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Abstract 

This paper answers, in the negative, Open Problem 4 in Goodearl’s book on von Neumann 
regular rings: a directly finite regular ring R with s-comparability is constructed which is not 
unit-regular. It is shown, however, that the behaviour of these rings R is still quite good. They 
have cancellation of small projective modules and, in particular, their stable range is at most 2. 
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0. Introduction 

Generally speaking, if a (von Neumann) regular ring R has some form of compara- 

bility for its principal right ideals, then the ring has nice properties. Some model be- 

haviour, for instance, occurs as a consequence of full comparability (or l-comparability), 

that is when for any x, y E R, either xR 5 yR or yR 5 xR. For then direct finiteness 

for such R (one-sided inverses are two-sided) implies unit-regularity, equivalently, the 

class FP(R) of finitely generated projective right R-modules has cancellation: for all 

A, B, C E FP(R) 

AsC”B&C===s-AEB. 
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A weaker form of comparability, but still quite strong, is s-comparability for some 

positive integer s: either .xR 5 s(yR) or yR 5 s(xR) for all x,y E R. Open Problem 4 

in [5] asks whether direct finiteness still implies unit-regularity for regular rings with 

s-comparability. Surprisingly, the answer is “no”, as we show with the construction of 

a counterexample in Section 3. Not only does this example have 2-comparability, it 

has “almost comparability” in the sense that for any X, y E R, either xR ,< yR <G ZR 

for all nonzero z E R, or yR 2 xR a:: zR for all nonzero z E R. Yet FP(R) still fails 

cancellation!. 

What, then, can be salvaged in the way of cancellation properties in FP(R) for a 

directly finite regular ring R with s-comparability? Quite a lot, as it turns out. We show 

in Section 4 that R has the following cancellation of “small projectives” (Theorem 4.6): 

for all A, B, C E FP(R) 

A@C”B@C and CsnAforsomenEN*A”B. 

Two consequences of this theorem are worthy of note. Firstly, it implies R is stably 

finite (all matrix rings A4,,(R) are directly finite). Secondly, it implies that the endo- 

morphism ring EndR(A) of any A E FP(R) has stable range at most 2 (in fact it is a 

Hermite ring). Thus, although R need not have stable range 1 (as Example 3.2 shows), 

R and all its comer rings do have the next best thing. (In the case where R is also 

simple, it is known 115, Corollary 21 that R does have stable range 1.) 

It turns out (Proposition 2.6) that for any directly finite regular ring R with s- 

comparability, all the factor rings of R are also directly finite. Therefore, Example 3.2 

(and indeed any counterexample to Problem 4) also provides a negative answer to the 

second part of Open Problem 3. For it gives a regular ring which is not unit-regular, 

but all its factor rings are directly finite. 

To help put the s-comparability condition in perspective, some comments on its 

origin, recent developments, and examples of this condition may be appropriate here. 

Historically, the s-comparability condition was first formally introduced in the mid- 

seventies by Handelman [9] and Goodearl and Handelman [7] to characterize unique- 

ness of rank functions on certain simple regular rings. An account of this can also 

be found in [5, Ch. 181. Some of these results have been further refined just recently 

(1993) by Ara et al. [2]. For instance, [2, Corollary 4.51 shows that, among the directly 

finite simple regular rings R, those which satisfy s-comparability for some s > 1 are 

precisely those for which R has a unique rank function and FP(R) is strictly unperfo- 

rated (that is, for A,B E FP(R), if nA is isomorphic to a proper submodule of nB for 

some n E N, then A is isomorphic to a proper submodule of B). In the non-simple 

case, if R is a regular ring with s-comparability for some s 2 1, and if R has some 

nonzero factor ring which is directly finite, then R has a unique pseudo-rank function. 

This follows from [2, Theorem 3.51 and Corollary 4.7(l) of our present paper. 

Examples of regular rings with l-comparability are well known, and include the 

important class of all prime, regular, right self-injective rings [5, Ch. 81. Goodearl 

and Handelman observed in the early seventies that regular rings with s-comparability 

for s > 1 also occur naturally, often as ultramatricial algebras over a field F. One 
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instructive example is to take the direct limit R = lim R,, where R,, = hfj.(F) x &“(F) 

for n = 0, 1,2,. and where the maps R, - R,,+Gre given by 

Then R is a simple unit-regular ring with 2-comparability but not l-comparability. See 

[5, Examples 8.7 and 18.191. (We will see later, in Theorem 2.8, that a regular ring with 

s-comparability for .F > 1 always has 2-comparability; in fact “( 1 + c)-comparability”.) 

Our paper is in four sections. Section 1 collects some preliminary results, mostly 

known. Section 2 develops some general properties of regular rings with s-comparability 

(not necessarily directly finite), including the properties that s-comparability is inherited 

by finitely generated projective modules and matrix rings, and that direct finiteness is 

inherited by factor rings. The principal construction of this paper, the counterexample 

to Open Problem 4, is described in Section 3. Finally, Section 4 establishes the result 

(Theorem 4.6) on cancellation of small projectives, and examines its consequences. 

1. Preliminaries 

All rings considered here are associative with 1. All modules will be unital ricght 

modules, if the contrary is not specified. Also, an ideal will always mean a twmsidtd 

ideal. 

A ring R is unit-regular if each x E R can be written as x = xux for some unit 

u E R. We refer the reader to [5] for the general theory of von Neumann regular rings. 

For a ring R, we use L*(R) to denote the lattice of ideals of R, and r(a) (respectively 

((a)) to denote the right (respectively left) annihilator of an element a E R. 

Recall that a ring R satisfies the n-stable range condition (for a given positive integer 

II) if whenever al,..., anil E R with alR + . + a,,+iR = R, there exist elements 

hl.. ..b,, E R such that 

(UI + an+lbl )R +. .. + (a, + a,+lb,)R = R. 

If n is the least positive integer such that R satisfies the n-stable range condition, then 

R is said to have stable range n, and we write sr(R) = n. It is well known that a 

regular ring has stable range one if and only if it is unit-regular [5, Proposition 4.121. 

The reader is referred to [16] for the basic properties of the stable range and to [17, 

13, 141 for the connections between cancellation properties of modules and the stable 

range of their endomorphism rings. 

Recall that a ring R is said to be directly finite if xy = 1 implies JJX = 1, for 

X, _V E R. We say that R is stably jinite if M,(R) is directly finite for all n 2 1. 

