼ 0:250k�n ). The param-
eter cc

kn
for the definition of the hyperbolic tangent in (65)1 has

been taken as cc
kn
¼ 0:3. The bending stiffnesses for the uncreased

and fully creased (cmax = 1.7) paperboard have been directly ob-
tained from the experimental results provided by Nagasawa et al.
(2003), while cc

k#c
¼ 0:6 has been used in (65)2 for the

interpolation.
As for the parameters characterizing the damage behavior, c = 0

has been taken in (40), due to lack of experimental information on
coupled membrane bending behavior, while the values
0#p

lim ¼ 15:7� in (71) and dmeso
lim ¼ 0:4 with a transition value

ctrans = 0.6 have been identified from the experimental results. A
summary of the adopted material constants is reported in Table 1.

6.2. Simulation results

The bending test in Fig. 14 has been simulated for the six differ-
ent values of the nominal initial shearing strain c = 0.0, c = 0.21,
c = 0.35, c = 0.6, c = 0.87, c = 1.25, considered in the experimental
tests documented in Nagasawa et al. (2003), corresponding to
increasing severity of the preliminary creasing process. The
experimental results already shown in Fig. 5 are plotted again in
Table 1
Material parameters for numerical model.

Test parameters
t = 0.46 mm cmin = 0 cmax = 1.7 ctrans = 0.6

Elastic parameters
kc = 100 N/mm2 kt = 100 N/mm2

kþn ¼ 0k�n ¼ 2162:0 N=mm2

k�n ðcmaxÞ ¼ 540:5 N=mm2 cc
kn
¼ 0:3

0k#c ¼ 0:1 N=deg
k#c ðcmaxÞ ¼ 0:019 N=deg cc

k#c
¼ 0:6

Plastic parameters
Nþy ¼ 21:16 N=mm2

0N�y ¼ �21:16 N=mm
N�y ðcmaxÞ ¼ �2:75 N=mm cc = 0.25

Damage parameters
c = 0 0#p

lim ¼ 15:7
 dmeso
lim ¼ 0:4
Fig. 15 together with the results of the corresponding finite ele-
ment simulations, obtained using the material parameters in Table
1.

Good agreement can be observed as for the general trend of the
crease response for varying c. From the comparison of the numerical
curves with the corresponding experimental curves, the following
comments can be made:

	 the main features of the transition for c = 0.6 between shallow
and deep indentation are well captured by the model;
	 the softening post-peak branch due to damage in the shallow

creasing range (c < 0.6) is correctly reproduced;
	 the limit value of the bending moment for #c ? 90� is accurately

approximated for all considered values of c;
	 the quality of the approximation deteriorates for extreme val-

ues of c (c / 0.2, c ’ 0.9) while it appears to be quite satisfac-
tory for the range of values of interest in practical applications.

The latter remark emphasizes the limitations of the proposed
model, which is intrinsically macroscopic and accounts for events
at the mesoscopic scale in a phenomenological way. For very low
or very high creasing depth, complex phenomena, which necessi-
tate a description at a lower scale, take place in the crease region
as it can be clearly observed from the pictures in Fig. 4. For very
shallow creasing, extensive damage occurs on the tensile side
and the simple buckling beam model considered in Section 5.1 is
not adequate to describe the wavy deformed shape on the com-
pression side, visible in Fig. 4. For very deep creasing, delamination
occurs throughout the paperboard depth and extends beyond the
width of the initial creasing region. While these aspects are not in-
cluded in the simple proposed model, the main features of the
crease deformation in the middle range of c values appear to be
satisfactorily caught.

Fig. 16 shows the evolution with c of: (a) the initial bending
stiffness ck#c , (b) the peak bending moment at the crease interface
and (c) the corresponding rotation angle, respectively. In both the
first two cases, the quality of the approximation is very good. It
should be noted that, while the trend of the initial bending stiffness
is the results of the interpolation in Eq. (65)2, the maximum bend-
ing moment depends on the evolution of the elastic domain (see
Fig. 13) and on the interaction between the damage and plastic dis-
sipation mechanisms. It is therefore an outcome of the constitutive
model. In contrast, the experimental and numerical peak angles
show good agreement only for c < ctrans = 0.6. This can be explained
with the fact that for c > ctrans the experimental curves in Fig. 15 do
not exhibit a clearly distinguishable peak and the authors do not
provide details on how the corresponding angle is identified. In
the simulations, the peak angle for c > ctrans is taken as the angle
0.0γ =

0.21γ =0.35γ =

0.60γ = 0.87γ = 1.25γ =

Fig. 15. Bending test: comparison between numerical and experimental results.
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Fig. 16. Bending test. Evolution for varying nominal initial shearing strain c: (a) initial bending stiffness; b) peak bending moment; (c) rotating angle at peak bending
moment.
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0.35γ =
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Fig. 17. Bending test. Evolution with imposed rotation angle H: (a) total crease rotation, (b) damage.
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corresponding to the attainment of the limit damage dmeso
lim . For

rotations larger than this angle, the interface response is perfectly
plastic, with constant bending moment.

Fig. 17a shows the ratio between the total (elastic plus plastic)
rotation jump #c at the crease interface and the rotation H applied
to the clamps of the testing rig, for the different values of c. As ex-
pected, for low c one has #c < H, because of the elastic deformation
of the paperboard outside the crease region. For c < ctrans, #c grows
faster than H when the material enters the softening branch, due
to strain localization occurring in the crease region, while elastic
unloading is occurring outside. For increasing rotation angles, the
interface behaves as a plastic hinge and one has _#c ¼ _H. For
c > ctrans, the difference between #c and H vanishes since the
beginning, due to the reduction of the interface initial bending
stiffness.
Fig. 17b shows the evolution of the damage variable dmeso with
the imposed rotation angle H. As explained in Section 5.2, damage
grows until the limit threshold is attained (dmeso

lim ¼ 0:4 in these
simulations, see Table 1). The damage rate varies with c according
to the coefficient ca in (70). For c 6 ctrans, the damage rate increases
significantly in correspondence of the activation of the plastic re-
sponse. For c > ctrans, the activation occurs in correspondence of
the limit damage and the damage rate remains constant with the
rotation angle up to that point.
7. Conclusions

An interface finite element, to be interposed between adjacent
shell elements, and its corresponding crease constitutive model
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have been formulated for the modeling of the folding behavior of
creased paperboard. The proposed interface element is intended
to be used for the full-scale simulation of the forming process of
carton packages and as a numerical tool for the optimization of
the crease pattern design. For this reason, its main requisite is to
be computationally inexpensive.

The proposed model, formulated in terms of generalized vari-
ables, is macroscopic and interprets in a phenomenological way
the complex phenomena occurring at lower scales. For this reason,
it requires only a relatively small number of parameters to be char-
acterized and can be considered to be ‘simple’, especially if com-
pared to other more accurate approaches proposed in the
literature and based on the through-thickness discretization of
the creased paperboard (Nygårds et al., 2009; Beex and Peerlings,
2009). The use of the simplified buckling beam approach of
Section 5.1 provides a mechanical foundation for the interpretation
of the dependence of the folding behavior on the initial shearing
parameter and it allows, through the use of simple interpolations,
to obtain quantitative predictions on the resulting material proper-
ties. Numerical results obtained with the proposed crease model
show good agreement in comparison to experimental results pub-
lished in the literature (Nagasawa et al., 2003), when the simula-
tion of the standard bending test is performed. Application of the
model to full-scale simulations is in progress and will be described
in forthcoming publications.
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