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Abstract

For bonded dissimilar materials, the free-edge stress singularity usually prevails near the intersection of the free-surface
and the interface. When two materials are bonded by using an adhesive, an interlayer develops between the two bonded
materials. When a ceramic and a metal are bonded, the residual stress develops because of difference in the coefficient of
thermal expansion. An interlayer may be inserted between the two materials to defuse the residual stress. Stress field near
the intersection of the interface and free-surface in the presence of the interlayer is then very important for evaluating the
strength of bonded dissimilar materials.

In this study, stress distributions on the interface of bonded dissimilar materials with an interlayer were calculated by
using the boundary element method to investigate the effect of the interlayer on the stress distribution. The relation
between the free-edge singular stress fields of bonded dissimilar materials with and without an interlayer was investigated
numerically. It was found that the influence of the interlayer on the stress distributions was confined within a small area of
the order of interlayer thickness around the intersection of the interface and the free-surface when the interlayer was very
thin. The stress distribution near the intersection of the interface and the free-surface was controlled by the free-edge stress
singularity of the bonded dissimilar materials without the interlayer. In this case, the interlayer can be called free-edge sin-
gularity-controlled interlayer. If a stress distribution on the interface is known for one thickness of an interlayer h, stress
distributions on the interface for other values of h can be estimated.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, bonded dissimilar materials and composite material have been widely used in many engi-
neering structures. With an increase in use of bonded dissimilar materials or composite materials, demands for
strength evaluation of bonded dissimilar materials increase (Toyoda, 1991; Yuuki et al., 1993).
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When two materials are bonded, the free-edge stress singularity usually develops at the intersection of the
interface and the free-surface. In the free-edge singular stress field, the stress distribution is expressed by the
following equation:
r ¼ Kr�p: ð1Þ

Here, p is the exponent of the free-edge stress singularity, K is the intensity of the free-edge singular stress field,
and r is the distance from the intersection of the interface and the free-surface. The existence of free-edge stress
singularity is very important for the evaluation of the strength of the bonded dissimilar materials. Many
researchers have studied the free-edge stress singularity (Bogy, 1968, 1970; Chen, 1996; Dundurs, 1969). It
was pointed out that the free-edge stress singularity disappeared for certain combinations of material proper-
ties and wedge angles (Kubo and Ohji, 1991; Ohji et al., 1992).

When two dissimilar materials are bonded by using an adhesive, an interlayer develops between two
bonded materials. When a ceramic is bonded to a metal, the residual stress develops because of the difference
in the coefficient of the thermal expansion. An interlayer may be inserted between a ceramic and a metal to
defuse the residual stress. The stress field near the intersection of the interface and the free-surface in the pres-
ence of an interlayer is then very important for evaluating the strength of bonded dissimilar materials. Munz
et al. (1995) studied the effect of the interlayer under thermal stress loadings. They proposed a relation between
the thickness of the interlayer and the intensity of free-edge stress singularity.

In this study, stress distributions on the interface of bonded dissimilar materials with an interlayer subjected
to a remote mechanical loading are calculated by using the boundary element method (BEM). The effects of
interlayer on the stress distribution on the interface or the free-edge stress singularity are discussed. The rela-
tion between the free-edge stress singularity of bonded dissimilar materials with and without an interlayer is
investigated numerically and theoretically.

2. Model of plate used for BEM analyses

Fig. 1 shows a model of a plate used for boundary element analyses. This plate consists of three materials,
and material 3 is inserted between materials 1 and 2. The widths of the materials 1 and 2 are set to be 2.0W and
the heights of each material are set to be 1.5W. The thickness of material 3 is denoted by h. Boundary element
analyses were made with changing the value of h. It was assumed that the displacement in the y-direction on
the bottom surface was set to be 0, and the uniform tensile stress r0 in the y-direction was applied on the top
surface of plate. All analyses were made under the plane strain condition.
Fig. 1. Model used for BEM analyses.