Let I be an ideal of a ring R. We denote by I?‘(Z) the class of all finitely generated 

projective R-modules P such that PI = P. Given R-modules A and B, we write A 5 B 

(respectively A -c B) to mean that A is isomorphic to a submodule of B (respectively 
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to a proper submodule of B). If A, B E W(R) and R is regular, then by [5, Theorem 

1.111, A 5 B (respectively A + B) if and only if A is isomorphic to a direct summand 

(respectively proper direct summand) of B. 

The following lemma was obtained independently in [ 10, Lemma 3. l] and [ 1, Lemma 

3.31. It requires no assumption of comparability of any form-and therein lies its use- 

fulness, because it often enables one to modify arguments that, at first glance, would 

appear to require full comparability. 

Lemma 1.1. Let A und B be jinite<y generated projective modules over any regular 

ring R. If A 5 kB for some positive integer k, then there is a decomposition A = 

Al $...$Ak in which Al 5 A2 5 ... 5 Ak 5 B. 

In 1990, K.R. Goodearl gave (in a private communication) a nice refinement of 

the above lemma, which is particularly useful when dealing with s-comparability prob- 

lems. We are grateful for his permission to reproduce the result here. Goodearl’s lemma 

was later discovered independently [ 18, Lemma 1.91 in the setting of refinement pos- 

itively ordered monoids (equivalently abelian semigroups with Riesz decomposition). 

The reader will notice that Goodearl’s proof also only uses these properties of F?(R). 

Lemma 1.2 (K.R. Goodearl). Let A, B, C be-finitely generatedprojective modules over 

any regular ring R. If A @ B 2 kC for some positive integer k, then there is a 

decomposition C = CO $ CI $ . . @ C, such that 

A % C1 $ 2Cz @ . . $ kCk 

and 

B”kCo@(k- l)C, @.“@Ck-, 

Proof. We proceed by induction on k, the case k = 1 being trivial. Now assume 

A@BE’kCforsomek> l.WriteA=U@VandB=W$XwithU@WS(k-l)C 

and V 69X g C. By induction there is a decomposition C = DO @D, @. . $Dk-, such 

that U”D,~2202~...~(k-l)Dk-1 and W%(k-1)Do$(k-2)D1@...$Dk-2. 

ThenD~BS...~D~_~=CNV~X,sowecandecomposeeachD~asD~=V,$X, 

with Vo$...@Vk-l F V andXo@...@&_i EX. 

NOW let Co =X0, Ci = 6-1 @Xi for i = l,...,k - 1, and Ck = P’-1. Then, 

C, @ 2C2 @ ’ . $ kCk 

=(Vo@x1)@2(6 @&)@...@(k- l)(Vk--2@xk-,)@kVk-l 

= (Xi G3 Vl > @ 2(X2 CB V2) @ 



P. Arcs et al. I Journal of’ Pure und Applied Algebra 107 (1996) 19-38 

and 

Hence the induction works. 0 

In the case of simple regular rings, it was shown in [ 151 that Open Problem 4 has 

indeed a positive answer. For convenience we restate the result here, because we shall 

need it later. It enables us to deduce that for any directly finite regular ring with s- 

comparability, its (unique) simple factor is unit-regular (Corollary 2.7). Also, if such 

a ring has a minimal ideal M, then M is unit-regular (Proposition 2.4( 1)). 

Theorem 1.3 (O’Meara [15, Corollary 21). Let R he u directly finite simple regulur 

ring ~vhich sati$es s-comparability for some s > 0. Then R is unit-regular. 

An alternative approach to the proof of Theorem 1.3 was given in [l]. In Section 

4, we will expand some of the techniques introduced in [l] to get stable range at 

most 2 in the non-simple case (and even stronger results). We recall the following key 

concepts introduced in [I]. For A, B E FP(R), A is almost subisomorphic to B, written 

A 5, B, if A 4 B 63 C for all nonzero C E FP(R). If A 2 a B and B 5, A, then 

A is said to be almost isomorphic to B, written A Na B. A regular ring R is said to 

satisfy ulmost comparability if for all x, y E R, either XR 5, yR or yR 5, xR. The 

following important connection between s-comparability and almost comparability was 

established in [2]. 

Theorem 1.4 (Ara et al. [2, Corollary 4.51). For simple regular rings, s-compuruh- 

ilit)* ,fkr some s > 0 is equivalent to the ring sutisfyiny ulmost comparability, 

In the non-simple case, almost comparability gives 2-comparability but not con- 

versely; see Example 4.11. 

2. General properties of s-comparability 

In this section we establish some general properties of a regular ring R which has 

s-comparability for some s > 0. Many of these properties do not require R to be 

directly finite. Lemma 2.2, Proposition 2.3(a) and Proposition 2.6 were first proved by 
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K.R. Goodearl (private communication), and we thank him for allowing us to use the 

results here. 

One property that we shall use frequently, and implicitly, is that the lattice L2(R) of 

two-sided ideals of R is totally ordered. The proof is the same as for the l-comparability 

case [5, Proposition 8.51: if J,K E Ll(R) and J 9 K, K $ J, then choose x E J \ K, 

y E K \ J. Then x @ RyR implies XR g s(yR), while y $! RxR implies yR 6 s(xR). 

This is not possible. 

In particular, therefore, a regular ring with s-comparability has a unique maximal 

ideal. 

As with l-comparability, s-comparability is inherited by finitely generated projective 

modules and by finite matrix rings: 

Proposition 2.1. Let R be a regular ring with s-comparability. Then: 

(1) The jinitely generated projective R-modules also satisfy s- comparability. 

(2) For any A E FP(R), the endomorphism ring EndR(A) sutisjes s-comparability. 

In particular, all the matrix rings M,(R) sutisfy s-comparability. 

Proof. (1) We must show that for A, B E FP(R), either A 5 sB or B ,< sA. This 

can be done by induction on n where A,B 5 nR (based on the proof in [5, 8.21 for 

l-comparability). So assume the result holds for n - 1, and suppose A, B 5 nR. Write 

A=Al~A~andB=B,$B2whereAi,B;~(n-l)Rfori=1,2.Bytheinduction 

hypothesis either Al 5 sB1 or B1 5 sA1, and either A2 2 SBZ or B2 5 sA2. 

