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Abstract

This paper answers, in the negative, Open Problem 4 in Goodearl’s book on von Neumann
regular rings: a directly finite regular ring R with s-comparability is constructed which is not
unit-regular. It is shown, however, that the behaviour of these rings R is still quite good. They
have cancellation of small projective modules and, in particular, their stable range is at most 2.
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0. Introduction

Generally speaking, if a (von Neumann) regular ring R has some form of compara-
bility for its principal right ideals, then the ring has nice properties. Some model be-
haviour, for instance, occurs as a consequence of full comparability (or 1-comparability),
that is when for any x, y € R, either xR < yR or yR < xR. For then direct finiteness
for such R (one-sided inverses are two-sided) implies unit-regularity, equivalently, the
class FP(R) of finitely generated projective right R-modules has cancellation: for all
A,B,C € FP(R)

AP C=2BGsC = A=B.
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A weaker form of comparability, but still quite strong, is s-comparability for some
positive integer s: either xR < s(yR) or yR < s(xR) for all x, y € R. Open Problem 4
in [5] asks whether direct finiteness still implies unit-regularity for regular rings with
s-comparability. Surprisingly, the answer is “no”, as we show with the construction of
a counterexample in Section 3. Not only does this example have 2-comparability, it
has “almost comparability” in the sense that for any x, y € R, either xR < yR & zR
for all nonzero z € R, or yR < xR & zR for all nonzero z € R. Yet FP(R) still fails
cancellation!.

What, then, can be salvaged in the way of cancellation properties in FP(R) for a
directly finite regular ring R with s-comparability? Quite a lot, as it turns out. We show
in Section 4 that R has the following cancellation of “small projectives” (Theorem 4.6):
for all 4,B,C € FP(R)

A C=B®C and C < nd for some n € N = 4 = B.

Two consequences of this theorem are worthy of note. Firstly, it implies R is stably
finite (all matrix rings M, (R) are directly finite). Secondly, it implies that the endo-
morphism ring Endg(A4) of any 4 € FP(R) has stable range at most 2 (in fact it is a
Hermite ring). Thus, although R need not have stable range 1 (as Example 3.2 shows),
R and all its comner rings do have the next best thing. (In the case where R is also
simple, it is known [15, Corollary 2] that R does have stable range 1.)

It turns out (Proposition 2.6) that for any directly finite regular ring R with s-
comparability, all the factor rings of R are also directly finite. Therefore, Example 3.2
(and indeed any counterexample to Problem 4) also provides a negative answer to the
second part of Open Problem 3. For it gives a regular ring which is not unit-regular,
but all its factor rings are directly finite.

To help put the s-comparability condition in perspective, some comments on its
origin, recent developments, and examples of this condition may be appropriate here.
Historically, the s-comparability condition was first formally introduced in the mid-
seventies by Handelman [9] and Goodearl and Handelman [7] to characterize unique-
ness of rank functions on certain simple regular rings. An account of this can also
be found in [5, Ch. 18]. Some of these results have been further refined just recently
(1993) by Ara et al. [2]. For instance, [2, Corollary 4.5] shows that, among the directly
finite simple regular rings R, those which satisfy s-comparability for some s > 1 are
precisely those for which R has a unique rank function and FP(R) is strictly unperfo-
rated (that is, for 4,B € FP(R), if n4 is isomorphic to a proper submodule of »nB for
some n € N, then 4 is isomorphic to a proper submodule of B). In the non-simple
case, if R is a regular ring with s-comparability for some s > 1, and if R has some
nonzero factor ring which is directly finite, then R has a unique pseudo-rank function.
This follows from [2, Theorem 3.5] and Corollary 4.7(1) of our present paper.

Examples of regular rings with l-comparability are well known, and include the
important class of all prime, regular, right self-injective rings [5, Ch. 8]. Goodearl
and Handelman observed in the early seventies that regular rings with s-comparability
for s > 1 also occur naturally, often as ultramatricial algebras over a field F. One
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instructive example is to take the direct limit R = lim R,, where R, = M3 (F) x M3.(F)
for n =0,1,2,... and where the maps R, — R, are given by

x00 x00
(x,y) 0x01}],{0y0
00y 00y

Then R is a simple unit-regular ring with 2-comparability but not 1-comparability. See
{5, Examples 8.7 and 18.19]. (We will see later, in Theorem 2.8, that a regular ring with
s-comparability for s > 1 always has 2-comparability; in fact “(1+ ¢)~comparability”.)
Our paper is in four sections. Section 1 collects some preliminary results, mostly
known. Section 2 develops some general properties of regular rings with s-comparability
(not necessarily directly finite), including the properties that s-comparability is inherited
by finitely generated projective modules and matrix rings, and that direct finiteness is
inherited by factor rings. The principal construction of this paper, the counterexample
to Open Problem 4, is described in Section 3. Finally, Section 4 establishes the result
(Theorem 4.6) on cancellation of small projectives, and examines its consequences.

1. Preliminaries

All rings considered here are associative with 1. All modules will be unital right
modules, if the contrary is not specified. Also, an ideal will always mean a two-sided
ideal.

A ring R is unit-regular if each x € R can be written as x = xux for some unit
u € R. We refer the reader to [S] for the general theory of von Neumann regular rings.
For a ring R, we use L,(R) to denote the lattice of ideals of R, and r(a) (respectively
/(a)) to denote the right (respectively left) annihilator of an element a € R.

Recall that a ring R satisfies the n-stable range condition (for a given positive integer
n) if whenever aj,...,a,41 € R with ¢jR + --- + a,. 1R = R, there exist elements
by,.... b, € R such that

(a) + ap1b))R+ -+ (ay + any1b2)R = R.

If n is the least positive integer such that R satisfies the n-stable range condition, then
R 1s said to have stable range n, and we write sr(R) = n. It is well known that a
regular ring has stable range one if and only if it is unit-regular [5, Proposition 4.12].
The reader is referred to [16] for the basic properties of the stable range and to [17,
13, 14] for the connections between cancellation properties of modules and the stable
range of their endomorphism rings.

Recall that a ring R is said to be directly finite if xy = 1 implies yx = 1, for
X, v € R. We say that R is stably finite if M,(R) is directly finite for all n > 1.

