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A class of Newton’s methods with third-order convergence
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Abstract

In this work, a class of iterative Newton’s methods, known as power mean Newton’s methods, is proposed. Some known results
can be regarded as particular cases. It is shown that the order of convergence of the proposed methods is 3. Numerical results are
given to verify the theory and demonstrate the performance.
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1. Introduction

Perhaps the most celebrated of all one-dimensional root-finding routines is the classical Newton’s (CN) method,
also called the Newton–Raphson method. This method requires the evaluation of both the function f (x) and the
derivative f ′(x), at arbitrary points x . The classical Newton’s method is given by

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, 2, . . . . (1)

It is known that the classical Newton’s method converges quadratically to simple zeros and linearly to multiple
zeros.

Some annotations were more helpful for the understanding of the construction of Newton’s method, for instance,
the Newton–Leibniz formula and Taylor’s expansion formula. To get a method with a higher order of convergence,
some new variants of Newton’s method have been proposed [1–3]. The methods given by Fernando et al. [1] and
Özban [2] suggest a class of methods developed in this work.

The work is organized as follows. In Section 2, some fundamental concepts are given. In Section 3, first, we
introduce some existing variants of Newton’s method. Then, a class of Newton’s methods based on the power
mean is given, called the power mean Newton’s (PN) methods. The cubic convergence of PN methods is shown in
Section 4. In Section 5, some numerical results are discussed to demonstrate the convergence of this class of Newton’s
methods.
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2. Fundamental concepts

Definition 1 (See [1,3]). Let β ∈ R, xn ∈ R, n = 0, 1, 2, . . . . Then, the sequence xn is said to converge to β if

lim
n→∞

|xn − β| = 0.

If, in addition, there exists a constant c ≥ 0, an integer n0 ≥ 0 and p ≥ 0 such that for all n > n0,

|xn+1 − β| ≤ c|xn − β|
p

then {xn} is said to converge to β with q-order at least p. If p = 1, 2, or 3, the convergence is said to be linear,
quadratic or cubic, respectively.

Let en = xn − β be the error in the nth iterate. The relation

en+1 = cep
n + O(ep+1

n )

is called the error equation for the method, p being the order of convergence.

Definition 2. Let a and b be positive scalars. For a finite real number α, the α-power mean of a and b is defined as
(see [4])

mα =

(
aα

+ bα

2

) 1
α

.

Several particular power means are well known. For example, setting α = 2, α = 1, α = −1, we have

m2(a, b) =

(
a2

+ b2

2

) 1
2

, m1(a, b) =
a + b

2
m−1(a, b) =

2
1
a +

1
b

which are called the square mean, arithmetic mean and harmonic mean of a and b, respectively. For α = 0, m0(a, b)

can be defined by the limit of mα(a, b) with α → 0, that is

m0(a, b) = lim
α→0

mα(a, b) =
√

ab

which is the so-called geometric mean of a and b.

3. Description of the methods

In the iterative formula of the classical Newton’s method, if f ′(xn) is approximated by the arithmetic mean of
f ′(xn) and f ′(xn+1), that is by f ′(xn)+ f ′(xn+1)

2 , we have

xn+1 = xn −
2 f (xn)

f ′(xn) + f ′(xn+1)
.

To overcome the implicit problem in the right hand side of the above equation, the (n + 1)st value of Newton’s
method zn+1 is used instead of xn+1. That is

xn+1 = xn −
2 f (xn)

f ′(xn) + f ′(zn+1)
, zn+1 = xn −

f (xn)

f ′(xn)
, n = 0, 1, 2, . . . . (2)

Since (2) is obtained by using the arithmetic mean of f ′(xn) and f ′(zn+1), it is called the arithmetic mean Newton’s
(AN) method (see [2]).

Also replacing f ′(xn) with the harmonic mean of f ′(xn) and f ′(zn+1), we get

xn+1 = xn −
f (xn)

(
f ′(xn) + f ′(zn+1)

)
2 f ′(xn) f ′(zn+1)

n = 0, 1, 2, . . .

which is called the harmonic mean Newton’s (HN) method (see [2]).
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Now, for generalization, approximating f ′(xn) with the power mean of f ′(xn) and f ′(zn+1), we have

xn+1 = xn −
2

1
α f (xn)

sign ( f ′(xn)) ( f ′(xn)α + f ′(zn+1)α)
1
α

, n = 0, 1, 2, . . . (3)

which can be called the α-power mean Newton’s (PN) method. The foregoing analysis in Section 1 shows the former
two variants of Newton’s methods are all particular cases of PN.

4. Convergence analysis

Theorem 3. Let β be a simple zero of a sufficiently differentiable function f : I ⊆ R→ R for an open interval I . If
x0 is sufficiently close to β, then for all α ∈ R the methods defined by (3) converge cubically with the following error
equation:

en+1 =
1
2
(c2

2 + αc2
2 + c3)e3

n + O(e4
n)

where ck =
1
k!

f (k)(β)
f ′(β)

, k = 2, 3, . . . and en = |xn − β|.

Proof. Let β be a simple zero of f . Since f is sufficiently differentiable, expanding f (xn) and f ′(xn) at β, we have

f (xn) = f ′(β)(en + c2e2
n + c3e3

n + · · ·) (4)

and

f ′(xn) = f ′(β)(1 + 2c2en + 3c3e2
n + 4c4e3

n · · ·). (5)

Then

f (xn)

f ′(xn)
= en − c2e2

n + 2(c2
2 − c3)e3

n + O(e4
n),

thus, for zn+1 given in (2) we have

zn+1 = β + c2e2
n + 2(c3 − c2

2)e
3
n + O(e4

n).

