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Recent work by various authors has considered the implications of Banach
algebra amenability for various algebras defined over locally compact groups, one
of the basic tools being the fact that a continuous homomorphic image of an
amenable algebra is again amenable. In the present paper we look at the conse-
quences of weak amenability. Here the homomorphism property fails in general,
however it remains true for suitable direct summands. It is this technique that we
make much use of here. � 1997 Academic Press

0. INTRODUCTION

Let A be a Banach algebra, X a Banach A-bimodule. Then X* is a
Banach A-bimodule under the actions

(a } m, !) =(m, ! } a) , (m } a, !)=(m, a } !) (a # A, ! # X, m # X*).

A derivation D: A � X is a (bounded) linear map such that

D(ab)=D(a) } b+a } D(b) (a, b # A).

The derivation D is inner if it is of the form a [ a } !&! } a for some ! # X.
The cohomology space H 1(A, X ) is the quotient of the space of derivations
by the inner derivations, and in many situations triviality of this space is
of considerable importance. In particular, A is contractible if, for every
Banach A-bimodule X, H1(A, X )=[0], amenable if, for every Banach
A-bimodule X, H1(A, X*)=[0], and weakly amenable if H1(A, A*)=[0].
In the case that A is commutative, then weak amenability is equivalent
to every derivation into a commutative bimodule being zero, [2,
Theorem 1.5].
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As examples of these notions, for G a locally compact group and
A=L1(G), A is contractible if and only if G is finite, A is amenable if
and only if G is amenable as a topological group, and A is always weakly
amenable. If A is a C*-algebra, then A is contractible if and only if it
is finite dimensional, A is amenable if and only if it is nuclear, and A is
always weakly amenable.

Recent papers, [19, 43, 44, 15], have considered the implications of
amenability for various algebras defined over locally compact groups. In
the present paper we continue this investigation, with emphasis on weak
amenability. There are two results along these lines given towards the end
of [19], and in fact one of the basic tools used here is an abstract form of
the technique used there, cf. Proposition 4.14 below. Other results are given
in [14]. Weak amenability for other specific classes of Banach algebras are
given in [2, 4].

It is a well known and very useful fact that a continuous homomorphic
image of an amenable algebra is again amenable. This is also easily verified
for weak amenability in the commutative case, but is false in general. We
are grateful to Dr. N. Gro% nb$k for pointing out that a counterexample is
provided by the algebra of nuclear operators on a Banach space without
the approximation property, see [28]. A sufficient condition for weak
amenability of a homomorphic image is given in [27, Propositions 1.3
and 2.4], but as noted below it fails to apply in the situations of interest
here.

An outline of the present paper is as follows. Basic properties of intro-
verted subspaces of Banach algebras are given in Section 1, many of the
algebras we consider are of this form. Section 2 contains some simple yet
crucial facts about derivations and homomorphic images. The results
proper start in Section 3 with a study of weak amenability of the measure
algebra M(G) of a locally compact group G. We prove, amongst other
things, that if G is connected and amenable as a discrete group, and M(G)
is weakly amenable, then G must be trivial. In Section 4 we consider the
following general problem: given closed left introverted subspaces Y�X of
L�(G) such that X* is weakly amenable, when does it follow that Y* is
weakly amenable? The same question is addressed in Sections 6 and 7 for
subspaces of the von Neumann algebra VN(G) generated by the left regular
representation of a locally compact group G, and the spaces PMp(G),
1< p<� in B(Lp(G)) generated by left translations. In particular, we
show that if X is a left introverted subspace of L�(G) containing the
almost periodic functions, and X* is weakly amenable, then G cannot have
an infinite abelian quotient. We also show that if A is a commutative
W*-algebra such that the predual A

*
is a two-sided G-module satisfying

x } ,�0 and , } x�0 for x # G and each , # A
*
+, then any derivation

D: L1(G) � A is inner.
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1. PRELIMINARIES

For a linear space E, and a functional f on E, we will variously denote
the value of f on x # E by f (x) and ( f, x) .

Given a Banach algebra A, for each f # A* and , # A, define elements
, } f and f } , of A* by

( f } ,, �) =( f, ,�), (, } f, �)=( f, �,) (� # A).

A subspace X of A* is A-left invariant (resp. A-right invariant) if X } ,�X
(resp. , } X�X ) for each , # A. To simplify notation, A- will be omitted
whenever the ambient algebra is clear. X is invariant if it is both left and
right invariant. Note that a closed invariant subspace of A* is thus a
Banach A-bimodule.

Let X�A* be a left invariant subspace. For m # X* and f # X define
m } f # A* by (m } f, ,)=(m, f } ,) , (, # A). The subspace X is A-left
introverted if X* } X�X. Again, A- will be omitted whenever the ambient
algebra is clear. Clearly every left introverted subspace of A* is invariant.
Following [1], define a product on the left introverted subspace X by

(mn, f )=(m, n } f ) (m, n # X*, f # X ).

This product makes X* into a Banach algebra.
We shall repeatedly require the following facts about introverted sub-

spaces of the dual of a Banach algebra.

Lemma 1.1. Let A be a Banach algebra, Y/X two left introverted sub-
spaces of A*. Then

Y==[m # X* : (m, f )=0 for f # Y ]

is a weak* closed ideal of X*.

Proof. Certainly Y= is weak* closed. Take m # Y=, f # Y and , # A.
Then (m } f, ,) =(m, f } ,)=0 since f } , # Y by A-left invariance of Y.
Thus for n # X*, (nm, f )=(n, m } f )=0, so that nm=0 # Y=. Further, if
n # X*, then n } f # Y by left introversion, whence (mn, f )=(m, n } f )=0.
Thus mn # Y=. K

Remark. The ideals Y= are typical of the kernels of the homomorphisms
we consider below. The proof of Lemma 1.1 shows, in particular, that they
have zero products, so certainly have no bounded approximate identities.
Thus [27, Proposition 1.3] does not apply.
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For a Banach algebra A define

W(A*)=[ f # A* : A � A*: , [ , } f is weakly compact],

and, for each f # A*,

K( f )=[, } f : , # A, &,&�1].

Lemma 1.2. Let A be a Banach algebra, X�A* a left invariant sub-
space. Then X is left introverted if, and only if, for each f # X the weak*
closure of K( f ) is contained in X. In particular

(a) Any weak* closed invariant subspace of A* is left introverted.

(b) Any norm closed invariant subspace of W(A*) is left introverted.

Proof. Suppose that X is left introverted, and let f # X. Given g in the
weak* closure of K( f ), there is a net (,:)/A with &,:&�1 and ,: } f � g
weak*. Take a weak* cluster point m of (,:) in A**. Then for each � # A,

(g, �) =lim
:

(,: } f, �) =lim
:

(,: , f } �) =(m, f } �)=(m } f, �),

so that g=m } f # X.
Conversely, suppose that the weak* closure of K( f ) lies in X for each

f # X. For m # X*, let n # A** be a norm preserving extension of m. By
Goldstine's theorem there is a net (,:)/A with &,:&�&m& and ,: � n
weak* in A**. Then for � # A,

(m } f, �) =(m, f } �) =lim
:

(,: , f } �) =lim
:

(,: } f, �) ,

whence m } f lies in the weak* closure of K( f ), and hence in X. Thus X
is left introverted.

(a) This is immediate from above.