If Al 5 SBI and A2 5 sB2, then A = Al @ A2 5 SBI @ sB2 = sB. Similarly, if 

B1 ,< sAl and B2 5 sA2, then B 5 sA. Therefore it is sufficient to consider the case 

where, say, AI 5 sB1 and B2 5 sA2. By Lemma 1.1 there is a direct summand V 

of A1 such that V 5 B1 and Al 5 sV, and there is a direct summand W of B2 such 

that W 5 A2 and Bl 5 SW. Write B1 g V @ C and A2 ? W $ D, and notice that 

C, D 5 (n - 1 )R. Using the induction hypothesis once more, we get either C 5 SD or 

D 5 SC. If C 5 SD, then 

B=B,$B~~VVCCBB~ 

5 V@sD$sWz V@sA2 

SsA, $sA2 =sA 

so B 5 sA. Similarly, D 5 SC yields A 5 sB. 

(2) Let T = EndR(A). Observe that for X, y E T, if say XA 5 s(yA) then XT < 

s(yT). Hence (2) follows immediately from (1). 0 

For any regular ring R with s-comparability, we know that its ideals form a chain, 

and so any two ideals are comparable with respect to inclusion. The next proposition 

(Proposition 2.3) shows that if we have strict inclusion of two principal ideals, say 

RxR < RyR, then we get strict subisomorphism of the corresponding principal one- 

sided ideals. Therefore, the only lack of full comparability of two principal right ideals 
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XR and yR is when the ideals RxR and RyR are at the same level. In fact the result 

can be extended to finitely generated projective modules via their trace ideals. For an 

R-module A, its truce ideal is tr(A) = c f(A) where ,f ranges over all R-homomor- 

phisms from A to R. This is indeed an ideal of R and, in case R is regular and A E 

FP(R), there is an idempotent e E R such that tr(A) = ReR (because A is isomorphic 

to a finite direct sum of principal right ideals of R). For a regular ring R, the trace 

ideal of A E FP(R) is also characterized as the smallest ideal I of R for which AI = A. 

Moreover, for any A,B E FP(R), where R is regular, 

tr(A) C tr(B) iff A 5 kB for some k E N 

(see [5, 2.10 and 2.231). The following lemma will help us make the above connections. 

Lemma 2.2 (K.R. Goodearl). Let R he a regular ring with s-comparability, and let 

A. B E FP(R). Zf (s + 1 )A 5 2B, then A 5 B. 

Proof. From (S + 1)A 5 2B, we can obtain (S + 1)A E C {{+ D for some finitely 

generated projective R-modules C,D 2 B. By Lemma 1.2 there is a decomposition 

A = Ao 8 AI @ ... @ A,~+I such that C ” Al $ 2A2 3 . . . _tu (s + 1 )A,+, and D ” 

(S + 1 )Ao d3 SAI 9 . CE A,. Using s-comparability and Proposition 2.1( 1 ), we have 
either A0 5 sA,~+, or A,+, 5 SAO. If AU 5 sA,+, , then 

il = A0 iti . 6 A,T+, 5 AI @Az$...@(s+ l)A,5,, 

5 Al02A~~...~((s+l)A,+, EC 5 B 

SO A 5 B. On the other hand, if As+, 5 SAO, then A 5 (s + l)Ao @Al &. bi.A, 5 

D 5 B and again A 5 B. 0 

Proposition 2.3. Let R be a regulur ring satisfying s-compurubility. 

(a) If’x, _Y E R with RxR 5 RyR, then XR < yR. 

(b) Zf A, B E FP(R) with tr(A) 5 tr(B), then A + B. 

(c) Let N be a proper ideul of R and let A,B E FP(R). If A/AN 4 BIBN, then 

A 4 B. 

Proof. (a) Since yR $ RxR, we cannot have yR 5 s(s + 1 )“(xR). Therefore, because 

s-comparability holds in FP(R) (see Proposition 2.1(l)), we must have (s f 1 )“(xR) 5 

s(.yR) and so (s + 1 )s(xR) 5 2’(yR). By Lemma 2.2, XR 5 ,vR, whence xR + yR 

because yR $ RxR. 

(b) Notice that tr(B) = tr(C) for some principal right ideal C of R with C 5 B. 

Therefore, it suffices to argue by induction on k that whenever A 5 kR and tr(A) s 

tr(C) for some C 5 R, then A < C. Part (a) is precisely the case k = 1. For a general 

k, write A = Al @ A2 with Al 5 R and A2 ,< (k - l)R. We have Al 5 C by (a) 

because tr(Al) C tr(A) C tr(C). Now write C = Cl @ C2 with Ai E Cl. Observe that 

tr(A2) 5 tr( Cl) because tr(A ) 5 tr(C). By induction A2 + Cz. Hence A = Al l’i:- A2 + 

C’I 3 C2 = C, giving A -X C. 
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(c) By applying [S, Proposition 2.201, we obtain decompositions A = A, @ A2 and 

B = B1 $ Bz, with AI g B1 and AZ = AzN and B2 # BzN. Since B2 # BIN, its 

trace ideal cannot be contained in N. By comparability of ideals, N 5 tr(Bz j and, so, 

tr(A2)sN str(Bz).ThusA2+B2by(b)and,so,A=Ai@A2+Bi@B~2=B. 0 

Proposition 2.4. Let R be a directly jinite regular ring satisfying s-comparability, and 

assume that R has a minimal ideal M. Then: 

(1) M is unit-reyulur (that is, all corners eRe with e E M are unit-regular). In 

particular, the class FP(M) has cancellation and every A E FP(Mj is directly) finite. 

(2) For any A E FP(M) and B E FP(R), either A + B or B 5, A. 

Proof. (1 j Let e be a nonzero idempotent of M and let S = eRe. Since ReR = M is 

a minimal ideal of R, the ring S is simple. Hence S is a directly finite simple regular 

ring, and satisfies s-comparability by Proposition 2.1(2). Therefore S is unit-regular by 

Theorem 1.3. In particular FP(S) has cancellation and so therefore does the naturally 

equivalent FP(M). 

(2) Consider first the special case where R is also simple. The result is trivial for 

Artinian rings so we can assume R is not Artinian. By Theorem 1.4, R satisfies almost 

comparability. Let A, B E FP(R) be nonzero. Let X E FP(R), X # 0. Since R is a 

prime ring with zero socle, we can write 

B=B,$B2, X=X,43X2, B,“Xl, X,#O, &#O. 

By almost comparability, either A sa B2 or B2 sa A. If A & B2 then clearly A 4 

B18B2 = B. Suppose B2 5, A. Then B2 + A@?Xl implies B = B, @B2 + A@& @X2 = 

A @X. Hence B sa A. This proves the special case. 