Let / be an ideal of a ring R. We denote by FP(/) the class of all finitely generated
projective R-modules P such that P/ = P. Given R-modules 4 and B, we write 4 < B
(respectively 4 < B) to mean that 4 is isomorphic to a submodule of B (respectively
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to a proper submodule of B). If 4,8 € FP(R) and R is regular, then by [5, Theorem
1.11], 4 < B (respectively 4 < B) if and only if A is isomorphic to a direct summand
(respectively proper direct summand) of B.

The following lemma was obtained independently in [10, Lemma 3.1] and [1, Lemma
3.3]. It requires no assumption of comparability of any form-and therein lies its use-
fulness, because it often enables one to modify arguments that, at first glance, would
appear to require full comparability.

Lemma 1.1. Let A and B be finitely generated projective modules over any regular
ring R. If A < kB for some positive integer k, then there is a decomposition 4 =
A1 - DAy inwhich 4] <A < - S 4 < B

In 1990, K.R. Goodearl gave (in a private communication) a nice refinement of
the above lemma, which is particularly useful when dealing with s-comparability prob-
lems. We are grateful for his permission to reproduce the result here. Goodearl’s lemma
was later discovered independently [18, Lemma 1.9] in the setting of refinement pos-
itively ordered monoids (equivalently abelian semigroups with Riesz decomposition).
The reader will notice that Goodearl’s proof also only uses these properties of FP(R).

Lemma 1.2 (K.R. Goodearl). Let 4, B, C be finitely generated projective modules over
any regular ring R. If A & B = kC for some positive integer k, then there is a
decomposition C = Cy ® C, @ - -- ® Cy such that

AZCLD2C; @ - B AkCy
and

BECo®k—1)C D - B Cry.

Proof. We proceed by induction on k, the case £ = 1 being trivial. Now assume
ABB = k(C for some k > 1. Writte A =U &V and B=W X with UeW = (k—-1)C
and V & X = C. By induction there is a decomposition C = Dy @D, & ---$Dy_, such
that U =Dy @2D, - & (k— 1)Ds—; and W = (k— )D& (k—2)Dy @ - - Dy _».
Then Dy @ - - @Dy = C =V & X, so we can decompose each D; as D; =V, B X;
with Vo @ --- &V ZEVand Xo & - - B X =X,
Now let Co =Xy, C;=V,_1®X; fori=1,...,k— 1, and C; = V;_,. Then,
Ce2C, P - PLC,
=(hoXe20neXa)® - &k — DVi—2 D Xe—1) @ kVi
XX eV)e2Xel)d .-
Ghk-1DX1®Vicn)d Vo @& Vi
D@ 2D, & D hk—1)D_ VBV B D Vi
2UpV=A4
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and

KCo B (k—1)C P -+ P Cry
=Xy @k -DVNeX)® - (Vi & Xi—1)
2kh-DXo V)@ k -2)X1®V)E- -
X2 DV 2) D XX - DX
k—1DDg&k=2)D1 & DD 2D X B X & D Xy
WaoX =B

e

e

Hence the induction works. O

In the case of simple regular rings, it was shown in [15] that Open Problem 4 has
indeed a positive answer, For convenience we restate the result here, because we shall
need it later. It enables us to deduce that for any directly finite regular ring with s-
comparability, its (unique) simple factor is unit-regular (Corollary 2.7). Also, if such
a ring has a minimal ideal M, then M is unit-regular (Proposition 2.4(1)).

Theorem 1.3 (O’Meara [15, Corollary 2]). Let R be a directly finite simple regular
ring which satisfies s-comparability for some s > 0. Then R is unit-reqular.

An alternative approach to the proof of Theorem 1.3 was given in [1]. In Section
4, we will expand some of the techniques introduced in [1] to get stable range at
most 2 in the non-simple case (and even stronger results). We recall the following key
concepts introduced in [1]. For 4,B € FP(R), A is almost subisomorphic to B, written
A £, B, if A < B&® C for all nonzero C € FP(R). If 4 <, B and B <, 4, then
A is said to be almost isomorphic to B, written 4 =, B. A regular ring R is said to
satisfy almost comparability if for all x,y € R, either xR <, yR or yR <, xR. The
following important connection between s-comparability and almost comparability was
established in [2].

Theorem 1.4 (Ara et al. [2, Corollary 4.5]). For simple regular rings, s-comparab-
ility for some s > O is equivalent to the ring satisfying almost comparability.

In the non-simple case, almost comparability gives 2-comparability but not con-
versely; see Example 4.11.

2. General properties of s-comparability

In this section we establish some general properties of a regular ring R which has
s-comparability for some s > 0. Many of these properties do not require R to be
directly finite. Lemma 2.2, Proposition 2.3(a) and Proposition 2.6 were first proved by
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K.R. Goodearl (private communication), and we thank him for allowing us to use the
results here.

One property that we shall use frequently, and implicitly, is that the lattice Ly(R) of
two-sided ideals of R is totally ordered. The proof is the same as for the 1-comparability
case [5, Proposition 8.5]: if JJK € Ly(R) and J & K, K & J, then choose x € J \ K,
y € K\ J. Then x ¢ RyR implies xR % s(yR), while y ¢ RxR implies yR £ s(xR).
This is not possible.

In particular, therefore, a regular ring with s-comparability has a unique maximal
ideal.

As with 1-comparability, s-comparability is inherited by finitely generated projective
modules and by finite matrix rings:

Proposition 2.1. Let R be a regular ring with s-comparability. Then:

(1) The finitely generated projective R-modules also satisfy s- comparability.

(2) For any A € FP(R), the endomorphism ring Endgr(4) satisfies s-comparability.
In particular, all the matrix rings M,(R) satisfy s-comparability.

Proof. (1) We must show that for 4,8 € FP(R), either A < sB or B < sA. This
can be done by induction on n where 4,8 < nR (based on the proof in [5, 8.2] for
1-comparability). So assume the result holds for n — 1, and suppose 4,B < nR. Write
A=A, @A, and B = B, & By where 4;,B; < (n— 1)R for i = 1,2. By the induction
hypothesis either 41 < sBy or By < s4i, and cither 4y < sB; or B, < s4,.