By Taylor’s expansion,

f ′(zn+1) = f ′(β)(1 + 2c2
2e2

n + 4(c2c3 − c3
2)e

3
n + O(e4

n)). (6)

For α = 0, from (5) and (6), we get

sign ( f ′(xn))
√

f ′(xn) f ′(zn+1) = f ′(β)

√
1 + 2c2en + (2c2

2 + 3c3)e2
n + 4(c2c3 + c4)e3

n + O(e4
n).

Hence,

f (xn)

sign ( f ′(xn))
√

f ′(xn) f ′(zn+1)
= (en + c2e2

n + c3e3
n + O(e4

n))

×

(
1 − c2en +

1
2
(c2

2 − 3c3)e2
n +

1
2
(5c2c3 − 4c4 + c3

2)e
3
n + O(e4

n)

)
= en −

1
2
(c2

2 + c3)e3
n + O(e4

n),

that is

en+1 =
1
2
(c2

2 + c3)e3
n + O(e4

n). (7)
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For α ∈ R \ {0},

f ′(xn)α = f ′(β)α
(

1 + 2αc2en + (2α(α − 1)c2
2 + 3αc3)e2

n

+

(
4αc4 + 6α(α − 1)c2c3 +

4
3
α(α − 1)(α − 2)c3

2

)
e3

n + O(e4
n)

)
(8)

and

f ′(zn+1)
α

= f ′(β)α(1 + 2αc2
2e2

n + 4αc2(c3 − c2
2)e

3
n + O(e4

n)). (9)

From (8) and (9) we get

sign
(

f ′(xn)
) (

f ′(xn)α + f ′(zn+1)
α

2

) 1
α

= f ′(β)

(
1 + c2en +

1
2
(c2

2 + αc2
2 + 3c3)e2

n

+
1
2
(−c3

2 − 3αc3
2 + c2c3 + 3αc2c3 + 4c4)e3

n + O(e4
n)

)
. (10)

Dividing (4) by (10), we have

2
1
α f (xn)

sign ( f ′(xn)) ( f ′(xn)α + f ′(zn+1)α)
1
α

= en −
1
2
(c2

2 + αc2
2 + c3)e3

n + O(e4
n).

Thus

en+1 =
1
2
(c2

2 + αc2
2 + c3)e3

n + O(e4
n). (11)

From (7) and (11), it can be concluded that for all α ∈ R, the α-power mean Newton’s method converges
cubically. �

5. Numerical results

In this section, we will give the results of some numerical tests to demonstrate the convergence efficiencies of
PN methods. Moreover, numerical results for CN, HN and AN methods for the same test problems are also given
to compare their efficiencies. All numerical computations have been carried out in a Matlab 6.5 environment with a
P4-1.5 MHz based PC. The stopping criterion has been taken as |xn+1 − β| + | f (xn+1)| < 10−14.

The following test functions have been used (see [1,2]):

(a) x3
+ 4x2

− 10, β = 1.365230013414097;
(b) sin2 x − x2

+ 1, β = 1.404491648215341;
(c) x2

+ ex
− 3x + 2, β = 0.2575302854398608;

(d) cos x − x, β = 0.7390851332151607;
(e) (x − 1)3

− 1, β = 2;
(f) (x − 1)6

− 1, β = 2;
(g) (x − 1)8

− 1, β = 2;
(h) xex2

− sin2 x + 3 cos x + 5, β = −1.207647827130919;
(i) ex2

+7x−30
− 1, β = 3;

(j)
∏4

m=0(x − (1 + 0.1m)), β = 1;
(k)

∏5
m=0(x − (m + 1)), β = 1;

(l) (x − 2)3(x + 2)4, β1 = 2 and β2 = −2.

In Table 1, “×” means that the method does not converge in 1000 iterations. It is easy to see that PN methods,
especially the ones with α < 0, can converge to the zeros of functions more quickly than the classical Newton’s
method on the whole.
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Table 1
Numerical results for test functions

f (x) x0 Number of iterations
CN HN AN PN

α = 0 α = 2 α = −2 α = 3 α = −3

a −0.5 131 43 6 4 4 4 4 4
1 5 3 3 3 3 3 4 3
2 5 3 3 3 4 3 4 3

b 1 6 3 4 4 4 4 4 4
3 6 3 3 4 4 4 4 4

c 2 5 4 4 4 4 3 4 3
3 6 4 4 4 5 4 5 4

d 1 4 3 2 3 3 3 3 3
1.7 4 3 3 3 3 3 3 3

−0.3 5 4 3 3 4 4 4 4

e 1.5 7 4 5 4 5 4 5 4
2.5 6 3 4 4 4 3 4 3
3 6 4 4 4 4 4 5 4
3.5 7 4 5 4 5 4 5 4

f 1.5 15 7 467 12 658 8 737 8
2.5 7 4 5 5 5 4 5 4
3.5 10 6 7 6 7 5 7 5

g 1.5 27 13 × 351 × 13 × 13
2.5 8 5 5 5 6 4 6 4
3.5 12 7 8 7 9 6 9 6

h −2 8 5 6 5 6 5 6 5
−3 14 8 9 9 10 7 11 7

i 3.5 12 7 8 7 9 6 9 6
3.25 8 5 6 5 6 5 6 4

j −0.5 16 9 11 10 11 8 12 8

k −2 11 6 7 7 8 6 8 6

l 1.4 78 41 51 46 56 37 60 33
−1 111 59 74 66 81 53 87 49

6. Conclusion

This work proposes a class of variants of Newton’s method, which can be viewed as the generalization of
some existing improvements of Newton’s method. Theoretical analysis shows that the order of convergence of such
Newton’s methods is three for simple roots. It will be interesting to consider other variants of the method obtained by
replacing xn by the power mean of xn and zn+1 in (1) and for multiple roots.
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