(b) Let X be a norm-closed invariant subspace of W(A*). For f # X
the norm closure of K( f ) is weakly compact in A*, hence weak* compact,
so that the weak* closure of K( f ) lies in X. K

Lemma 1.3. Let A be a Banach algebra, X be a left introverted subspace
of A*. Suppose P: A* � X is a continuous projection which commutes with
the operators T, : f [ f } ,, , # A. Then P* is an algebra homomorphism of
X* into A**.

Proof. For m, n # X* and f # A*,

(P*(mn), f )=(mn, Pf )=(m, n } (Pf ))
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where, for , # A,

(n } (Pf ), ,) =(n, (Pf ) } ,)=(n, P( f } ,))

=(P*n, f } ,) =( (P*n) } f, ,).

It follows that (P*n) } f=n } (Pf )=P(n } (Pf )), and so

(P*(mn), f ) =(m, P(n } (Pf )))=(P*m, n } (Pf ))

=(P*m, (P*n) } f )=( (P*m)(P*n), f ). K

Lemma 1.4. Let A be a commutative Banach algebra, X a closed left
introverted subspace of A*. Then the following are equivalent:

(a) X�W(A*);

(b) the product in X* is separately weak* continuous on bounded
spheres;

(c) X* is a commutative Banach algebra.

Proof. (a) O (b). For m # X*, the map X* � X*: n [ n } m is weak*-
weak* continuous.

Now let f # X�W(A*). The norm closure Z of K( f ) is weakly compact
in A*, hence weak* compact, and moreover these two topologies agree
on Z. In fact Z=[m } f : m # X*, &x&�1]. For Z is certainly weak* closed,
convex, and contains K( f ). Conversely, for m # X*, &m&�1, Goldstine's
theorem gives (,:)/A, &,:&�1 with ,: � m weak* in A*, whence
,: } f � m } f weak* in A*, so that m } f # Z.

Suppose now that (n:)/X* is weak* convergent to n # X*, with
&n:&�1, &n&�1. Then n: } f � n } f weak* in A*, and hence weakly as this
occurs in Z. So for m # X*,

(m } n: , f )=(m, n: } f ) � (m, n } f ) =(m } n, f ) ,

that is, m } n: � m } n weak* in X*.

(b) O (c). Note that , } m=m } , for , # A, m # X* by commutativity
of A. Thus m } n=n } m for m, n # X*.

(c) O (a). Take f # X. Then the map X* � X: m [ m } f is weak*-
weak continuous. Thus K( f ), as a subset of the weakly compact set Z, is
weakly precompact, which is to say f # W(A*). K

Throughout this paper, G will always denote a locally compact group
with fixed left Haar measure; Gd will denote G with the discrete topology.
Given a function f : G � C, the left (right) translation of f by x # G is
defined by (lx f )( y)=f (xy) ((rx f )( y)=f ( yx)). The standard Lebesgue
spaces with respect to left Haar measure will be denoted Lp(G), 1�1��;
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CB(G) will denote the space of all bounded continuous complex valued
functions on G with the supremum norm, CBR(G) its (real) subspace of
real valued functions; C0(G) the closed subspace of CB(G) of functions
vanishing at infinity, C00(G) the dense subspace of C0(G) consisting of
the functions with compact support. Note that CB(G) is isometrically
isomorphic to a closed, translation invariant subspace of L�(G).

Given a subspace X of L�(G), for each f # X and , # L1(G), f } ,=
(1�2) ,� V f and , } f=f V ,� . Here 2 is the modular function of G, and
,� (x)=,(x&1) for x # G.

Of major interest to us here is the left introverted space C0(G). It is well
known that C0(G)* is the space M(G) of regular Borel measures on G,
and that the above product agrees with the usual convolution of measures,
[30, Theorem 19.10].

Let LUC(G) denote the space of those f # CB(G) such that the map
x [ lx f : G � (CB(G), & } &) is continuous. This in fact coincides with the
space of those f # CB(G) such that x [ lx f : G � (CB(G), weak) is con-
tinuous. Thus LUC(G) is L1(G)-invariant; it is in fact the maximal l1(G)-
left introverted subspace of l�(G) contained in CB(G), [3, Theorem 5.7].
Note that LUC(G) is exactly the space of right uniformly continuous func-
tions of CB(G) as defined in [30]. If f # LUC(G), n # LUC(G)*, then for
x # G, (n } f )(x)=(n, lx f ) , [37, Lemma 3].

The right orbit of a function f # CB(G) is given by RO( f )=[rx f : x # G].
Recall that a function f # CB(G) is almost periodic (weakly almost periodic)
if RO( f ) is precompact in the norm topology (weak topology) of CB(G).
We shall denote the spaces of such functions by AP(G) and W(G) respec-
tively; they are also left introverted subspaces of L�(G), [52, Lemma 6.4].

If X is a weak* closed subspace of L�(G), then X is L1(G)-invariant if
and only if X is left and right translation invariant, [52, Lemma 6.3]. If X
is a norm-closed subspace of W(G), then X is L1(G)-invariant if and only
if X is left and right translation invariant.

Lemma 1.5. Let G and H be locally compact groups, x [ x� a surjective
homomorphism. Let X (resp. Y ) be a left introverted subspaces of L�(G)
(resp. L�(H )) contained in LUC(G) (resp. LUC(H )). Suppose that
J: Y � X is a linear mapping such that for x # G, f # X,

(Jf )(x� )=f (x), J(lx f )=lx� (Jf ).

Then J*: X* � Y* is an algebraic homomorphism.

Proof. Take +, & # X* and f # Y, so that

(J*(+&), f )=(+&, Jf )=(+, & } (Jf )).
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Now, for x # G,

(& } (Jf ))(x� )=(&, lx� (Jf ))=(&, J(lx f )) =(J*&, lx f )

=((J*&) } f )(x)=J((J*&) } f ))(x� ).

Thus

(J*(+&), f )=(J*+, J*& } f ) =(J*+J*&, f ). K

Finally, note that subspace will always refer to norm closed subspace,
and all linear mappings are taken to be norm continuous.

2. HOMOMORPHIC IMAGES

We need some elementary results concerning derivations on Banach
algebras. These are surely well known, but some care must be taken in the
noncommutative case, so proofs are included. Recall that for a Banach
algebra A, d # A* is a point derivation at a character � of A if d(xy)=
d(x) �( y)+d( y) �(x) for x, y # A. Of course, this means exactly that d is a
derivation into the one dimensional module C, with commutative module
action given by : } x=x } :=�(x) :, (: # C).

Lemma 2.1. Let A and B be Banach algebras, 8: A � B a homo-
morphism with dense range. Let ,: B � C be a (non-zero) character, and let
d : B � C be a non-zero point derivation at ,. Then �=,8 is a (non-zero)
character on A, and 2=d8 is a non-zero point derivation at �. In particular
A is not weakly amenable.

Proof. It is clear that � is a character, non-zero because of the density
of 8(A). For the same reason, 2{0. Further, for x, y # A,

2(xy)=(d8)(xy)=d(8(x) 8( y))

=(d8)(x)(,8)( y)+(,8)(x)(d8)( y)

=2(x) �( y)+�(x) 2( y).

Now set D: A � A*: x [ 2(x) �. Then for x, y, z # A,

(D(xy), z)=(2(xy) �, z)

=2(x) �(z) �( y)+�(x) 2( y) �(z)

=2(x)(�, yz)+2( y)(�, zx)

=2(x)(� } y, z) +2( y)(x } �, z)

=(D(x) } y, z)+(x } D( y), z) ,
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so that D: A � A* is a derivation. If D were inner, say D(x)=x } !&! } x
for x # A, for some fixed ! # A*, then for x, y # A we have

2(x) �( y)=(2(x) �, y) =(x } !&! } x, y)

=(!, yx&xy)=&(2( y) �, x)=&2( y) �(x).