In the general case, M = ReR for some idempotent e E M such that the corner 

ring eRe is simple. Let S = eRe. Then S is a directly finite simple regular ring with 

s-comparability. For A E FP(M) and B E FP(R), if B $! FP(M) then tr(A) 5 tr(B) 

implies A 4 B by Proposition 2.3(b). Therefore we can assume that both A, B E FP(M). 

Since FP(M) is equivalent to FP(S), the above special case shows that either A 4 B 

or B + A @ Y for all nonzero Y E FP(A4). Suppose it is the latter. Let X E FP(R), 

X # 0. Then XM # 0, because R is a prime ring, and so there exists 0 # Y E FP(M), 

YgXM.NowB<A@Y sA@X.ThisshowsthateitherA+BorBs,A. 0 

In a regular ring with s-comparability, each proper ideal must contain a countably 

infinite direct sum of copies of each of its principal right ideals. In fact we have the 

following strengthened versions of Proposition 2.3(a), (b). 

Proposition 2.5. Let R be a regular ring satisfying s-comparability, 

(1) Zf x, y E R with RxR s RyR, then No(xR) ,< yR. 

(2) If A,B E FP(R) with tr(A) 5 tr(B), then NoA 5 B. 

(3) Let f be a nonzero idempotent of R and let N be the maximal ideal of fR,f’. 

If fRf/N is directly injinite, then No(fR) 5 fR. 
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Proof. (1) Let yR = hR, where h = h ‘. We shall construct an infinite sequence 

.ql?g2,... of orthogonal idempotents of hRh such that g,R 2 XR for all n. Since RxR 5 

RhR, we have XR 5 hR by Proposition 2.3(a). Therefore there is an idempotent gi E 

hRh with g,R S xR. 

Now suppose we have constructed gi,. . . , gn for some n. Set y = gi + + gn. 

Then g E RxR and RxR s R(h - y)R, so again by Proposition 2.3(a) we have xR 5 

(h - g)R. Hence there is a direct summand X G(h - g)R with X g xR. Now there 

exists an idempotent g,+l in (h - g)R(h - g) such that X = gn+lR. Clearly y,!+l is 

orthogonal to yi , . . . , g,,. Since g,,+i E hRh and g,,+lR E xR, the induction works. 

(2) This is similar to (a) * (b) of Proposition 2.3. Assume A 5 kR, k > 1, 

and tr(A ) 5 tr(C) for some C 5 R. By s-comparability and Proposition 2.1( 1) we 

can write A = Al 63 A2 with Ai, A2 5 (k - l)R and Ai 5 sA2. By induction, since 

tr(A2) C tr(A) s tr(C), we have NoA2 5 C which implies 

NOA = NoA, @ NoA2 5 NoA 5 C. 

(3) Write S = fR f. It suffices to prove that 2S 5 S. Set 3 = S/N. Since ?? is 

simple and directly infinite, 2% + 5. By Proposition 2.3(c), 2S 4 S. 0 

Proposition 2.6 (K.R. Goodearl). If R is a directly finite regular ring with s-compara- 

bility for some s > 0, then all the factor rings of R are also directly finite. 

Proof. Let I be a proper ideal of R and let R = R/I. If R is directly infinite, then 

R 4 R and, so, R 4 R by Proposition 2.3(c), giving a contradiction. 0 

Corollary 2.7. Suppose R is a directly jinite regular ring satisfying s-comparability. 

Then the (unique) simple factor ring of R is unit-regular 

Proof. Notice that s-comparability is always inherited by factor rings. The Corollary 

now follows directly from Proposition 2.6 and Theorem 1.3. 0 

Although it is not the case in general that s-comparability implies almost compa- 

rability (see Example 4.1 l), the next result says that, in a sense, s-comparability for 

some s > 0 implies “( 1 + &)-comparability”. 

Theorem 2.8. The following conditions are equivalent for a regulur ring R : 

(a) R satisfies s-comparability for some s > 1. 

(b) R satisfies (s : t)-comparability for all s and t ,i,ith 1 5 t < s. 

Proof. Clearly, (b) implies (a). Assume R has s’-comparability for some s’ > 1, and 

fix 1 5 t < s. Choose x,y E R. Without loss of generality, we can assume that 

RxR C RyR. If RxR 5 RyR then XR < yR by Proposition 2.3(a), and, so, clearly 

t(.xR) 5 s(yR). Suppose RxR = RyR. Let e E I := RxR be an idempotent with 

x, y E eRe. Set S = eRe and let N be the maximal ideal of S. Write 3 = S/N. 

By Proposition 2.1, 3 satisfies s’-comparability. By Theorem 1.4, either XS sa 3 
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or j?? 5 a s. Assume that 3 sa 3. Then also 2(a) 5a t($?). Since Y # 0 

and s > 1, we have t(xS) 5 t(s) @ (s - t)(s) = s(s). By Proposition 2.3(c), we 

obtain t(x,S) + s(,v,S). Therefore t(xR) + s(yR). Consequently R satisfies (s : t)-com- 

parability. 0 

3. The counterexample to Open Problem 4 

For an abelian group X, denote by B(X) the abelian group of row- and column- 

finite countably infinite matrices over X, and by X, the subgroup of countably infinite 

matrices over X that have only a finite number of nonzero entries. If A is a ring then 

B(A) is a ring and A, is a two-sided ideal of B(A). If X is an S - T bimodule then 

B(X) and XX are B(S) - B(T) bimodules. 

We start by recalling the construction by Chuang and Lee [4]. Let F be any countable 

field. Let F[t] be the ring of polynomials over F and F(t) the quotient field of F[t]. 

Let 6 be the valuation on F(t) defined by &(t) = $-co if r(t) = 0 and fir(t) = n 

if r(t) = t”f(t)/g(t) where t does not divide f(t)g(t). Let V be the valuation ring 

associated to 6, namely V = {r(t) E F(t) 1 h(t) > 0). Choose a basis UO,C’I,. . of 

V such that ue = 1 and 6ui = i for all i; see [4, p. 181. Denote by q the map on V 

given by multiplication by t, and by ~9 the map on V given by multiplication by t-’ 

on tV and with $(~a) = 0. Let S be the set of all x E EndF( V) such that there exists 

a E F(t) and y1 > 0 such that (x - a)t”V = 0. Then S is a ring and cp, $ belong to S. 

Set K = F(t). There exists a ring epimorphism rt : S --+ K such that for all x E S, 

(X - n(x))t” V = 0 for some IZ > 0. By the arguments of Chuang and Lee, S C B(F), 
where we are thinking of the elements of S as matrices in the basis ua, 01,. . of V. 