If 4 < sBy and 4, < sBy, then 4 = Ay & A, < sB| & sBy = sB. Similarly, if
B, < sA4; and B; < sAd,, then B < sA. Therefore it is sufficient to consider the case
where, say, 4; < sB; and B; < s4>. By Lemma 1.1 there is a direct summand V
of A; such that V < B; and 4, < sV, and there is a direct summand W of B; such
that W < A, and By < sW. Write B 2 V & C and 4; &£ W & D, and notice that
C,D < (n— 1)R. Using the induction hypothesis once more, we get either C < sD or
D < sC. If C £ sD, then

B=B aB2VoCshB
SVBsDPHsW =2V EsA,
S sd) @ sdy = sA4

s0 B < sA. Similarly, D < sC yields 4 < sB.
(2) Let T = Endg(4). Observe that for x,y € T, if say x4 < s(y4) then xT <
s(yT). Hence (2) follows immediately from (1). [

For any regular ring R with s-comparability, we know that its ideals form a chain,
and so any two ideals are comparable with respect to inclusion. The next proposition
(Proposition 2.3) shows that if we have strict inclusion of two principal ideals, say
RxR < RyR, then we get strict subisomorphism of the corresponding principal one-
sided ideals. Therefore, the only lack of full comparability of two principal right ideals
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xR and yR is when the ideals RxR and RyR are at the same level. In fact the result
can be extended to finitely generated projective modules via their trace ideals. For an
R-module 4, its trace ideal is tr(4) =" f(A) where f ranges over all R-homomor-
phisms from 4 to R. This is indeed an ideal of R and, in case R is regular and 4 €
FP(R), there is an idempotent ¢ € R such that tr(4) = ReR (because A4 is isomorphic
to a finite direct sum of principal right ideals of R). For a regular ring R, the trace
ideal of 4 € FP(R) is also characterized as the smallest ideal 7 of R for which 47 = 4.
Moreover, for any A,B € FP(R), where R is regular,

tr(4)Ctre(B) iff 4 < kB for some k € N

(see [5, 2.10 and 2.23]). The following lemma will help us make the above connections.

Lemma 2.2 (K.R. Goodearl). Let R be a regular ring with s-comparability, and let
A.Be FP(R). If (s+1)4 < 2B, then 4 < B.

Proof. From (s + 1)4 < 2B, we can obtain (s + 1)4 = C & D for some finitely
generated projective R-modules C,D C B. By Lemma 1.2 there is a decomposition
A=AyDPA & - - B A such that C X 4 B24,F - D (s+ 14,4, and D =
(s + 1)do & sA1 & --- ¢ A,. Using s-comparability and Proposition 2.1(1), we have
either Ay < sd,yy or Ay < sAp. If Ay < sAs4q, then

A=Ay B - FA; SADA D -D(s+ 1A
<A @248 DG+ D41 =ZC LB

s0 A < B. On the other hand, if Ay < sdo, then 4 < (s+DAgE A H -2 4y <
D £ Bandagain 4 < B. O

Proposition 2.3. Let R be a regular ring satisfying s-comparability.

(a) If x, v € R with RxR & RyR, then xR < yR.

(b) If A,B € FP(R) with tt(4) & tr(B), then A < B.

(¢) Let N be a proper ideal of R and let A,B € FP(R). If A/AN < B/BN, then
A < B.

Proof. (a) Since yR & RxR, we cannot have yR < s(s 4+ 1) (xR). Therefore, because
s-comparability holds in FP(R) (see Proposition 2.1(1)), we must have (s+ 1)'(xR) <
s(vR) and so (s + 1)*(xR) < 2°(yR). By Lemma 2.2, xR < yR, whence xR < VR
because yR & RxR.

(b) Notice that tr(B) = tr(C) for some principal right ideal C of R with C < B.
Therefore, it suffices to argue by induction on & that whenever 4 < kR and tr(4) &
tr(C) for some C < R, then 4 < C. Part (a) is precisely the case & = 1. For a general
k, write 4 = A4; $ A> with 41 £ R and 4, < (k— 1)R. We have 4, < C by (a)
because tr(4;) Ctr(4) Ctr(C). Now write C = C; @ C;, with 4, = C). Observe that
tr(4;) < tr(Cy) because tr(4) < tr(C). By induction 4, < C>. Hence 4 = 4, & 47 <
C32C =0C, giving 4 < C.
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(c) By applying [5, Proposition 2.20], we obtain decompositions 4 = 4, ¢6 A, and
B = B, & B,, with 4, 2 B, and 4, = AN and B, -‘,é B>N. Since B, # ByN, its
trace ideal cannot be contained in N. By comparability of ideals, N & tr(B8;) and, so,
tr(42) CN & tr(B;). Thus 4, < B, by (b) and, so, 4 =4, &4, <B &B,=8 U

Proposition 2.4. Let R be a directly finite reqular ring satisfying s-comparability, and
assume that R has a minimal ideal M. Then:
(1) M is unit-reqular (that is, all corners eRe with e € M are unit-regular). In
particular, the class FP(M) has cancellation and every A € FP(M) is directly finite.
(2) For any A € FP(M) and B € FP(R), either A < B or B <, A.

Proof. (1) Let e be a nonzero idempotent of M and let § = eRe. Since ReR = M is
a minimal ideal of R, the ring S is simple. Hence S is a directly finite simple regular
ring, and satisfies s-comparability by Proposition 2.1(2). Therefore S is unit-regular by
Theorem 1.3. In particular FP(S) has cancellation and so therefore does the naturally
equivalent FP(M).

(2) Consider first the special case where R is also simple. The result is trivial for
Artinian rings so we can assume R is not Artinian. By Theorem 1.4, R satisfies almost
comparability. Let 4,B € FP(R) be nonzero. Let X € FP(R), X # 0. Since R is a
prime ring with zero socle, we can write

B=B @B, X=Xi3X,, B=ZX, Xi#0 X#0

By almost comparability, either 4 S, By or By S, 4. If A <, By then clearly 4 <
B1®B; = B. Suppose B; <, 4. Then By < ABX; implies B =B ®&By < AGX 1@ Xz =
A® X. Hence B <, 4. This proves the special case.