This means that �=c2 for some c{0. But then for x # A,

�(x)2=�(x2)=2c2(x) �(x),

whence �=2c2, which is absurd. K

For a commutative Banach algebra A and finite-dimensional bimodule X,
existence of non-zero point derivations is necessary and sufficient for
H1(A, X ){[0]. However, this simple characterisation fails even in the
general commutative situation, see [2, Section 1] for details. In the absence
of non-zero point derivations more care is needed to pass to homomorphic
images.

Lemma 2.2. Let A, B be Banach algebras, 8: A � B a homomorphism
with dense range. Let D: B � B* be a non-zero derivation. Then 2=8*D8:
A � A* is a non-zero derivation.

Proof. This is just a calculation. For x, y, z # A,

(2(xy), z) =( (8*D8)(xy), z)

=(D(8(x) 8( y)), 8(z))

=( (D8)(x) } 8( y)+8(x) } (D8)( y), 8(z)).

Now

( (D8)(x) } 8( y), 8(z)) =( (D8)(x), 8( y) 8(z))

=( (D8)(x), 8( yz))

=(2(x), yz)

=(2(x) } y, z) ,

and, similarly

(8(x) } (D8)( y), 8(z))=(x } 2( y), z).

It follows that 2 is a derivation.
If 2=0, then for x, y # A, (2(x), y)=0, that is, ( (8*D8)(x), y)=0.

Thus ( (D8)(x), 8( y))=0, so by density (D8)(A)=0, and so D=0. K
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Lemma 2.3. Let A be a Banach algebra such that A=B�I for a closed
subalgebra B and closed (two-sided ) ideal I. Suppose that A is weakly
amenable. Then B is weakly amenable.

Proof. Let ?: A � B be the natural projection of A onto B, so that ? is
a homomorphism with kernel I. Take D: B � B* a derivation. From
Lemma 2.2, 2=?*D?: A � A* is a derivation, so by hypothesis there is
! # A* such that 2(x)=x } !&! } x for x # A. Set '=!|B . Then for x, y # B,

(Dx, y)=( (D?)(x), ?( y))=(2(x), y)

=(x } !&! } x, y)=(!, yx)&(!, xy)

=(', yx)&(', xy) =(x } '&' } x, y) ,

where the penultimate step uses the fact that B is a subalgebra. Thus D is
inner, as required. K

3. WEAK AMENABILITY OF M(G)

Let N be a compact normal subgroup of a locally compact group G, and
set

XN=[ f # C0(G) : f is constant on cosets of N ]

=[ f # C0(G) : lh f=f for h # N ].

By Lemma 1.2, XN is a left introverted subspace of L�(G). Denoting by x�
the coset xN, it is standard that the map J: XN � C0(G�N ) given by
(Jf )(x� )=f (x) is an isometric isomorphism. Now, for x, y # G, f # XN ,

lx� (Jf )( y� )=(Jf )(x� y� )=f (xy)=(lx f )( y)=J(lx f )( y� ),

so that J(lx f )=lx� (Jf ). Thus J*: C0(G�N )* � (XN)* is an algebraic
epimorphism by Lemma 1.5.

Define a linear map P: C0(G) � XN by the formula

(Pf )(x)=|
N

f (xh) dh.

It is well known that P is a projection of C0(G) onto XN , see for example,
[16, Proposition V.3.5]. It is clear that P commutes with left translations,
and, taking, normalized Haar measure on N, &P&=1. In fact much more
is true.
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Lemma 3.1. Let N be a compact normal subgroup of G. Then
P*: (XN)* � M(G) is an isometric isomorphism into, and there is the direct
sum decomposition

M(G)=P*(XN)*�X =
N ,

where P*(XN)* is a closed subalgebra, and X =
N is a weak* closed ideal of

M(G).

Proof. Note firstly that for + # (XN)*,

&+&�&P*+&=sup[ |(P*+, f ) |: f # C0(G), & f &�1]

=sup[ |(+, Pf ) |: f # C0(G), & f &�1]

�sup[ |(+, f ) |: f # C0(G�N ), & f &�1]

=&+&,

since Pf=f for f # XN . Thus P* is an isometry. Also, for x # G, f # C0(G),
P(lx f )=lx(Pf ). So by Lemma 1.5 P* is a homomorphism.

Clearly X =
N has trivial intersection with P*(XN)*. For + # M(G), set +$ to

be the restriction of + to XN . Then +&P*+$ # X =
N , so we do, indeed, have

a direct sum decomposition.
That X =

N is a weak* closed ideal follows from Lemma 1.1. K

The following should be compared with the corresponding results for
amenability proved in [43].

Lemma 3.2. Let N be a compact normal subgroup of G. Then M(G)
weakly amenable implies M(G�N ) is weakly amenable.

Proof. This is an immediate consequence of Lemmas 2.3 and 3.1. K

Theorem 3.3. Let G be a connected locally compact group such that Gd

is amenable. Then M(G) is weakly amenable if and only if G=[e].

Proof. Suppose firstly that G is a Lie Group. Then G is solvable,
[49, Theorem 3.9]. Let

G=G1 f G2 f } } } f Gk=[e]

be a normal series for G with each Gi�Gi+1 abelian. Then certainly G1 �G2

is abelian. So, unless G1 �G2 is discrete, M(G1 �G2) admits a non-zero point
derivation, [5], whence M(G) is not weakly amenable by Lemma 3.2,
which contradicts the hypothesis. Thus G2 is open, so that G1=G2 by
connectivity. That G=[e] now follows by induction.
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In the general case, there is a directed set (Ni) of compact normal sub-
groups of G such that each G�Ni is a (connected) Lie group, and Ni a [e].
By Lemma 3.2, M(G�Ni) is weakly amenable for each i, hence trivial by
above, since (G�Ni)d is certainly amenable. Thus G is trivial. K

For a general connected group, factoring out the largest compact normal
subgroup reduces the question to the Lie group case.

Theorem 3.4. Let G be a non-compact, connected [IN]-group. Then
M(G) is not weakly amenable.

Proof. If G was in fact a [SIN]-group, then G would have the form
Rn_K for some compact subgroup K. Thus by Lemma 3.2, M(G) weakly
amenable would imply M(Rn) weakly amenable, which is not the case.

More generally, if G is an [IN]-group, then G has a compact normal
subgroup N such that G�N is a [SIN]-group, so the result follows from
Lemma 3.2 and the previous case. K

4. LEFT INTROVERTED SUBSPACES OF L�(G)

The general problem concerning us in this section is the following. Given
left introverted spaces Y/X of L�(G), such that X* is weakly amenable,
when does it follow that Y* is weakly amenable? Note that in this
situation, the restriction map X* � Y* provides a contractive algebraic
homomorphism of X* onto Y*. Lemma 3.2 provides an affirmative answer
to this question in the case X=C0(G), and Y=XN for some compact
normal subgroup N of G.

Let X be a left introverted subspace of L�(G) which is contained in
CB(G). Given + # M(G), define {(+) # X* by

({(+), f )=| f (x) d+(x) ( f # X ).

Provided C0(G)�X, {(+) is the unique norm preserving extension of
+ # C0(G)* to X, see [45, Lemma 1], so that { is a linear isometry of M(G)
into X*.