Also, M := ker rc = F,. Note that every element a E F(t) such that 6(a) = 0 lifts to 

a unit of S, namely the endomorphism on V given by multiplication by a. 

Consider the opposite ring of S, So, and let x + X be a ring antiautomorphism from 

S onto So. Consider the embedding IX of So into B(F) given by a(!?) = xt, where xt 

denotes the transpose of x. 

Let L be any unit-regular F-algebra. Set 

A= (7:);;)). 

The natural map from F into the centre of L enables us to define an embedding 

j : B(F) x B(F) - (B(OL)B;))LA. 

Set /I = j(id x a) : S x So - A. We will identify S with its image under the 

embedding S c B(F) --+ B(L). Analogously, So will be identified with his image 

under S’zB(F) - B(L). We will denote by X the transpose of a matrix x E B(L). 

(Of course the map x --+ X will not be an antiautomorphism in general.) 
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Observe that M c L,. Write D = S +L,. Then L, is a unit-regular ideal of D and 

D/L, 2 K. Denote by 7-r’ the canonical projection from D onto K with kernel L,. 
NotethatZi={dIdED}=S+z,= 3 + L, is a subring of B(L) (although we 

are not claiming that D is isomorphic to the opposite ring of D). 
Now let T = {(x, y) E S x So ( x(x) = n(y)}. T is a directly finite regular ring [ 13, 

Lemma 131 with a unique maximal ideal M x M” such that T/(M x M”) ” K. Set 

R = /3(T) + N, where N = &(L,). A clever way to look at R is the following: 

R={($) E (L ‘;) ;n’(a)=n’(d)}. 

Observe that N is a unit-regular ideal of R and R/N ” K. In particular R is a regular 

ring. We denote by rr” the canonical projection from R onto K with kernel N. Note 

that 

71” 
ab cc )I cd 

= 71’(a) = n’(d). 

Denote by I the identity in B(L). For an idempotent p of L define pX = diag 

(p, p, . . , ), and observe that we have I - pno = diag( 1 - p, 1 - p, . . , ). For nonzero 

idempotents p,q E L define 

Q&q) = px; 0 ( > 0 400 
EA 

and set R( p, q) = k( p, q)Rk( p, q). Note that R( p, q) is a ring for all nonzero p, q E L, 
since xk( p, q) = k( p, q)x for all x E b(T). Set N( p, q) = k( p, q)Nk( p, q) and note that 

N( p, q) is a unit-regular ideal of R(p, q) such that R(p, q)/N( p, q) ” K. In particular 

R( p, q) is a regular ring for all nonzero idempotents p, q E L. 

Lemma 3.1. Let L be a unit-regular F-algebra and let p and q be two nonzero 
idempotents in L. Then R(p, q) is unit-regular if and only zj’ p +., q. 

Proof. Assume first that p and q are two equivalent idempotents in L. Since N(p,q) 

is a unit-regular ideal of R(p, q) and R( p, q)/N( p, q) E’ K is unit-regular, we need only 

to prove that every unit in K lifts to a unit in R(p,q) (see, for example, [3, Lemma 

3.51). 

Every element a E K such that 6(a) = 0 lifts to a unit of S, and so to a unit in 

R(p,q). Consequently, it suffices to show that t lifts to a unit of R(p,q). Since p N q, 

there exist a0 E pLq and bo E qLp such that aobo = p and boas = q. Denote by 

a the matrix in pmL,q, which has a0 in the left upper corner, and O’s elsewhere. 

Analogously, b E q,L,px is the matrix having bs in the left upper comer and O’s 

elsewhere. Put 
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Then X, Y E R(p, 4) and XY = YX = 1. Moreover, r?‘(X) = t, so that t lifts to a 

unit of R( p, q) and consequently R(p, q) is unit-regular. 

Assume now that R(p, q) is unit-regular. Denote by b,J,4 the map k(p, q)a : T + 

R(p, q), which is an injective homomorphism. Consider the idempotents g, h E T given 

by g = (cp$, 1) and h = (l,cp$). Since g = (cp,cP)($,‘J/) and h = ($,$)(cp,O), we see 
that g and h are equivalent in T and, consequently, ljJg) and BP&h) are equivalent 

in R( p, q). Since R( p, q) is unit-regular, the idempotents k( p, q) - py,&) = p& 1 - 61) 

and k(p, q) - Bp,q(h) = ljlj,& 1 - h) must be equivalent in R(p, q). Noting that 1 - .cl = 

(diag( l,O,O,. . . , ), 0) and 1 - h = (O,diag( l,O, 0,. . , )), we conclude that p N q, as 

desired. 0 

Now we are ready to give our example. 

Example 3.2. There exists a regular ring lJ such that: 

(a) U satisfies almost comparability. In particular, U satisfies 2-comparability. 

(b) U is stably finite. 

(c) U is not unit-regular. 

Proof. Let F be a countable field and let S be the ring constructed in [4], as given 

before. Let L be any simple, unit-regular F-algebra satisfying almost comparability but 

not comparability (for example, by Theorem 1.4 we can take the algebra constructed 

in [5, Example 18.191 and described in the Introduction). Then L has a unique rank 

function P and (by Proposition 2.4(2)), for idempotents e, f E L, P(e) = P(f) if and 

only if eL is almost isomorphic to ft. Let p and q be two idempotents in L such 

that P(p) = P(q) but p is not equivalent to q, and consider the corresponding ring 

U = R(p, q). Then U is a regular ring which is not unit-regular by Lemma 3.1. 

By construction U has a unique nontrivial ideal V = N(p,q) and U/V g F(t). 

Moreover V is a unit-regular ideal satisfying almost comparability, and for idempotents 

e, f E V, we have eU 5 (1 - f )U. To show that U satisfies almost comparability, 

take two idempotents e, f E U. If e, f E V then either eU sa ,f U or f U 5, eU 

because V satisfies almost comparability. If e E V and f $! V then 1 - f E V, so that 

eU 5 ,f U, by the above observation. Finally, if both e and f are not in V then either 

(1 - e)U sa (1 - f )U or (1 - f )U Sa (1 - e)U. Assume that the former possibility 

holds. Choose an idempotent y E V such that 1 -e, 1 -f E gb'q. Since gVg is a simple 

unit-regular ring, it follows from [l, Theorem 1.91 that (y-( 1 -f ))U sa (y-( 1 -e))U. 