In the general case, M = ReR for some idempotent e € M such that the corner
ring eRe is simple. Let S = eRe. Then § is a directly finite simple regular ring with
s-comparability. For 4 € FP(M) and B € FP(R), if B ¢ FP(M) then tr(4) & tr(B)
implies A < B by Proposition 2.3(b). Therefore we can assume that both 4, B € FP(M).
Since FP(M) is equivalent to FP(S), the above special case shows that either 4 < B
or B<A®Y for all nonzero ¥ € FP(M). Suppose it is the latter. Let X € FP(R),
X # 0. Then XM # 0, because R is a prime ring, and so there exists 0 # ¥ € FP(M),
YCXM. Now B<A®DY < AP X. This shows that either 4 < Bor B <, 4. O

In a regular ring with s-comparability, each proper ideal must contain a countably
infinite direct sum of copies of each of its principal right ideals. In fact we have the
following strengthened versions of Proposition 2.3(a), (b).

Proposition 2.5. Let R be a regular ring satisfying s-comparability.

(1) If x,y € R with RxR & RyR, then Xo(xR) < yR.

(2) If A,B € FP(R) with tr(4) & tr(B), then Nod < B.

(3) Let | be a nonzero idempotent of R and let N be the maximal ideal of fRf.
If fRf/N is directly infinite, then No(fR) < fR.
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Proof. (1) Let yR = hR, where h = h?. We shall construct an infinite sequence
g1, 42, ... of orthogonal idempotents of ARk such that g,R = xR for all n. Since RxR &
RAhR, we have xR < hR by Proposition 2.3(a). Therefore there is an idempotent ¢, €
hRh with g|R = xR.

Now suppose we have constructed gi,...,g, for some n. Set g = g; + -+ + g,.
Then g € RxR and RxR & R(h — g)R, so again by Proposition 2.3(a) we have xR <
(h — ¢g)R. Hence there is a direct summand X C(h — g)R with X =2 xR. Now there
exists an idempotent g, in (k2 — g)R(h — g) such that X = g, |R. Clearly ¢, is
orthogonal to gi,...,¢,. Since ¢, € hRh and g, 1R = xR, the induction works.

(2) This is similar to (a) == (b) of Proposition 2.3. Assume 4 < kR, k > 1,
and tr(4) & tr(C) for some C < R. By s-comparability and Proposition 2.1(1) we
can write 4 = 4] ® A; with 41,4, < (k — 1)R and 4, < sd4,. By induction, since
tr(42) Ctr(4) & tr(C), we have Rod; < C which implies

Nod = Nod1 D Nodr < Nody < C.

(3) Write S = fRf. It suffices to prove that 25 < S. Set S = S/N. Since S is
simple and directly infinite, 2S < S. By Proposition 2.3(c), 2§ < S. O

Proposition 2.6 (K.R. Goodearl). If R is a directly finite reqular ring with s-compara-
bility for some s > 0, then all the factor rings of R are also directly finite.

Proof. Let I be a proper ideal of R and let R = R/I. If R is directly infinite, then
R < R and, so, R < R by Proposition 2.3(c), giving a contradiction. [

Corollary 2.7. Suppose R is a directly finite reqular ring satisfying s-comparability.
Then the (unique) simple factor ring of R is unit-regular .

Proof. Notice that s-comparability is always inherited by factor rings. The Corollary
now follows directly from Proposition 2.6 and Theorem 1.3. O

Although it is not the case in general that s-comparability implies almost compa-
rability (see Example 4.11), the next result says that, in a sense, s-comparability for
some s > 0 implies “(1 + ¢)-comparability”.

Theorem 2.8. The following conditions are equivalent for a regular ring R :
(a) R satisfies s-comparability for some s > 1.
(b) R satisfies (s : t)-comparability for all s and t with 1 <t < s.

Proof. Clearly, (b) implies (a). Assume R has s’-comparability for some s > 1, and
fix 1 <t < s Choose x,y € R. Without loss of generality, we can assume that
RXRCRyR. If RxR & RyR then xR < yR by Proposition 2.3(a), and, so, clearly
t(xR) < s(yR). Suppose RxR = RyR. Let e € [ := RxR be an idempotent with
x,y € eRe. Set § = eRe and let N be the maximal ideal of S. Write § = S/N.
By Proposition 2.1, S satisfies s’-comparability. By Theorem 1.4, either xS <, »S
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or 5§ <, xS. Assume that xS <, ¥S. Then also #(xS) <. #(»S). Since 7 # 0
and s > ¢, we have 1(xS) < t(3)S) ® (s — t)(»S) = s(»S). By Proposition 2.3(c), we
obtain #(xS) < s(»S). Therefore #{(xR) < s(yR). Consequently R satisfies (s : ¢)-com-

parability. [J

3. The counterexample to Open Problem 4

For an abelian group X, denote by B(X) the abelian group of row- and column-
finite countably infinite matrices over X, and by X the subgroup of countably infinite
matrices over X that have only a finite number of nonzero entries. If 4 is a ring then
B(A) is a ring and A, is a two-sided ideal of B(4). If X is an S — T bimodule then
B(X) and X, are B(S) — B(T) bimodules.

We start by recalling the construction by Chuang and Lee [4]. Let F be any countable
field. Let F[¢] be the ring of polynomials over F and F(¢) the quotient field of F[r].
Let § be the valuation on F(¢) defined by 6r(¢) = +oo if r(¢) = 0 and dr(¢) = n
if r(z) = 1" f(t)/g(¢t) where ¢ does not divide f(¢)g(¢). Let V be the valuation ring
associated to 8, namely ¥ = {r(¢) € F(¢) | ér(t) > 0}. Choose a basis vo,v,... of
V such that vp = 1 and ov; = i for all i; see [4, p. 18]. Denote by ¢ the map on V
given by multiplication by ¢, and by ¥ the map on V given by multiplication by ¢!
on tV and with Y¥(vg) = 0. Let S be the set of all x € Endg(¥) such that there exists
a € F(t) and n > 0 such that (x —a)"V = 0. Then S is a ring and ¢, ¥ belong to §.
Set K = F(¢). There exists a ring epimorphism 7 : S — K such that for all x € §,
(x — n(x))"V = 0 for some n > 0. By the arguments of Chuang and Lee, S C B(F),
where we are thinking of the elements of S as matrices in the basis v, v),... of V.
Also, M :=ker n = F,,. Note that every element a € F(¢) such that é(a) = 0 lifts to
a unit of S, namely the endomorphism on V' given by multiplication by a.