Lemma 4.1. Let X be a left introverted subspace of L�(G) such that
C0(G)�X�CB(G). Then there is an isometric algebraic isomorphism
{: M(G) � X* and an isometric direct sum decomposition

X*={(M(G))�C0(G)=,

where C0(G)= is a weak* closed ideal of X*.
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Proof. For +, & # M(G), both {(+&) and {(+) } {(&) are norm preserving
extensions of +& from C0(G) to X, so by uniqueness {(+&)={(+) } {(&).
Thus { is a homomorphism.

That C0(G)= is a weak* closed ideal follows from Lemma 1.1.
The argument of [18, Lemma 1.1] suffices to show that if m=++&

where + # {(M(G)) and & # C0(G)=, then &m&=&+&+&&&. K

Theorem 4.2. Let X be a left introverted subspace of L�(G), C0(G)�
X�CB(G). Then X* weakly amenable implies that M(G) is weakly
amenable. In particular, Theorems 3.3 and 3.4 apply.

Proof. Use Lemmas 2.3 and 4.1. K

Let Gap be the almost periodic compactification of G. Thus Gap is the
spectrum of the Banach algebra AP(G), taken with the usual weak* topol-
ogy. Under the product

(! } ', f )=(!, ' } f ) (!, ' # Gap, f # AP(G)),

where (' } f )(x)=(', lx f ) , Gap is a compact topological group containing
as a dense subgroup the image of G under ?: x [ $x .

The map ?� : C(Gap) � AP(G) given by (?� f )(x)=f (x), (x # G) is an
isometric surjective V-isomorphism, so that ?� * is certainly a linear isometry
between the Banach spaces AP(G)* and M(Gap). To see that it is a homo-
morphism, note firstly that for x, y # G, ?� *($x V $y)=?� *($x) V ?� *($y) is
immediate from the definition of ?. It then follows that ?� *(mn)=
?� *(m) V ?� *(n) for m, n # sp[$x : x # G]. Now weak* density of sp[$x: x # G]
in AP(G)*, together with weak* continuity of multiplication, shows that
?� * is a homomorphism.

The following is an analogue of [14, Theorem 3.2].

Theorem 4.3. Let X be a left introverted subspace of L�(G) containing
AP(G). Suppose X* is weakly amenable. Then any closed normal subgroup
N of G with G�N abelian has finite index. In particular, if G is connected then
G has no proper closed normal subgroup with abelian quotient.

Proof. Take such a subgroup N of G and set T=G�N. Let q: G � T
be the quotient homomorphism and ?: T � T ap the natural embedding
?(t)=$t . Then \=? b q: G � T ap extends continuously to \� : Gap � T ap,
[3]. Now \ has dense range, and \� has closed range by compactness of
Gap, so in fact \� is surjective. Define \� : C(T ap) � C(Gap) by \� ( f )(t)=
f (\� (t)). Then \� is a monomorphism, and its adjoint \� *: M(Gap) � M(T ap)
is a homomorphism.

The map \� * is weak*-weak* continuous, and has weak* dense range, in
that it contains all the point masses. Given & # M(T ap) with &�0, &&&=1,
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there is a net (&:)/M(T ap) of convex combination of point masses
converging weak* to &. Take a net (+:)/M(Gap) with \� *(+:)=&: , +:�0,
&+:&�1. By weak* compactness (+:) has a cluster point + # M(Gap), and
by weak*-weak* continuity \� *(+)=&. It follows that \� * is surjective.

Now T ap is an abelian compact group, so if is it not finite, M(T ap)
admits a non-zero point derivation at some character. By Lemma 2.1, the
same holds for M(Gap).

Now AP(G)=, the kernel of the restriction map X* � AP(G)*, is a
weak* closed ideal in X* by Lemma 1.1. Since M(Gap)&AP(G)*&
X*�AP(G)=, by Lemma 2.1 again, X* is not weakly amenable, contrary to
hypothesis. K

Corollary 4.4 ([14, Corollary 3.3]). Suppose G is abelian, and let X
be an introverted subspace of L�(G) containing AP(G). Then X* weakly
amenable implies that G is finite. In particular, if L1(G)** is weakly
amenable then G is finite.

Corollary 4.5. For G the three dimensional Heisenberg group, the
``ax+b'' group or the motion group, X* cannot be weakly amenable for any
left introverted subspace X of L�(G) containing AP(G).

Set W0(G) to be the space of all f # W(G) such that 0 lies in the weak
closure of [rx f : x # G]. By [10, or 6], W0(G) is a closed translation
invariant subspace of W(G), and in terms of the (unique) invariant mean
mG on W(G), W0(G)=[ f # W(G) : mG( | f | )=0]. In fact W(G)=AP(G)�
W0(G), but once again we need more. Let Q: W(G) � AP(G) be the
natural projection with kernel W0(G). It is well known that W(G)&C(Gw),
where the spectrum Gw is the weakly almost periodic compactification of G.
This latter is a semitopological semigroup with unique minimal ideal which
is a compact group, [6]. If e is the identity of this group then for f # W(G),
Q( f )=re f. In particular, &Q&=1. As in Lemma 3.1 this implies that
Q*: AP(G)* � W(G)* is an isometry.

Lemma 4.6. There is the direct sum decomposition

W(G)*=Q*(AP(G)*)�AP(G)=,

where Q*(AP(G)*) is a closed subalgebra, and AP(G)= is a weak* closed
ideal of W*(G).

Proof. Since Q commutes with right translations, and (n } f )(x)=
(n, lx f ) for n # W(G)*, f # W(G) and x # G, the argument of Lemma 1.3
shows that Q* is a homomorphism.
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For m # W(G)* let m$ be the restriction of m to AP(G). Then for
f # AP(G),

(m&Q*(m$), f ) =m( f )&m$(Qf )=m( f )&m( f )=0.

It follows that W(G)*=Q*(AP(G)*)�AP(G)=.
That AP(G)= is a weak* closed ideal follows from Lemma 1.1. K

Theorem 4.7. Suppose that W(G)* is weakly amenable. Then M(G) and
AP(G)* are weakly amenable.

Proof. Weak amenability of M(G) is a special case of Theorem 4.2. The
result for AP(G)* follows immediately from Lemmas 2.3 and 4.6. K

Now let N be a closed normal subgroup of G, and set

WN=[ f # W(G) : f is constant on cosets of N ]

=[ f # W(G) : lh f=f for h # N ].

Then WN is a left introverted subspace contained in W(G). Let mN be
the unique invariant mean on W(N ). Given f # W(G), the function
f N: x [ mN(lx f ) is constant on the cosets of N, so lies in WN . Set
P: W(G) � WN : f [ f N.

Lemma 4.8. There is the direct sum decomposition

W(G)*=P*((WN)*)�W =
N ,

where W =
N is a weak* closed ideal of W(G)*.

Proof. For x, y # G, f # W(G),

(P(lx f ))( y)=mN(ly(lx f ))=mN(lyx f )

=f N( yx)=(lx( f N))( y)=(lx(Pf ))( y),

so that P commutes with left translations. As in Lemma 3.1. P* is an
isometry, and Lemma 1.5 shows that it is a homomorphism. That W =

N is
an ideal follows from Lemma 1.1. K

Theorem 4.9. Suppose that W(G)* is weakly amenable. Then W(G�N )*
is weakly amenable for any closed, normal subgroup N of G.

Proof. By [7, Lemma 2.3], the map J: WN � W(G�N ) given by
(Jf )(x� )=f (x) is an isometric surjection. By Lemma 1.5, J*: W(G�N )* �
(WN)* is an isometric algebra epimorphism. Now use Lemma 4.8. K
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Corollary 4.10. Suppose that W(G)* is weakly amenable.