Adding to both parts of this relation (1 - y)U we obtain that f U Sa eU. Therefore 

U satisfies almost comparability. 

Finally, we will prove (b). Let z be the P-completion of L. Then z is a simple, unit- 

regular, right and left self-injective F-algebra [5, Theorems 19.7 and 19.141. Moreover 

L embeds in z and P extends to a rank function P, which is the unique rank function on 

Z. Since z satisfies comparability, p(e) = p(f) if and only if e N f, for idempotents 

e, f E z. Now let R(p, q) be the ring constructed as before but using z instead of L. 

Since P(p) = P(q), p and q are equivalent in z, and, so, Lemma 3.1 gives us that 

R(p, q) is unit-regular. Clearly, U embeds in @p, q) and, thus, U is stably finite. 0 
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4. Cancellation of small projectives 

Let R be a directly finite regular ring with s-comparability. Example 3.2 shows that R 

need not have stable range 1, and so R need not have cancellation of finitely generated 

projective modules. However, the situation is not nearly as bad as it first looks. For 

we shall show in this section that R always has “cancellation of small projectives”, 

in the sense of the following definition, and in particular the stable range of R is at 

most 2. 

Definition 4.1. Let R be a regular ring. We say that R has cancellation of small pro- 

jectives if for all finitely generated projective right R-modules A,B, C 

A ~3 C Z B +!Y C and C 2 nA for some n E N ===+ A ” B. 

Cancellation of small projectives can also be characterized in other ways, as in our 

next proposition. We recall [12, p. 4651 that a ring R is (right) Hermite if every 1 x 2 

matrix A = (al 1 ~12) admits diagonal reduction, that is, PAQ is diagonal (* 0) for 

some units P E R and Q E M*(R). By [13, Theorem 91, a regular Hermite ring R 

actually has the property that every m x n matrix over R admits diagonal reduction. 

Also, by [13, Theorem 91, a regular ring R is Hermite if and only if 

for all B. C E FP(R). Notice that a Hermite ring has stable range at most 2 by [ 13, 

Proposition S(i)]. 

Proposition 4.2. For any regulctr ring R, the .folloGy clre equivulent: 

(i) R has cancellrrtion of’ small projectives. 

(ii) For ull principul right ideals A, B, C of’ R 

A + C ” B @ C 5 R und C 5 nA for some n E N ===s A ” B. 

(iii) For ull ,finitell, yeneruted projective R-modules A and B, 

A+A”A;+B===sA~B. 

(iv) R und all its corner rings eRe (e = e2 E R) are Hermitr. 

(v) The condition 

Rr(u) = R(l - u)R 

implies the element a E R is unit-regular. 

(**) 

Proof. (i) j (ii). This is trivial. 

(ii) ===+ (i). The proof we shall give is taken from an argument due to K.R. Goodearl 

(unpublished). Suppose A, B, C E FP(R) satisfy A 9 C g B GE C and C 5 nA for some 

II. We wish to show A ” B. Since C 2 kR for some k E N, we can write C = 
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c, $ ... $ Ck with each C, 5 R. It is enough, therefore, to handle the case k = 1 

because in the general case we can cancel one Ci at a time. Similarly we can reduce 

to the case n = 1. Thus we can assume that C 5 R and C 5 A. 

By [ 1, Lemma 1. lo] there are decompositions 

A =A’$A”, B = B’ @ B”, c = c’ @ c” 

such that A’ Z B’, A” @ C” E B” @ C” and 2A” 5 C’. Since C” 5 C 5 A = A’@A”, 

we can write 

c” = c, @ c, with Cr 5 A’ and C, 5 A”. 

From A” @ C” Z B” @ C” we have 

(A” $ C, ) @ Cz ” (B” a3 Cl ) 65 C,. (1) 

The two isomorphic projective modules in (1) are isomorphic to a principal right 

ideal of R because 

(A” @ Cl ) $ C2 5 A” 63 Cl gi A” since C2 5 A” 

5 2A” @ C” since Cl 5 C” 

5 c’ @ c” since 2A” 5 C’ 

=CsR. 

We can now apply the cancellation property (ii) to (1) and cancel C, because 

C2 5 A” 5 A” 63 Cl. This yields A” @ Cl S B” @ Cl. Since Ct 5 A’ S B’, we can 

write A’ E X @ Cl 2 B’ for some X E P(R). Finally 

A =A’@A”ZX@C, @A”“X@C, @B”“B’@B”=B 

gives A ” B, as required. 

(i) ===+ (iii). This is immediate. 

(iii) j (i). Suppose A,B, C E FP(R) with A @ C ” B @ C and C 5 nA for some 

n. Again, to show A Z B, it suffices to handle the case n = 1. Then, A 3 C @ D for 

some D, whence 

and so A ” B by (iii). 

(i) ===+ (iv). Let e be an idempotent of R and let A = eR. If B, C E FP(R) are such 

that 2A @B g A @ C, then A @B 2 C by (i). By [ 13, Theorem 91 this shows EndR(A) 

is Hermite, whence eRe is Hermite. 

(iv) j (i). By the argument at the beginning of (ii) + (i) it suffices to show 

thatforA,B,C~FP(R)withA~C”B~CandC~RandC~A,thenA~B. 

Write A E C @ D. Since C ,< R, we have EndR(C) is Hermite by (iv), whence by 

[13, Theorem 91 
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(ii) + (v). Suppose a E R satisfies Rr(a) = R( 1 - u)R. Let J = R( 1 - a)R. There 

exists an idempotent g E J such that 1 - a E gRg. Note that J = RgR. Note also that 

a = a</ + (1 - g) so that ~(a) C gR and ugR & gR. Let A = r(u) and choose principal 

right ideals B and C such that 

gR=A@C=BBugR. 

Then ugR = UC 2 C, so 

A&C”BGC 5 R. (2) 

Now R( 1 - u)R = Rr(u) implies gR C RA, and so C 2 ugR implies C C RA. Hence 

C 5 nA for some n E N. Hence by (ii) we can cancel C in (2) to obtain A E B. Now 

we see a is unit-regular in R because 

R/L;: = R/(ugR $ (1 - g)R) ” gR/ugR ” B G A = r(u). 

(v) ===+ (ii). Suppose A, B, C are principal right ideals of R with A $ C E B @ C 5 R 

and C 5 nA for some n. Write 

where Al S’ A, B1 E B and Cr 2 C’2 ” C. Let a E R induce (by left multiplication) a 

map of R which is 0 on Al, an isomorphism from CI onto CZ, and the identity on D. 