Consider the opposite ring of S, S°, and let x — X be a ring antiautomorphism from
S onto S°. Consider the embedding o of S$° into B(F) given by a(X) = x', where x'
denotes the transpose of x.

Let L be any unit-regular F-algebra. Set

4o (BW) L
Lo B/
The natural map from F into the centre of L enables us to define an embedding

: B(L) 0
:B(F)x B CA.
ey xme) — (P 0 e
Set B = jid x &) : § x §° — A. We will identify S with its image under the
embedding S C B(F) — B(L). Analogously, S° will be identified with his image
under S°%B(F) — B(L). We will denote by X the transpose of a matrix x € B(L).
(Of course the map x — X will not be an antiautomorphism in general.)
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Observe that M C Lo,. Write D = S+ L. Then L., is a unit-regular ideal of D and
D/L., & K. Denote by n’ the canonical projection from D onto K with kernel L.
Note that D = {d | d € D} =S + Lo = S + Lo is a subring of B(L) (although we
are not claiming that D is isomorphic to the opposite ring of D).

Now let T = {(x,7) € S x §° | n(x) = n(y)}. T is a directly finite regular ring {13,
Lemma 13] with a unique maximal ideal M x M° such that 7/(M x M°) = K. Set
R = B(T)+ N, where N = M(L,). A clever way to look at R is the following:

R= {(jg) € (LD Lg) ]n'(a)zn'(d)}.

Observe that N is a unit-regular ideal of R and R/N = K. In particular R is a regular
ring. We denote by 7" the canonical projection from R onto K with kernel N. Note
that

" ((Z g)) = 1'(a) = 7'(d).

Denote by I the identity in B(L). For an idempotent p of L define p,. = diag
(p,p....,), and observe that we have [ — p,, = diag(1 — p,1 — p,...,). For nonzero
idempotents p,q € L define

w 0
k(,,,q):<P0 . )eA

and set R(p,q) = k(p,q)Rk(p,q). Note that R(p,q) is a ring for all nonzero p,q € L,
since xk{ p,q) = k(p,q)x for all x € B(T). Set N(p,q) = k( p,q)Nk(p,q) and note that
N(p,q) is a unit-regular ideal of R(p,q) such that R(p,q)/N(p,q) = K. In particular
R(p.q) is a regular ring for all nonzero idempotents p,q € L.

Lemma 3.1. Let L be a unit-regular F-algebra and let p and g be two nonzero
idempotents in L. Then R(p,q) is unit-regular if and only if p ~ q.

Proof. Assume first that p and g are two equivalent idempotents in L. Since N(p,q)
18 a unit-regular ideal of R(p,q) and R(p,q)/N(p.q) = K is unit-regular, we need only
to prove that every unit in K lifts to a unit in R(p,q) (see, for example, [3, Lemma
3.5D).

Every element a € K such that é(a) = 0 lifts to a unit of S, and so to a unit in
R(p,q). Consequently, it suffices to show that ¢ lifts to a unit of R(p,q). Since p ~ ¢,
there exist ag € pLq and by € qLp such that apby = p and bpap = ¢g. Denote by
a the matrix in poclocgoc Which has ag in the left upper corner, and 0’s elsewhere.
Analogously, b € g..L P is the matrix having by in the left upper corner and 0’s
elsewhere. Put

_[opx a _ (¥ O
(e ()
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Then XY € R(p,q) and XY = YX = 1. Moreover, 7/(X) = ¢, so that ¢ lifts to a
unit of R(p,q) and consequently R(p,q) is unit-regular.

Assume now that R(p,q) is unit-regular. Denote by f3,, the map k(p,q)f: T —
R(p,q), which is an injective homomorphism. Consider the idempotents g, s € T given
by g = (@y.1) and h = (1, @y). Since g = (¢, @), ¥) and h = (Y, ¥ )(9, ), we see
that g and 4 are equivalent in T and, consequently, f,,(g) and f,,(h) are equivalent
in R(p,q). Since R(p,q) is unit-regular, the idempotents k(p,q)— B, 4(g) = B, (1 —g)
and k(p,q) — Bpy(h) = Bpe(1 —h) must be equivalent in R(p,q). Noting that 1 —g =
(diag(1,0,0,...,),0) and 1 — A = (0,diag(1,0,0,...,)), we conclude that p ~ ¢, as
desired. [

Now we are ready to give our example.

Example 3.2, There exists a regular ring U such that:
(a) U satisfies almost comparability. In particular, U satisfies 2-comparability.
(b) U is stably finite.
(c) U is not unit-regular.

Proof. Let F be a countable field and let S be the ring constructed in [4], as given
before. Let L be any simple, unit-regular F-algebra satisfying almost comparability but
not comparability (for example, by Theorem 1.4 we can take the algebra constructed
in [5, Example 18.19] and described in the Introduction). Then L has a unique rank
function P and (by Proposition 2.4(2)), for idempotents e, f € L, P(e) = P(f') if and
only if el is almost isomorphic to fL. Let p and ¢ be two idempotents in L such
that P(p) = P(q) but p is not equivalent to ¢, and consider the corresponding ring
U = R(p,q). Then U is a regular ring which is not unit-regular by Lemma 3.1.

By construction U has a unique nontrivial ideal V = N(p,q) and U/V = F(¢).
Moreover ¥ is a unit-regular ideal satisfying almost comparability, and for idempotents
e, [ €V, we have eU < (1 — f)U. To show that U satisfies almost comparability,
take two idempotents e, f € U. If e, f € V then either eU <, fU or fU <a eU
because V' satisfies almost comparability. If e € ¥ and f ¢ V then 1 — f € V, so that
eU < fU, by the above observation. Finally, if both e and f are not in V' then either
(1—e)U <, (1= YU or (1 — fHU <, (1 —e)U. Assume that the former possibility
holds. Choose an idempotent g € ¥ such that 1 —e, 1 — f € gVg. Since gFyg is a simple
unit-regular ring, it follows from [1, Theorem 1.9] that (g—(1—-f)U <, (g—(1—e))U.
Adding to both parts of this relation (1 — g)U we obtain that fU <, eU. Therefore
U satisfies almost comparability.