Table 1
Material properties used for BEM analyses

Group Material 1 Material 2 Material 3

1 Young’s modulus (GPa) 206.0 70.3 4.93
Poisson’s ratio 0.30 0.345 0.33

2 Young’s modulus (GPa) 100.0 1.0 20.0
Poisson’s ratio 0.30 0.30 0.30

Table 2
Theoretical values of exponent of free-edge stress singularity

Group p12 p13 p23

1 0.09336 0.28226 0.23925
2 0.26770 0.05978 0.23915
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Young’s modulus and Poisson’s ratio used for BEM analyses are shown in Table 1. Exponent of the free-
edge stress singularity for the combination of material i and j is denoted by pij. Theoretical values of pij cal-
culated using the characteristic equation deduced in terms of the Airy stress function (Kubo and Ohji, 1991;
Ohji et al., 1992) are shown in Table 2.

In this paper, the interface between the materials 1 and 3 is denoted by interface 13, and the interface
between the materials 2 and 3 is denoted by interface 23. As is seen from Table 2, we compared the stress dis-
tributions on the interface for two groups of materials. In the first group (Group 1) the adhesive has the effect
of increasing the order of the singularity, i.e. p12 < p13, p23, while in the second group (Group 2) the adhesive
has the effect of decreasing the order of the singularity, i.e. p12 > p13, p23.
3. Stress distributions on interface

3.1. Case of 0 < p12 < p13 and 0 < p12 < p23

For the Group 1 in Table 1, the distributions of normal stress ryy on the interface 13 and the interface 23
are shown in Figs. 2(a) and (b), respectively. The abscissas of the figures show the distance r from the inter-
section of the interface and the free-surface normalized by W. The ordinates of the figures show the normal
stress ryy on the interface normalized by r0. Thickness of an interlayer h is set to be 0.002W, 0.005W and
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Fig. 2. Stress distributions on interfaces 13 and 23 for pair 1. (a) Distribution on interface 13. (b) Distribution on interface 23.



S. Ioka et al. / International Journal of Solids and Structures 44 (2007) 6232–6238 6235
0.01W. The solid lines in the figures show the stress distribution on the interface of bonded dissimilar materials
without the interlayer.

It is found from Fig. 2 that the stress on the interface of the bonded materials without the interlayer
increases linearly on a log–log diagram with decreasing r in the region where r is smaller than 0.01W. It
is therefore seen that stress distributions on the interface without the interlayer have the r�p-type singularity
in the vicinity of the intersection of the interface and the free-surface. In Fig. 2(a), when material 3 is
inserted, the stress on the interface 13 increases linearly with decreasing r in the region where r is smaller
than 0.001W, and the r�p-type singularity prevails. The exponents of free-edge stress singularity, which are
determined from the stress distributions on the interface in the vicinity of the intersection of the interface
and the free-surface using the least squares method, agree well with the theoretical value p13. The region,
where the free-edge stress singularity is predominant, becomes smaller as the interlayer thickness h becomes
smaller. On the other hand, the stress distributions in the region, where r is larger than h, agree well with
the stress distribution without an interlayer. From this result, it is seen that the influence of the interlayer on
the stress distribution is confined in the region where r is smaller than h. In Fig. 2(b), stress distributions on
the interface 23 also have the r�p-type singularity in the vicinity of the intersection of the interface and the
free-surface. The exponents of the singularity of stress distributions on interface 23 agree well with the
theoretical value p23.

When the thickness of the interlayer is small, the stress distribution in the vicinity of the intersection of the
interface and the free-surface is controlled by the free-edge stress singularity of the bonded dissimilar materials
without an interlayer. In this case, the interlayer can be called free-edge singularity-controlled interlayer. In
the followings, the normalization of the stress distributions on the interface with an interlayer by the free-edge
singular stress field without an interlayer is discussed. The stress distribution on the interface of the bonded
materials without an interlayer is expressed by
Fig. 3.
ryy ¼ Ky0r�p12 : ð2Þ

Therefore, the value of the stress is equal to Ky0h�p12 at the location r = h. Stress distributions on the interface
with an interlayer normalized by Ky0h�p12 are plotted against r/h in Fig. 3. It is seen that stress distribution
normalized by Ky0h�p12 is independent of h in the region where r/h < 1.0. When the interlayer is very thin,
the normalized stress ryy=ðKy0h�p12Þ can be expressed by the following equation.
ryy

Ky0h�p12
¼ f13

r
h

� �
: ð3Þ
Here f13(r/h) denotes a function of r/h.
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Normalized stress distributions on interfaces 13 and 23 for pair 1. (a) Distribution on interface 13. (b) Distribution on interface 23.
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In the region where r/h < 0.1, the stress distribution is expressed by
ryy

Ky0h�p12
¼ Cy13

r
h

� ��p13

: ð4Þ
On the other hand, the free-edge singular stress field is expressed by the following equation.
ryy ¼ Ky13r�p13 : ð5Þ
Here, Ky13 is the intensity of singular stress field on the interface 13 when an interlayer is inserted. On the inter-
face 23, similar equations are obtained by replacing the subscript 13 by 23.