Then 

implies (1 - u)R 5 (n + l)r(u) and so R(l - u)R c Rr(u). The reverse containment 

always holds, whence Rr(u) = R(l -u)R. By (v), a is unit-regular and so r(u) ” R/uR. 

Thus Al = r(u) ” R/( C2 @ D) ” B1 and consequently A 2 B, as required. 0 

Remark 4.3. (a) The proof of (i) * (iv) shows in fact that EndR(A) is Hermite for 

all finitely generated projective R-modules A. 

(b) In [ 1 l] the condition 

Rr(u) = k(u)R = R( 1 - u)R (*) 

was studied for regular rings. For several large classes of regular rings (including all 

unit-regular rings), it was shown that (*) characterizes when an element a E R is a 

product of idempotents. If all the factor rings of a regular ring R are directly finite 

(which is equivalent to Rr(a) = f(u)R for all a E R), then (*) is the same as (**). In 

particular, therefore, if R is a regular ring which has a (*) characterization for products 

of idempotents, and all factor rings of R are directly finite, then R has cancellation of 

small projectives (by (v) ti (i) and the fact that products of idempotents are always 

unit-regular). 

(c) Since there exist directly finite regular rings with infinite stable range (such as 

the free regular ring-see [8, p. 416]), by Proposition 4.2 not even all directly finite 

regular rings have cancellation of small projectives. 
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(d) In view of [13, Example 31, a corner ring of a regular Hermite ring need not 

be Hermite-it can have infinite stable range. Therefore it is not enough in Proposition 

4.2(iv) to require only that R be Hermite. 

Lemma 4.4. Let R be a directly jinite regular ring satisfying s-comparability for 

some s > 0, and assume that R has a minimal ideal M. Then R @ T is directly jinite 

jbr every T E FP(M). 

Proof. Let T E FP(M) and assume that R B: T $ T’ Z R $ T for some T’ E FP(R). By 

proposition 2.4( I), EndR( T) is unit-regular, so it has stable range 1, and so T cancels 

from direct sums. Thus, R @ T @ T’ ” R @ T implies R @ T’ Z R and so T’ = 0 since 

R is directly finite. 0 

Proposition 4.5. Let R be a directly finite regular ring satisfying s-comparability jbr 

sonzes>O.IfB,C,,C2EFP(R)andR~B,<R~Cifori=1,2,thenB~CI~C2. 

Proof. Obviously, we can assume that B # 0. Let A4 = tr(B) and let N be the maximal 

ideal of M. For A E FP(R) we denote by 1 the R/N-module A/AN. By Proposition 

2.6, R := R/N is a directly finite regular ring satisfying s-comparability, and has a 

minimal ideal M := M/N. Therefore, from R83 5 R@ci, we can deduce that ??i # 0 

for i = 1,2. If Ci # C/M for some i, then we are done by Proposition 2.3(b) because 

tr(B) 5 tr(C;) implies B + C;. So we can assume that Ci = CiA4 for i = 1,2 and 

SO ci E FP(a) for i = 1,2. If ??, <B for some i, then R@Ci < R@B 5 R@C,, 

contradicting the fact that R@ci is directly finite (Lemma 4.4). By Proposition 2.4(2), 

B s= Ci for i = 1,2, and since ??l # 0, we have B + ci @ ??z. By Proposition 2.3(c), 

B -z Cl @ C’,, as desired. 0 

Theorem 4.6. Let R be a directly finite regular ring satisjjing s-comparability for 

some positive integer s. Then R has cancellation of small proJ’ectives. 

Proof. By Proposition 4.5 and [ 1, Proof of Theorem 1.71, all corner rings of R have 

stable range less than or equal to 2. By [ 17, Theorem 1.91, sr(EndR(D)) 5 2 for’all 

D E FP(R). 

Assume that 

for some A,B E FP(R). Let M = tr(A) and let N be the maximal ideal of M. We 

consider two cases: 

(1) There exists a decomposition A = A, @ A2 with A, # A, N and A2 # AlN. 

(2) If A = Al @ A2 then Al = AIN or A2 = AzN. 

Assume (1) holds and that A = Al @ A2 with Al # AIN and A2 # AzN. Then 

N c tr(Ai) C A4 implies tr(Ai ) = tr(AZ) by maximality of N. Therefore Al 5 nA2 for 

somenENandwecanwriteA,=X~~...~X,witheachX,~AZ.SinceA,#AIN, 
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there is an Xj with Xj # XjN. Let A’ = Xj. Then 2A’ 5 A. Also since A’N # A’, we 

see that N c tr(A’) C M. Therefore tr(A’) = M by maximality of N. Now tr(A) C tr(A’) 

implies A 5 kA’ for some k E N. Write A = Al @ . . &? Ak with Ai 2 A’ for all i. 

Then we have 

and, since 2Ak 5 2A’ 5 A and sr(End&&)) < 2, we deduce from [17, Theorem 1.21 

that A $1 Al 4, iD Ah-_, C+ B @Al CE .. cEiAk_1. It follows (by induction on k) that 

A E B, as desired. 

Assume now that (2) holds. Write A = A, ~3 A2 and B = B, $ B2 with Al 9 B, % 

A: 1 B2 2 A. Assume that AIN = Al. Then A2 # A2N and so Proposition 2.3(b) tells 

us that 2A 1 5 Al. So we can apply [ 17, Theorem 1.21 to the relation 

A, ‘C,AI “A, :;‘B, 

to obtain BI 2 AI. Hence 

A ” A2 ~3 B2 ” B, & B2 = B. 

If A2 = AJN, a similar argument shows also that A E B. 

By Proposition 4.2, R satisfies cancellation of small projectives. 0 

Corollary 4.7. Let R be u directly finite regulur ring satisjiing s-compurubility fin 

some positive inteyer s. Then: 

( I ) R and ~11 its firctor rings are stably jinite. 

(2) All corner rings oj R have stable range at most 2. 

Proof. ( 1) Assume that nR 8 T E nR for some n > 1. By applying Theorem 4.6 to 

the relation 

(n - 1 )R CiI (R #I T) 2 (n - 1 )R $ R, 

we get R ~2 T Z R, so T = 0 because R is directly finite. This shows R is stably finite. 

By Proposition 2.6, so are its factor rings. 