Finally, we will prove (b). Let L be the P-completion of L. Then L is a simple, unit-
regular, right and left self-injective F-algebra (5, Theorems 19.7 and 19.14]. Moreover
L embeds in L and P extends to a rank function P, which is the unique rank function on
L. Since L satisfies comparability, P(e) = P(f) if and only if e ~ f, for idempotents
e, f € L. Now let R(p,q) be the ring constructed as before but using L instead of L.
Since P(p) = P(q), p and ¢ are equivalent in L, and, so, Lemma 3.1 gives us that
R(p,q) is unit-regular. Clearly, U embeds in R(p,q) and, thus, U is stably finite. O
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4. Cancellation of small projectives

Let R be a directly finite regular ring with s-comparability. Example 3.2 shows that R
need not have stable range 1, and so R need not have cancellation of finitely generated
projective modules. However, the situation is not nearly as bad as it first looks. For
we shall show in this section that R always has “cancellation of small projectives”,
in the sense of the following definition, and in particular the stable range of R is at
most 2.

Definition 4.1. Let R be a regular ring. We say that R has cancellation of small pro-
jectives if for all finitely generated projective right R-modules 4,5, C

A C=BsC and C < nd for some n € N = 4 = B.

Cancellation of small projectives can also be characterized in other ways, as in our
next proposition. We recall [12, p. 465] that a ring R is (right) Hermite if every 1 x 2
matrix 4 = (a;1 «¢;2) admits diagonal reduction, that is, PAQ is diagonal (x 0) for
some units P € R and Q € M,(R). By [13, Theorem 9], a regular Hermite ring R
actually has the property that every m x n matrix over R admits diagonal reduction.
Also, by [13, Theorem 9], a regular ring R is Hermite if and only if

2RPBE=ReC==>RdPB=C

for all B,C € FP(R). Notice that a Hermite ring has stable range at most 2 by [13,
Proposition 8(i)].

Proposition 4.2. For any regular ring R, the following are equivalent:
(i) R has cancellation of small projectives.
(ii) For all principal right ideals A,B,C of R

AP C2BSC <R and C < nd for some n e N = 4 = B.
(i) For all finitely generated projective R-modules A and B,
AFA=ZASB = A4=B.

(iv) R and all its corner rings eRe (e = ¢* € R) are Hermite.
(v) The condition

Rr(a) = R(1 — a)R (*%)
implies the element a € R is unit-regular.
Proof. (i) == (ii). This is trivial.
(i1) == (i). The proof we shall give is taken from an argument due to K.R. Goodearl

(unpublished). Suppose 4,B,C € FP(R) satisfy 45 C = B4 C and C < nd for some
n. We wish to show 4 = B. Since C < kR for some k € N, we can write ¢ =
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C1 @& Cp with each C; < R. It is enough, therefore, to handle the case & = 1
because in the general case we can cancel one C; at a time. Similarly we can reduce
to the case n = 1. Thus we can assume that C < R and C < A.

By [1, Lemma 1.10] there are decompositions

A:A/@A”, BZB/EBB”, CZC/EBC”

suchthat A’ =B A" C" =2B"®C" and 24" < C'. Since C" S C < A=4" 34",
we can write

' = CI 3G with C; A" and G < A",
From A” & C”" = B" & C"” we have
AecHasC,2B" aC)a . (1)

The two isomorphic projective modules in (1) are isomorphic to a principal right
ideal of R because

A'asCHaC sA"eC,ad” since G < 4”7
<24" @ C” since C, < C”
<sc'ac” since 24" < C’
=CX<XR

We can now apply the cancellation property (ii) to (1) and cancel C, because
C, < A" 5 A" ®C. This yields 4" & C, 2 B” @ C). Since C; < A" = B, we can
write A’ 2 X & C; & B’ for some X € FP(R). Finally

A=A A" =2XaCiad"2XaCeB' 2B B =B

gives A = B, as required.

(1) = (ii1). This is immediate.

(iii) = (i). Suppose 4,B,C € FP(R) with A& C = B® C and C < nA for some
n. Again, to show 4 = B, it suffices to handle the case n = 1. Then, A =2 C & D for
some D, whence

APCE2ZBSC = A CHED=EZBa(Ca&D
= A9 A=BdA

and so 4 = B by (iii).

(i) = (iv). Let e be an idempotent of R and let 4 = eR. If B,C € FP(R) are such
that 24 B = A® C, then A S B = C by (i). By [13, Theorem 9] this shows Endz(4)
is Hermite, whence eRe is Hermite.

(iv) = (i). By the argument at the beginning of (ii) = (i) it suffices to show
that for 4,B,C € FP(R) with A C=2B@® Cand C < Rand C < 4, then 4 = B.
Write 4 = C @ D. Since C < R, we have Endg(C) is Hermite by (iv), whence by
[13, Theorem 9]

BeC=2AC=2Dp2C =B=2DdC=A.
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(i1) = (v). Suppose a € R satisfies Rr(a) = R(1 — a)R. Let J = R(1 — a)R. There
exists an idempotent g € J such that 1 — a € gRg. Note that J = RgR. Note also that
a=ag+ (1 —g) so that »(a) C gR and agR C gR. Let 4 = r(a) and choose principal
right ideals B and C such that

gyR =44 C =B D agk.
Then agR = aC = C, so
A& C=BsC <SR 2)

Now R(l — a)R = Rr(a) implies gR CRA, and so C = agR implies C C RA. Hence
C < nd for some n € N. Hence by (ii) we can cancel C in (2) to obtain 4 = B. Now
we see a is unit-regular in R because

Rjud = R/(agR ® (1 — g)R) 2 gR/agR = B = A = r(a).