By combining Eqs. (4) and (5), Ky13 is expressed by the following equation.
Ky13 ¼ Ky0Cy13hp13�p12 : ð6Þ

From this equation, the intensity of the free-edge singular stress field Ky13 becomes smaller as the thickness of
the interlayer h becomes smaller when p13 > p12.

The intensity of the singular stress field Ky23 can be derived in the same way, and is given as,
Ky23 ¼ Ky0Cy23hp23�p12 : ð7Þ
Munz et al. (1995) proposed a relation between the intensity of the singularity and the thickness of the inter-
layer written as follows:
Kyi3

Ky12

¼ Aþ B log
h
W

� �
h
L
6 0:01

� �
ð8Þ
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W
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þ E log
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W
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� �
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� �
: ð10Þ
Parameters A, B, C, D, E, F and G dependent on the material properties were determined from finite element
analyses. The results obtained by Munz et al. are different from those of this paper. It is due to the reason that
the work of Munz et al. treated the case under the thermal stress loadings where the constant stress term was
not negligible.

3.2. Case of 0 < p13 < p12 and 0 < p23 < p12

For the Group 2 in Table 1, the stress distributions on the interface 13 and the interface 23 are shown in
Figs. 4(a) and (b), respectively. The abscissas of the figures show the distance r from the intersection of the
interface and the free-surface normalized by W. The ordinates of the figures show the normal stress ryy on
the interface normalized by r0. The thickness of an interlayer h is set to be 0.002W, 0.005W and 0.01W.
The solid lines in the figures show the stress distribution on the interface of bonded dissimilar materials with-
out the interlayer.

It is seen in Fig. 4(a) that the stress on the interface 13 increases linearly with decreasing r in the region
where r is smaller than 0.001W on a log–log diagram, and the r� p-type singularity prevails. The slope of
the stress distribution is smaller than that of the stress distribution without an interlayer; thus the exponent
of the free-edge stress singularity p13 is smaller than p12, as predicted theoretically. There is a region where
the stresses are higher than that of the no-interlayer case. This can be seen for the pair of material properties
like the Group 2.

On the other hand, the stress distributions on the interface 23 are similar to the stress distribution without
an interlayer shown as a solid line in Fig. 4(b), because the exponent of the singularity p23 is 0.23915 and nearly
equal to p12.
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Fig. 5. Normalized stress distributions on interfaces 13 and 23 for pair 2. (a) Distribution on interface 13. (b) Distribution on interface 23.
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Fig. 4. Stress distributions on interfaces 13 and 23 for pair 2. (a) Distribution on interface 13. (b) Distribution on interface 23.
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The stress distributions normalized by Ky0h�p12 are plotted against r/h in Fig. 5. Figs. 5(a) and (b) show the
distributions on the interface 13 and the interface 23, respectively. From these figures, the distribution of nor-
malized stress ryy=ðKy0h�p12Þ is expressed by a function of r/h as mentioned in the previous section.

If the stress distribution on the interface is known for a value h of the interlayer thickness, the stress dis-
tribution on the interface for the other value of h can be estimated by using Eq. (6) or Eq. (7). In the region
where r� h, stress distribution with an interlayer is similar to that without an interlayer.

4. Conclusions

The stress distributions in bonded dissimilar materials with an interlayer were investigated using the bound-
ary element method with special emphasis on the effect of the interlayer on the stress distribution on the inter-
face. The following conclusions are obtained.
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The stress distribution in the region where r is larger than the interlayer thickness h is similar to the stress
distribution without the interlayer. The influence of the interlayer is confined in the region of the order of the
interlayer thickness around the intersection of the interface and the free-surface.

The stress distribution near the intersection of the interface and the free-surface is controlled by the free-
edge stress singularity without the interlayer. If the stress distribution on the interface is known for one thick-
ness of an interlayer h, the stress distribution on the interface for the other values of h can be estimated.
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