(i) If G is connected and Gd is amenable, then G=[e].

(ii) If G is a connected [IN]-group, then G is compact.

Lemma 4.11. Suppose that G is amenable, and let A{[0] be a weak*
closed self-adjoint translation invariant subalgebra of L�(G). Then there
exists a norm one projection P: L�(G) � A which is a left L1(G)-module
homomorphism, and P* is an isometric algebraic isomorphism from A* into
L�(G). Thus there is the direct sum decomposition

L�(G)*=P*(A*)�A=,

where A= is a weak* closed ideal of L�(G)*.

Proof. By Lemma 1.2, A is is left introverted. Since G is amenable,
[39, Theorem 3.3] shows there exists a norm one projection P from L�(G)
to A which commutes with all weak*-weak* continuous operators on
L�(G) which commute with right translation. The map P*: A* � L�(G)*
is certainly a linear isometry; we need to show it is a homomorphism.

Note firstly that for , # L1(G), the map T, on L�(G) defined by
T,( f )=,*f is weak*-weak* continuous and trivially commutes with right
translations. Thus P commutes with such T, , and so P* is a homomor-
phism by Lemma 1.3.

That A= is a weak* closed ideal follows from Lemma 1.1. K

Lemma 4.12. Let G be amenable, and suppose that L1(G)** is weakly
amenable. Then for any weak* closed, self-adjoint, translation invariant
subalgebra A of L�(G), the algebra A* is weakly amenable.

Proof. Immediate from Lemmas 4.11 and 2.3. K

Theorem 4.13. Let G be amenable, N a closed normal subgroup of G.
Then L1(G)** weakly amenable implies the same for L1(G�N )**.

Proof. Define a map T: C00(G) � C00(G�N ) by

(Tf )(x� )=|
N

f (xh) dh. (4.1)

This map is in fact surjective, and extends to a continuous algebraic
epimorphism of L1(G) onto L1(G�N ), [50]. By scaling of Haar measures,
we may assume that the Weil formula holds:

|
G�N \|N

f (xh) dh+ dx� =|
G

f (x) dx ( f # L1(G)).
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Define

A=[ f # L�(G) : lx f=f for all x # N ].

Then A is a weak* closed, self-adjoint, translation invariant subalgebra A
of L�(G). By Lemma 4.12 it suffices to show that L1(G�N )** and A* are
isomorphic as Banach algebras; we will show that T** is the desired
isomorphism.

For any f $ # CB(G�N ), the function f (x)=f $(x� ) lies in A. Taking
, # C00(G), we have

(T*f $, ,)=( f $, T,)=|
G�N

f $(x� ) |
N

,(xh) dh dx�

=|
G�N

|
N

f (xh) ,(xh) dh dx�

=|
G

f (x) ,(x) dx=( f, ,) ,

showing that T*( f $)=f.
It is clear that &T*&�1. For f $ # L�(G�N ) and =>0, take ,$ # C00(G�N )

such that &,$&1�1, and ( f $, ,$) �& f $&&=. The proof ([50]) of the sur-
jectivity of T : C00(G) � C00(G�N ) shows that there is , # C00(G) such that
&,&1=&,$&1 and T(,)=,$. Thus

& f $&�|(T*f $, ,) |=|( f $, T,)=|( f $, ,$) |�& f $&&=.

It follows that T* is an isometry on CB(G�N ).
Now the range of T*, being norm closed, is also weak* closed. Since the

range contains CB(G) & A which is weak* dense by [39, Lemma 2.1], it
must thus be all of A. So we have that T* is a linear isometry of L�(G�N )
onto A. Thus T** is a linear isometry of L�(G�N )* onto A*.

Finally, T** is a homomorphism since T is a homomorphism [8,
Theorem 6.1]. K

We remark that any weak* closed, self-adjoint, translation invariant sub-
algebra A of L�(G) is isomorphic to L�(G�N ) for some closed normal
subgroup N of G, [46]. However, to ensure the desired algebraic
isomorphism of the duals we need to be more explicit.

As indicated earlier, the following related results are implicit in [19].

Proposition 4.14. (i) Suppose that L1(G)** is weakly amenable. Then
LUC(G)* is weakly amenable.
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(ii) Suppose that LUC(G)* is weakly amenable. Then M(G) is weakly
amenable.

Proof. (i) follows from Lemma 2.3 and the decomposition

L1(G)**=EL1(G)**� (I&E)L1(G)**,

where E is a right identity of L1(G)** with E�0, &E&=1. The
isomorphism EL1(G)**&LUC(G)* is shown in [17].

(ii) This time we use the decomposition, [18],

LUC(G)*=M(G)�C0(G)=. K

The conclusions of the following are the same as in Corollary 4.10.

Corollary 4.15. Suppose that L1(G)** is weakly amenable.

(i) If G is connected and Gd is amenable, then G=[e].

(ii) If G is an [IN]-group, then G is compact.

Proof. Theorems 3.3 and 3.4. K

5. WEAK AMENABILITY OF L1(G)

A Banach space X is a left Banach G-module if it is a left G-module such
that

(i) there is k�0 such that &x } ,&�k &,& for all x # G, , # X ;

(ii) for , # X, the map G � X: x [ x } , is continuous.

Similarly for right Banach G-modules, and two-sided Banach G-modules,
where in the latter case we require G_G � X : (x, y) [ x } , } y to be
continuous. Any left G-module can, and will, be taken to be two-sided with
the trivial action , } x=, on the right.

For X a left Banach G-module, define an action of G on X* by

( f } x, ,)=( f, x } ,) ( f # X*, , # X, x # G).

Thus X* becomes a right G-module, however the continuity condition (ii)
need not be satisfied.

Further, for , # X, + # M(G), define

, } +=| x } , d+(x).
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This makes X into a right Banach M(G)-module, and by restriction, a right
Banach L1(G)-module. For the latter we have X } L1(G)=X by the Cohen
factorization theorem. Similarly for X a right or two-sided Banach G-module.
For more details see [31, Section 2].

For any Banach space Y, we will say that a net (m:)/Y* converges
weakt to m # Y* if m: � m weak* and &m:& � &m&. Often this will be used
on a sphere, where of course it coincides with weak* convergence. In
particular, if + # M(G), let & # L�(G)* be a norm preserving extension of +.
By Goldstine's theorem, there is a net (,:)/L1(G) with &,:&�&+&, and
,: � & weak*. By passing to a suitable subnet we may assume that
&,:& � &+&, so that, in fact, ,: � + weakt.

The proof of the next result is similar to [11] and has its roots in [32],
[26], [34]. We avoid explicit use of a bounded approximate identity in
L1(G) because of a later analogue (see Lemma 6.8) where this avenue is
not available.

Lemma 5.1. Suppose that X is a two-sided G-module.

(a) Any derivation D� : M(G) � X* is weakt-weak* continuous, and
hence is an extension of a derivation D: L1(G) � X.

(b) Any derivation D: L1(G) � X* extends to a unique derivation
D� : M(G) � X.

Proof. (a) If D� : M(G) � X* is a derivation, then for any %1 , %2 #
L1(G), + # M(G), and x # X,

(D� +, %1 } x } %2) =(D� (+ } %1), x } %2) &(D%1 , x } %2 } +). (5.1)

Now suppose that +: � + weakt in M(G). Then by [22], &+: V ,&
+ V ,& � 0 for , # L1(G). Further, if + [ +t denotes the natural isometric
involution on M(G), [30, Section 20], +:

t � +t weakt, so that

&, V +:&, V +&=&(+:
t V ,t&+t V ,t)t& � 0.