(2) This was observed in the proof of Theorem 4.6. (Or alternatively we can use 

Theorem 4.6 and (i) j (iv) of Proposition 4.2.) 0 

Remark 4.8. Suppose that R is a directly finite regular ring with s-comparability. The 

proof of [15, Theorem l] can be adapted (through the use of Lemma 2.2) to show 

that R has a (*) characterization for its products of idempotents. This leads to an 

alternative route for the proof of Theorem 4.6, via Proposition 2.6 and the implication 

(v) + (i) of Proposition 4.2 (see Remark 4.3(b)). Actually the conclusioil reached 

is possibly stronger than Theorem 4.6, because in Proposition 4.2(v), knowing that CI 

is a product of idempotents tells us more than a being just unit-regular; for instance, 

in a homomorphic image, a will always lift to a unit-regular element. Using this last 
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observation, one can show that if S is any regular ring which contains a unit-regular 

ideal I such that S/I has a (*) characterization for products of idempotents, and S/I 

has all its factor rings directly finite, then S too has cancellation of small projectives. 

(Here S need not be directly finite.) 

The proof of Lemma 3.1 showed that the ring R( p, q) is unit-regular if and only if 

the element t in the homomorphic image K lifts to a unit of R(p,q). We now show 

that this is part of a more general phenomenon. 

Proposition 4.9. A regular ring R is unit-regular if and only if all the jollowing hold 

(1) Euery factor ring of R is directly jinite. 

(2) R has a (*) characterization jar products of idempotents, that is, the condition 

Rr(a) = C(a)R = R( 1 - a)R implies the element a is a product of idempotents. 

(3) Units can he lifted in R/I for all ideals I. 

Proof. The necessity of (1) and (3) is trivial, while (2) follows from [ 11, Theorem 

2.91. To establish sufficiency, assume (1) (2) and (3) and let a E R. Let I = Rr(a). 

In the factor ring ii = R/l, observe that r~(a) = rR(a) = 0 so 5 must be a unit of 2 

by (1). By (3), there is a unit u E R with 2t = G. Let b = u-la. Then b = i implies 

1 -b E / = Rr(a) = Rr(b). Hence R( 1 - b)R C Rr(b) and so R( I - b)R = Rr(b). Since 

R/Rr(b) is directly finite by (1) we have d(b)R = Rr(b). Therefore Rr(b) = d(b)R = 

R( 1 - b)R, which implies b is unit-regular by (2). Hence a = ub is also unit-regular. 

Therefore R is unit-regular. 0 

Corollary 4.10. Let R be a directly jinite regular ring satisfying s-comparability. 

Then R is unit-regulur if and only if units can be 1iJted in R/I for all ideals I of R. 

Proof. R satisfies (1) and (2) of Proposition 4.9 by Proposition 2.6 and Remark 4.8 

respectively. Thus R is unit-regular if and only if (3) holds. (For the purposes of this 

proof, “products of idempotents” in (2) could be replaced by “unit-regular”, in which 

case the reference to Remark 4.8 should be replaced by one to Proposition 4.2 and 

Theorem 4.6.) 0 

We close with a construction that enables us to give some counter-examples, in 

the non-simple case, to some known behaviour [2, Corollaries 4.4 and 4.51 of simple 

unit-regular rings with s-comparability. 

Example 4.11. (a) There exists a unit-regular ring R satisfying 2-comparability but 

not almost comparability. 

(b) There exists a unit-regular ring R with 2-comparability such that FP(R) is not 

strictly unperforated. 

Proof. Let S be any simple non-Artinian regular ring satisfying 2-comparability, and 

denote by F the centre of S. Embed S in the ring T of all linear transformations 
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on a suitable F-vector space V. Let M be the socle of T and note that S n M = 0. 

(The elements of M are those linear transformations x on V such that x(V) is finite- 

dimensional.) Set R = S + M. If f is a nonzero idempotent in S then dimFf( V) = x 

and so eR 4 fR for every idempotent e E M. Now assume that we have idempotents 

e,e’ E S and y E eRe n M such that e’S < eS. We claim that e’R -+ (e - g)R. 

For, let e” be a nonzero idempotent of S such that e’S @ e”S 2 eS. By the above 

remark, gR + e”R and so we have e’R @ gR 4 e’R @ e”R ” eR = (e - g)R cii gR. 

Since g E M, the stable range of gRg is one, and so gR cancels from direct sums. So 

e’R @ gR 3 (e - g)R 9 gR implies e’R + (e - g)R, proving our claim. 

Now let A and B be two principal right ideals of R. Then A GI (e - g)R CE g’R and 

B g (,f - h)R &, h’R, for some idempotents e, f E S, g E eRe n M, h E fRJ’ n M. 

g’~(l -e)R(l -e)nM andh’E(l-f)R(l-f)nM. Ife=f=O then either 

A 5 B or B 5 A since M has comparability. Assume that e # 0 or f # 0. By 

Theorem 1.4, either eS sa f S or fS 5 a es. We can assume that eS sa fS and that 

,f # 0. Now write fS = .f IS $ fzS, where f 1 and J‘z are nonzero idempotents of S 

and 2(f IS) + .fS. Then 

A 2 (e - g)R @ g’R 5 eR 8 g’R 

5 fRcI?f,RcEg’R=.f,RcE fzR@.f,R@g’R 

=2(,fd?)@(f,R@g’R) 5 2(f -h)R 5 2B. 

So R satisfies 2-comparability. Since the units of R/M ” S lift obviously to units of 

R, and M is unit-regular, the ring R is unit-regular if and only if so is S [3, Lemma 

3.51. 

(a) If S is a simple unit-regular ring satisfying 2-comparability but not comparabil- 

ity, then R = S + M is a unit-regular ring satisfying 2-comparability but not almost 

comparability. Indeed, if eS and fS are not comparable in S, then eR and fR are not 

almost comparable in R. 

(b) By [6, Theorem 5.11, there exists a simple countable unit-regular ring S such 

that Z&(S) is strictly unperforated but has nonzero torsion. Also it is observed after 

[6, Proposition 4.21 that S has a unique rank function, so that S satisfies 2-comparability 

by [2, Corollary 4.51. Then R = S + M has 2-comparability but FP(R) is not strictly 

unperforated. For, assume that &(S) has a nonzero element of order n, where n is a 

positive integer. Then there exists non-isomorphic A, B E FP(S) such that nA ” nB. 

Set C = Am%s R and D = B 9s R, and note that nC 2 nD. Choose a nonzero idempotent 

e E M and set E = D @ eR. Then nC + nE but C # E because C/CM 2 A g B N 

E/EM. So FP(R) is not strictly unperforated. 
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