(v) == (ii). Suppose 4, B, C are principal right ideals of R with AGC 2 B C < R
and C < nd4 for some n. Write

R=4,92Ci®D=BdC,8D,

where 4y =2 4, By =B and C) 2 (; =2 C. Let a € R induce (by left multiplication) a
map of R which is 0 on 4;, an isomorphism from C; onto C,, and the identity on D.
Then

(1-a)RSA4®C £ n+1)4 =0+ Dir(a)

implies (1 — a)R < (n+ 1)r(a) and so R(1 - a)R C Rr(a). The reverse containment
always holds, whence Rr(a) = R(1 —a)R. By (v), a is unit-regular and so r(a) = R/aR.
Thus 4) = r(a) = R/(C, & D) = B, and consequently 4 = B, as required. U

Remark 4.3. (a) The proof of (i) = (iv) shows in fact that Endg(4) is Hermite for
all finitely generated projective R-modules A.
(b) In [11] the condition

Rr(a) = £(a)R = R(1 — a)R (%)

was studied for regular rings. For several large classes of regular rings (including all
unit-regular rings), it was shown that (x) characterizes when an element a € R is a
product of idempotents. If all the factor rings of a regular ring R are directly finite
{which is equivalent to Rr(a) = /(a)R for all a € R), then (*) is the same as (*x). In
particular, therefore, if R is a regular ring which has a (x) characterization for products
of idempotents, and all factor rings of R are directly finite, then R has cancellation of
small projectives (by (v) == (i) and the fact that products of idempotents are always
unit-regular).

(c) Since there exist directly finite regular rings with infinite stable range (such as
the free regular ring—see [8, p. 416]), by Proposition 4.2 not even all directly finite
regular rings have cancellation of small projectives.
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(d) In view of [13, Example 3], a corner ring of a regular Hermite ring need not
be Hermite—it can have infinite stable range. Therefore it is not enough in Proposition
4.2(iv) to require only that R be Hermite.

Lemma 4.4. Let R be a directly finite regular ring satisfying s-comparability for
some s > 0, and assume that R has a minimal ideal M. Then R$ T is directly finite
for every T € FP(M).

Proof. Let T € FP(M) and assume that RET T = R® T for some I’ € FP(R). By
proposition 2.4(1), Endg(7') is unit-regular, so it has stable range 1, and so 7 cancels
from direct sums. Thus, RGT O T' 2RO T implies RS T’ = R and so T’ = 0 since
R is directly finite. [J

Proposition 4.5. Let R be a directly finite regular ring satisfying s-comparability for
some s > 0. If B,C;,C; € FP(R) and R&B < R&C; for i = 1,2, then B < C, @ C,.

Proof. Obviously, we can assume that B # 0. Let M = tr(B) and let N be the maximal
ideal of M. For 4 € FP(R) we denote by A the R/N-module 4/AN. By Proposition
2.6, R := R/N is a directly finite regular ring satisfying s-comparability, and has a
minimal ideal M := M/N. Therefore, from R®B < R® C;, we can deduce that C; # 0
for i = 1,2. If C; # C;M for some i, then we are done by Proposition 2.3(b) because
tr(B) & tr(C;) implies B < C;. So we can assume that C; = C;M for i = 1,2 and
so C; € FP(M) for i = 1,2. If C; < B for some i, then R® C; <R®PB < R C,
contradicting the fact that R@ C; is directly finite (Lemma 4.4). By Proposition 2.4(2),
B <. C; for i = 1,2, and since C; # 0, we have B < C; @ C,. By Proposition 2.3(c),
B < Cy & (G, as desired. O

Theorem 4.6. Let R be a direcily finite regular ring satisfying s-comparability for
some positive integer s. Then R has cancellation of small projectives.

Proof. By Proposition 4.5 and [1, Proof of Theorem 1.7], all corner rings of R have
stable range less than or equal to 2. By [17, Theorem 1.9], sr(Endg(D)) < 2 for all
D € FP(R).

Assume that

ADA=ADB

for some 4,B € FP(R). Let M = tr(4) and let N be the maximal ideal of M. We
consider two cases:

(1) There exists a decomposition 4 = 4} & A, with 4; # 4N and A; # A)N.

(2)If A=A, P A, then 4] = AN or Ay = A>N.

Assume (1) holds and that 4 = 4; & 4> with 4, # AN and 4, # A;N. Then
N Ctr(4;) CM implies tr(4,) = tr(4>) by maximality of N. Therefore 4, < nA, for
some n € N and we can write 4, = X, &---®.X, with each X; < 4,. Since 4; # 4N,
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there is an X; with X; # X;N. Let 4" = X;. Then 24’ < A. Also since A'N # A’, we
see that N C tr(4’') C M. Therefore tr(4’) = M by maximality of N. Now tr(4) C tr(4’)
implies 4 < kA’ for some k € N. Write 4 = 4, & --- D A4, with 4; < A’ for all .
Then we have

Aed @ A4 )BAZBOA T DA ) DA

and, since 24; < 24" < A4 and sr(Endg(4y)) < 2, we deduce from [17, Theorem 1.2]
that A A -G A | EBPA BB Ar_y. It follows (by induction on k) that
A = B, as desired.

Assume now that (2) holds. Write 4 = 4, & 4, and B = B, & B, with 4, ¢ B) =
Aa 1: By = A. Assume that 4|N = 4. Then A; # 4N and so Proposition 2.3(b) tells
us that 24, < 4,. So we can apply [17, Theorem 1.2] to the relation

Ay Ay 2 Ay 0 By
to obtain B} = A4,. Hence
A= A4, PB, 2B B, =8

If A4, = A;N, a similar argument shows also that 4 = B.
By Proposition 4.2, R satisfies cancellation of small projectives. [J

Corollary 4.7. Let R be a directly finite regular ring satisfying s-comparability for
some positive integer s. Then:

(1) R and all its factor rings are stably finite.

(2) All corner rings of R have stable range at most 2.

Proof. (1) Assume that nR & T = nR for some n > 1. By applying Theorem 4.6 to
the relation

(n—DRERHT)=(n— HRDR,

we get R T = R, so T = 0 because R is directly finite. This shows R is stably finite.
By Proposition 2.6, so are its factor rings.