It follows from (5.1) that

(D� +: , %1 } x } %2) � (D� (+ } %1), x } %2) &(D%1 , x } %2 } +) =(D� +, %1 } x } %2).

Since L1(G) } X } L1(G)=X by the Cohen factorization theorem, we thus
have that D� +: � D� + weak*.

(b) For + # M(G) take a net (,:)/L1(G) with ,: � + weakt. As
above, the net (D,:) converges in the weak* topology.

Define

D� +=w*-lim D,: (+ # M(G), (,:)/L1(G), ,: � + weakt).
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Then D� : M(G) � X* is a well-defined bounded linear operator extending D.
Furthermore, for %1 , %2 # L1(G), + # M(G), (5.1) holds.

To see that D� is a derivation, take + # M(G). As above, take a net (,:)/
L1(G) with ,: � + weakt. Then for ' # M(G), , # L1(G), and x # X,

(D� ('+), , } x) =lim
:

(D� (' } ,:), , } x)

=lim
:

(D� ', (,:,) } x) +lim
:

(D,: , , } x } ')

=(D� ' } +, , } x) +(D� + } ', , } x) ,

using (5.1) and the fact that &,: V ,&+ V ,& � 0. Since L1(G) } X=X the
derivation identity follows.

Suppose 2 is any derivation extending D to M(G), let + # M(G), and
take (,:)/L1(G) with ,: � + weakt. Then ,: � + weakt, whence
2+=lim: D,:=D� + by (a). K

For a W*-algebra A, we write As for the set of self-adjoint elements
of A. For x # A we write x1= 1

2 (x+x*), x2=(1�2i)(x&x*), so that xi # As

and x=x1+ix2 . The set of positive normal functionals on A will be
written A

*
+.

Lemma 5.2. Let G be a locally compact group, A a W*-algebra such that
the predual A

*
is a two-sided G-module such that x } ,�0 and , } x�0

for each x # G and each , # A
*
+. Let D: L1(G) � A be a derivation,

D� : M(G) � A its extension. Define

h,
i (t)=( ($t&1 D� $t) i , ,) (t # G, , # A

*
+, i=1, 2).

Suppose that m is a right invariant function on CBR(G) such that

m( f+c1)=m( f )+c ( f # CBR(G), c # R),

and that there exist f1 , f2 # As such that

(m, h,
i ) =( fi , ,) (, # A

*
+, i=1, 2).

Then D� is inner, indeed, with f=f1+if2 , D� +=+ } f&f } +, (+ # M(G)).

Proof. For i=1, 2 and , # A
*
+, &h,

i &�&D� & &,&. Further, if (t:)/G,
with t: � t, then $t: � $t weakt, so that

|h,
i (t:)&h,

i (t)| = |(D� $t: , , } $t:
&1)&(D� $t , , } $t&1) |

� &D� & &, } $t:
&1&, } $t&1&+|(D� $t:&D� $t , , } $t&1) |

� 0,
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by Lemma 5.1 and the continuity of the action of G on A
*

. This ensures
that h,

i # CBR(G). Now for t, x # G,

$t&1 } D� $t=$t&1 } D� ($tx&1 V $x)

=$x&1 } [($(tx&1)&1 D� ($tx&1)] } $x+$x&1 } D� ($x).

Thus for , # A
*
+, and i=1, 2,

( ($t&1 } D� ($t) i , ,)

=($(tx&1)&1 D� ($tx&1) i , $x } , } $x&1)+($x&1 } D� ($x) i , ,).

Applying m to both sides, as functions of the variable t, we deduce that

(m b hi , ,) =($x } (m b hi) } $x , ,) +($x&1 } D� ($x) i , ,),

where (m b hi , ,)=(m, h,
i ) .

It follows that D� $x=$x } f & f } $x for x # G. But for + # M(G) with +�0,
&+&=1, there is a convex combination of point masses converging weak*,
and hence weakt, to +. Thus by Lemma 5.1 we have D� +=+ } f & f } +. But
then D� is inner, whence so is its restriction to L1(G). K

We remark that any right invariant positive functional on CBR(G)
with norm one satisfies the condition of Lemma 5.2. Also, if the sets
[$t&1 } D� ($t)i : t # G] have a least upper bound in As, then the above condi-
tions are satisfied by taking m(h)=sup[h(t): t # G] (which is right
invariant, but not linear). This is always the case when A is commutative,
since then A&L�(Z, &) for some measure space (Z, &) that is a direct sum
of finite measure spaces, and so As is a complete vector lattice. In par-
ticular, we have the following result.

Theorem 5.3. Let A a commutative W*-algebra such that the predual
A

*
is a two-sided G-module with x } ,�0 and , } x�0 for each x # G and

each , # A
*
+. Then any derivation D: L1(G) � A is inner.

Let Z be a locally compact Hausdorff space, and suppose there is given
a jointly continuous action G_Z � Z for which Z has a quasi-invariant
measure &. For s # G, set &s(E )=&(s&1E) for each Borel set E/Z. Then
each &sR&; let 3s be the Radon�Nikodym derivative: &s=3s &. The space
L1(Z, &) is a non-degenerate left G-module under the actions

, } s=,, (s } ,)(t)=3s(t),(s&1t) (s, t # G, , # L1(Z, &)),

see [24].
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Corollary 5.4. Any derivation D: L1(G) � L�(Z, &) is inner.

Remark. It follows from [40, Theorem 4.1] that if G is not amenable,
then there exists a Banach G-module such that x } s=x for x # X, s # G, and
a bounded derivation D: L1(G) � X* which is not inner.

For a closed subgroup H of G, there always exists an essentially unique
quasi-invariant measure & on the coset space G�H so we have the following.

Corollary 5.5. For any closed subgroup H of G, any derivation
D: L1(G) � L�(G�H ) is inner, regarding L1(G�H ) as a left G-module.

This result should be compared with [33, Corollary 2.2].

6. INTROVERTED SUBSPACES OF VN(G)

Let P(G)/CB(G) be the set of continuous positive definite functions on
G, B(G) its linear span. The space B(G) can be identified with the dual of
the group C*-algebra C*(G), this latter being the completion of L1(G)
under its largest C*-norm. Indeed, we have the duality

(,, f )=|
G

,f (, # B(G), f # L1(G)).

With pointwise multiplication and dual norm, B(G) is a commutative
Banach algebra, the Fourier�Stieltjes algebra of G, [12].

Denote by P\(G) the closure of P(G) & C00(G) in the compact-open
topology, and B\(G) its linear span. Then B\(G) is a closed ideal in B(G),
and is the dual of the reduced C*-algebra C\*(G), this latter being the norm
closure in B(L2(G)) of the convolution operators [\( f ): f # L1(G)], where
\( f )(h)=f V h, h # L2(G). It is well known that B\(G)=B(G) if and only
if G is amenable.

Finally, the Fourier algebra A(G) of G is the closed linear span of
P(G) & C00(G) in B(G). It is a closed ideal of B(G), and is contained in
B\(G). Each , # A(G) has the form ,(x)=(*(x) h, k) where h, k # L2(G)
and * is the left regular representation of G on L2(G). Consequently, any
, # A(G) may be regarded as a _-weak continuous linear functional on
VN(G), the von Neumann algebra generated by the representation *.
Indeed, A(G) is the predual of VN(G).

In the case when G is abelian, with dual group G� , we have isometric
isomorphisms B(G)&M(G� ), A(G)&L1(G� ) and VN(G)&L�(G� ).
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Since A(G) is an ideal in B(G), VN(G) is a commutative B(G)-bimodule
under the action

(, } T, �)=(T, �,) (, # B(G), � # A(G), T # VN(G)).

Left introverted subspaces of VN(G) include

UC(G� )=norm closed linear span of A(G) } VN(G),

W(G� )=[T # VN(G) : A(G) � VN(G) : , [ , } T is weakly compact],

AP(G� )=[T # VN(G) : A(G) � VN(G) : , [ , } T is compact],

C$*(G)=norm closed linear span of [*(x): x # G],

and, of course C\*(G). In general W(G� )$AP(G� )$C$*(G), and W(G� )$

C\*(G). When G is abelian, UC(G� ) is precisely the algebra of bounded
uniformly continuous functions on the dual group G� , W(G� ) is the space of
weakly almost periodic functions on G� , and AP(G� )=C$*(G) is the algebra
of almost periodic functions on G� [23, 36, 38].

Proposition 6.1. Suppose that W(G� )* is weakly amenable. Then for any
AP(G)-invariant, closed subspace X of W(G� )*, X* is weakly amenable. In
particular, AP(G� ) is weakly amenable.

Proof. Note firstly that X* is left introverted by Lemma 1.2. By
Lemma 1.4 or [36, Theorem 5.6], W(G� )* is commutative. The restriction
map 9: W(G� )* � X* is a continuous algebra homomorphism of the
commutative Banach algebra W(G� )* onto X*, so that X* is weakly
amenable. K

Corollary 6.2. Suppose that W(G� )* is weakly amenable. Then for any
closed subspace X of W(G� )*, X* is weakly amenable.

Proof. By Lemma 1.4 or [36, Theorem 5.6], X�W(G� ). K

Proposition 6.3. (a) Suppose that G is amenable and VN(G)* is
weakly amenable. Then UC(G� )* is weakly amenable.

(b) Suppose that UC(G� )* is weakly amenable. Then B\(G) and A(G)
are weakly amenable.

Proof. (a) When G is amenable, A(G) has a bounded approximate
identity (e:) such that &e:&=1 and e:�0, [36]. Take a weak* cluster
point E of (e:). Then E is a right identity for VN(G)*, E�0 and &E&=1.
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Furthermore, UC(G� )* is isometrically isomorphic to E } VN(G)*, see [42].
But then

VN(G)*=E } VN(G)*� (I&E) } VN(G)*,

where (I&E ) } VN(G)* is a closed ideal. Lemma 2.3 shows that
E } VN(G)*, and hence UC(G� )*, is weakly amenable.

(b) By [44, Lemma 5.2],

UC(G� )*=B\(G)�C\(G)=.

Thus Lemma 2.3 shows B\(G) is weakly amenable. Consequently, A(G) is
weakly amenable by [14, Proposition 3.6]. K

Remark. It follows from Lemma 6.5 below that if VN(G)* is weakly
amenable, then UC(G� )*=B\(G) and A(G) is weakly amenable, [13,
Theorem 3].

For any X�VN(G), define

7(X )=[x # G : *(x) # X ],

here *=*G : G � VN(G) is the left regular representation of G. For a non-
empty closed subgroup H of G, define 8H(G)=sp[\G(x): x # H ], and set
VNH(G) to be its ultraweak closure. If X is an invariant weak* closed sub-
algebra of VN(G), then H=7(X ) is a non-empty closed subgroup of G,
and X=VNH(G), [51, Theorems 6 and 8].

Lemma 6.4. Let X be an invariant W*-algebra subalgebra of VN(G)
such that 7(X ) is a normal subgroup of G. Suppose that VN(G)* is weakly
amenable. Then X* is weakly amenable.

Proof. Note that X is left introverted by [36, Lemma 5.1]. Using
[41, Theorem 2] there exists a continuous projection P: VN(G) � X such
that P(, } T )=, } P(T ), (T # VN(G), , # A(G)). In fact P(T ) lies in the
ultraweak closure of RO(T ). Thus &P(T )&�&T&. It follows that
P*: X* � VN(G)* is a linear isometry. An argument analogous to that of
Lemma 1.3 shows that P* is an algebraic homomorphism. Thus

VN(G)*=P*(X*)�X=,

where, by Lemma 1.1, X= is a weak* closed ideal in VN(G)*. So P*(X*),
and consequently X*, is weakly amenable by Lemma 2.3. K

Lemma 6.5. Let X be a left introverted subspace of VN(G) with
C$*(G)�X. If X* weakly amenable, then G is discrete.
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Proof. It has been shown by Forrest, [14, Theorem 3.2], that every
abelian subgroup of G is finite, and, moreover, G must be totally discon-
nected. Let H be a compact open subgroup H of G; such exists in any com-
pact open neighbourhood of the identity in G, [30, Theorem 7.5]. If H is
infinite, then by [53, Theorem 2] H would contain an infinite abelian sub-
group, which is impossible. Thus H is a finite open subgroup of G, so that
G must be discrete. K

The following is an analogue of Theorem 4.2. Note that if G is abelian,
and H is a closed subgroup of G, then VN(H )&L�(H� )&L�(G� �H=),
where H ==[ / # G� : /(h)=1 for all h # H ].

Theorem 6.6. Suppose that VN(G)* is weakly amenable. Then G is discrete,
and furthermore VN(H )* is weakly amenable for any normal subgroup H of G.

Proof. Discreteness is immediate from Lemma 6.5. The restriction map
Q: A(G) � A(H ) is a surjective, norm decreasing homomorphism, [12,
Theorem 2.20, 48]. Thus Q*: VN(H ) � VN(G) is one-to-one.

Then for x # H, Q*(*H(x))=*G(x), so that Q* maps 8H(H )=
sp[\H(x): x # H ] onto 8H(G). Since the range of Q is closed, the range of
Q* is weak* closed, and so we deduce that Q*(VN(H ))$VNH(G).

Now for T # VN(H ) with &T&�1, the Kaplansky density theorem gives
a net (T:)/8H(H ) such that &T:&�1, and T: � T ultraweakly in VN(H ).
Thus Q*(T:) � Q*(T ) ultraweakly in VN(G). But (Q*(T:)) is a bounded
net in 8H(G), and so converges to an element of VNH(G). Thus Q* is a
one-to-one map of VN(H ) onto VNH(G).

It is clear that Q*: 8H(H ) � 8H(G) is a V-algebraic isomorphism. By the
ultraweak continuity of the involution, and separate continuity of multi-
plication, it follows that Q* is a V-algebraic isomorphism of VN(H ) onto
VNH(G). As a conquence Q* is an isometry.

By [8, Theorem 6.1], Q** is a homomorphism, and so we have that
Q** is an isometric algebraic isomorphism of VNH(G)* onto VN(H )*. But
the former algebra is weakly amenable by Lemma 6.3, so that VN(H)* is
weakly amenable. K

Corollary 6.7 (Granirer [23]). Suppose that VN(G)* is amenable,
then G is finite.

Proof. When VN(G)* is amenable, it has a bounded approximate iden-
tity, so that G is compact by [38, Proposition 3.2(b)], and hence finite
since discrete. K

Remark. This is an analogue of a recent result of [19]. The compact-
ness result was in fact noted in [44, Section 4], it also appears in [14,
Theorem 4.4].
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The proof of the next result is analogous to that of Lemma 5.1, so only
a brief outline will be given, indicating the necessary changes.

Lemma 6.8. Let X be a weak*-closed invariant subspace of VN(G).

(a) Any derivation D� : B\(G) � X is weakt-weak* continuous, and
hence an extension of a derivation D: A(G) � X.