(2) This was observed in the proof of Theorem 4.6. (Or alternatively we can use
Theorem 4.6 and (i) = (iv) of Proposition 4.2.) [

Remark 4.8. Suppose that R is a directly finite regular ring with s-comparability. The
proof of [15, Theorem 1] can be adapted (through the use of Lemma 2.2) to show
that R has a (x) characterization for its products of idempotents. This leads to an
alternative route for the proof of Theorem 4.6, via Proposition 2.6 and the implication
(v) == (i) of Proposition 4.2 (see Remark 4.3(b)). Actually the conclusiou reached
is possibly stronger than Theorem 4.6, because in Proposition 4.2(v), knowing that a
is a product of idempotents tells us more than a being just unit-regular; for instance,
in a homomorphic image, a will always lift to a unit-regular element. Using this last
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observation, one can show that if S is any regular ring which contains a unit-regular
ideal I such that S// has a (x) characterization for products of idempotents, and S//
has all its factor rings directly finite, then S too has cancellation of small projectives.
(Here S need not be directly finite.)

The proof of Lemma 3.1 showed that the ring R(p,q) is unit-regular if and only if
the element 7 in the homomorphic image K lifts to a unit of R(p,q). We now show
that this is part of a more general phenomenon.

Proposition 4.9. A regular ring R is unit-regular if and only if all the following hold.
(1) Every factor ring of R is directly finite.
(2) R has a (%) characterization for products of idempotents, that is, the condition
Rr(a) = /(a)R = R(1 — )R implies the element a is a product of idempotents.
(3) Units can be lifted in R/I for all ideals I.

Proof. The necessity of (1) and (3) is trivial, while (2) follows from [11, Theorem
2.9]. To establish sufficiency, assume (1), (2) and (3) and let @ € R. Let I = Rr(a).
In the factor ring R = R/I, observe that rz(@) = rg(a) = 0 so @ must be a unit of R
by (1). By (3), there is a unit ¥ € R with @ = #%. Let b = u~'a. Then b = 1 implies
1 —b €I = Rr(a) = Rr(b). Hence R(1 — b)R C Rr(b) and so R(1 —b)R = Rr(b). Since
R/Rr(b) is directly finite by (1), we have £(h)R = Rr(b). Therefore Rr(b) = /(b)R =
R(1 — b)R, which implies b is unit-regular by (2). Hence a = ub is also unit-regular.
Therefore R is unit-regular. [

Corollary 4.10. Let R be a directly finite regular ring satisfying s-comparability.
Then R is unit-regular if and only if units can be lifted in R/I for all ideals I of R.

Proof. R satisfies (1) and (2) of Proposition 4.9 by Proposition 2.6 and Remark 4.8
respectively. Thus R is unit-regular if and only if (3) holds. (For the purposes of this
proof, “products of idempotents” in (2) could be replaced by “unit-regular”, in which
case the reference to Remark 4.8 should be replaced by one to Proposition 4.2 and
Theorem 4.6.) O

We close with a construction that enables us to give some counter-examples, in
the non-simple case, to some known behaviour [2, Corollaries 4.4 and 4.5] of simple
unit-regular rings with s-comparability.

Example 4.11. (a) There exists a unit-regular ring R satisfying 2-comparability but
not almost comparability.

(b) There exists a unit-regular ring R with 2-comparability such that FP(R) is not
strictly unperforated.

Proof. Let S be any simple non-Artinian regular ring satisfying 2-comparability, and
denote by F the centre of S. Embed S in the ring T of all linear transformations
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on a suitable F-vector space V. Let M be the socle of T and note that SN M = 0.
(The elements of M are those linear transformations x on V such that x(}') is finite-
dimensional.) Set R = S+ M. If f is a nonzero idempotent in S then dimg f(V) = oc
and so eR < fR for every idempotent ¢ € M. Now assume that we have idempotents
e,e’ € S and g € eRe N M such that ¢’S < eS. We claim that ¢R < (¢ — g)R.
For, let e’ be a nonzero idempotent of S such that ¢'S @ ¢”’S = eS. By the above
remark, gR < ¢”R and so we have eRE gR < RS e"R X eR = (e — g)R & gR.
Since g € M, the stable range of gRg is one, and so gR cancels from direct sums. So
e€R& gR < (e — g)R D gR implies €'R < (e — g)R, proving our claim.

Now let 4 and B be two principal right ideals of R. Then 4 = (e — g)R & ¢'R and
B = (f — k)R @ WR, for some idempotents e, f € S, g € eReNM, h € fRfNM,
gec(-eR(1—e)NMand ¥ € (1 - HR(1 — fYNM. If e = f = 0 then either
A < Bor B < A since M has comparability. Assume that e # 0 or f # 0. By
Theorem 1.4, either eS <, fS or fS <, eS. We can assume that S <, fS and that
f #£ 0. Now write fS = /1S & f»S, where | and f, are nonzero idempotents of S
and 2(f15) < fS. Then

AZ(e—g)RDJR < eRDGR
< fR® fIR&YR=f1R® f,R® fIRD 'R
=2(fIR)& (f2R&g'R) < 2(f —h)R < 2B.

So R satisfies 2-comparability. Since the units of R/M = § lift obviously to units of
R, and M is unit-regular, the ring R is unit-regular if and only if so is § [3, Lemma
3.5].

(a) If S is a simple unit-regular ring satisfying 2-comparability but not comparabil-
ity, then R = S + M is a unit-regular ring satisfying 2-comparability but not almost
comparability. Indeed, if eS and fS are not comparable in S, then eR and fR are not
almost comparable in R.

(b) By [6, Theorem 5.1], there exists a simple countable unit-regular ring S such
that Ko(S) is strictly unperforated but has nonzero torsion. Also it is observed after
[6, Proposition 4.2] that S has a unique rank function, so that S satisfies 2-comparability
by [2, Corollary 4.5]. Then R = § + M has 2-comparability but FP(R) is not strictly
unperforated. For, assume that Ky(S) has a nonzero element of order n, where n is a
positive integer. Then there exists non-isomorphic 4,8 € FP(S) such that n4 = nB.
Set C = A®sR and D = B&gR, and note that nC = nD. Choose a nonzero idempotent
e € M and set £ = D & eR. Then nC < nE but C A F because C/CM =4 L B =
E/EM. So FP(R) is not strictly unperforated.
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