(b) Any derivation D: A(G) � X extends to a unique derivation
D� : B\(G) � X.

Proof. (a) Let D� : B\(G) � X is a derivation, and suppose � # B\(G)
and ,: � � weakt in B\(G). Then as in Lemma 5.1, for %1 , %2 # A(G),

(D� �: , %1 %2) � (D(� } %1), %2) &(D%1 , � } %2) =(D� �, %1%2) .

Since the empty set is a set of synthesis, [12], A(G)2 is norm dense in
A(G). The net (D� (�:)) is bounded and so it follows that D� �: � D� � weak*.

(b) For � # B\(G) there is a net (,:)/A(G) and ,: � � weakt.
Thus by [22] we have &,: } ,&� } ,& � 0 for each , # A(G).

Now let � # B\(G), and take (,:)/A(G) with ,: � � weakt. The same
argument as for Lemma 5.1 shows that that (D,:) converges in the
_(VN(G), A(G)2)-topology, and hence, as above, (D,:) converges weak* in
VN(G). The rest of the proof follows Lemma 5.1. K

For H a closed subgroup of G, B(G) acts on A(H ) by � } ,=�|H ,,
(� # B(G), , # A(G)), and &� } ,&�&�|H& &,&�&�& &,& by [12, Theo-
rem 2.20]. Hence we may define an action of B(G) on VN(H ) by

(T } �, ,)=(T, � } ,)=(T, �|H,) ,

where � # B(G), , # A(G), T # VN(H ).

Theorem 6.9. Let H be a closed subgroup of G.

(a) Any derivation D� : B\(G) � VN(H ) is weakt-weak* continuous,
and hence is an extension of a derivation D: A(G) � VN(H).

(b) Any derivation D: A(G) � VN(H ) extends uniquely to a derivation
D� : B\(G) � VN(H ).

(c) Suppose A(G) is weakly amenable. Then any derivation
D� : B\(G) � VN(H ) is necessarily zero.

Proof. Let Q: A(G) � A(H) denote the restriction map. As in the proof
of Theorem 6.4, Q* is a V-isomorphism of the von Neumann algebras
VN(H ) and VNH(G). Since VNH(G) is an invariant weak* closed sub-
algebra of VN(G) and Q*(� } T )=� } Q*(T ) for any � # B\(G), T # VN(H ),
(a) and (b) follow from Lemma 6.4. Finally, (c) follows from (a). K
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7. INTROVERTED SUBSPACES OF Ap(G)*

In this section we will indicate how some of the results of Section 6 can
be extended to left introverted subspaces of PMp(G)=Ap(G)*, 1< p<�.
We first need a little additional notation.

Take 1<p<�, and x # G. The operator lx : Lp(G) � Lp(G) is defined in
the usual way. For f # L1(G), the operator *( f ): Lp(G) � Lp(G) is defined
by *( f ) h=f V h, h # Lp(G). The Figa�Talamanca�Herz algebra Ap(G) is
the space of functions f : G � C which can be represented (non-uniquely)

f= :
�

n=1

vn V u~ n ,

where (un)/Lp(G), (vn)/Lq(G), 1�p+1�q=1, and � &un&p &vn&q<�.
The norm of f is defined as

& f &=inf :
n

&un&p &vn&q ,

the infimum taken over all possible representations of f. It is well known
that Ap(G) is a subspace of C0(G), and equipped with the above norm and
pointwise multiplication is a regular tauberian commutative Banach
algebra with spectrum G. The Fourier algebra A(G) is just A2(G), [29].

The weak operator closure of L1(G) in B(Lp(G)) will be denoted by
PMp(G). Then PMp(G)=Ap(G)*, in particular, PM2(G)=VN(G).

Let Bp(G) be the multiplier algebra of Ap(G), that is, the continuous
functions v on G such that v, # Ap(G) for all , # Ap(G). Define a norm on
Bp(G) by

&v&=sup[&v,&Ap(G) : &,&Ap(G)�1].

The multipliers act on PMp(G) in the obvious way:

(, } T, �)=(T, ,�) (, # Bp(G), � # Ap(G)).

Set

UCp(G� )=norm closed linear span of Ap(G) } PMp(G),

Wp(G� )=[T # PMp(G) : , [ , } T is weakly compact],

APp(G� )=[T # PMp(G) : , [ , } T is compact].

See [21].
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Lemma 7.1. The spaces, APp(G� ), Wp(G� ), and UCp(G� ) are left intro-
verted subspaces of PMp(G).

Proof. Lemma 1.2 shows that APp(G� ) and Wp(G� ) are introverted. For
UCp(G� ), let m # UCp(G� )*, and take , # Ap(G), S # PMp(G). Then for
T=, } S, m } T=, } (m } S) # UCp(G� ). More generally, if T # UCp(G� ) take
(Tn)/spanAp(G) } UCp(G� ) with &Tn&T& � 0. Then &m } Tn&m } T&�
&m& &Tn&T& � 0, whence m } T # UCp(G� ). K

Remark. It follows from Lemmas 1.2 and 1.4 that Proposition 6.1 and
Corollary 6.2 remain valid when W(G)*, A(G) and AP(G� ) are replaced by
Wp(G), Ap(G) and APp(G� ), 1< p<�, respectively.

Proposition 7.2. Let S/Bp(G) (1< p<�) be a norm bounded semi-
group, and set

FS=[ f # PMp(G) : , } f = f for all , # S ].

Then FS is left introverted. Furthermore, if PMp(G)* is weakly amenable,
then F*S is weakly amenable.

Proof. Note that FS is clearly Ap(G)-invariant and weak* closed in
PMp(G)*, so by Lemma 1.2(a) FS is left introverted. By [20, Theorem 6]
there is a linear projection P: PMp(G) � FS such that P(, } f )=, } P( f ) for
, # Ap(G). Thus Lemma 1.3 shows that P*: F*S � PMp(G)* is an algebra
homomorphism. But P* is one-to-one, and so is an algebraic isomorphism
of F*S onto P*(F*S). This latter is closed since FS=P(PMp(G)) is closed,
and we see that P* is a topological isomorphism. Thus

PMp(G)*=P*(F*S)�F =
S ,

where F =
S is a weak* closed ideal by Lemma 1.1. Thus P*(F*S), and hence

F*S is weakly amenable by Lemma 2.3. K

In the case p=2, let H be a closed subgroup of G, and set

PH=[, # P(G) : ,(x)=1 for all x # H ].

Then &,&=,(e)=1 for , # PH , so that PH is certainly a bounded semi-
group in Bp(G). Define

F(H )=[T # VN(G) : , } T=T for all , # PH ].

Corollary 7.3. Suppose that VN(G)* is weakly amenable. Then for
any subgroup H of G, F(H ) is weakly amenable. K
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Corollary 7.3 should be compared with Lemma 6.4. Note that if X is an
invariant W*-algebra of VN(G) such that 7(X )=H is a normal subgroup
of G, then X=F(H ), see [41, Lemma 6].

8. CONCLUDING REMARKS

It should be noted that our inheritance results in Sections 3, 4, 6 and 7
which make use of Lemma 2.3 all remain valid when weak amenability is
replaced by amenability.

We close with three open problems; the latter two can also be asked for
amenability.

1. If VN(G)* is weakly amenable, must G be finite?

2. If H is an open subgroup of G, does M(G) not weakly amenable
imply M(H ) not weakly amenable? (This may fail for closed subgroups:
Z/R.)

3. Does G compact, M(G) weakly amenable, imply G finite?
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