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Abstract

We announce misère-play solutions to several previously-unsolved combinatorial games. The solutions
are described in terms of misère quotients—commutative monoids that encode the additive structure of
specific misère-play games. We also introduce several advances in the structure theory of misère quotients,
including a connection between the combinatorial structure of normal and misère play.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Combinatorial game; Impartial game; Misere game; Misere play; Misere quotient; Commutative monoid

1. Introduction

In 1935, T.R. Dawson, the prolific composer of fairy chess problems, invented a little game
now known as Dawson’s Chess [8]. The game is played on a 3 ×n chessboard, with equal facing
rows of black and white pawns. The 3 × 14 starting position is shown in Fig. 1. The pieces move
and capture as ordinary chess pawns, and captures, if available, are mandatory. The mandatory-
capture rule ensures that each pawn will advance at most one rank before being captured or
blocked by an opposing pawn. Thus the players will eventually run out of moves, and whoever
makes the last move loses.

Dawson invested considerable effort in finding a perfect strategy (on arbitrarily large boards),
but he was hampered by his unfortunate choice of winning condition. Had he asserted, instead,
that whoever makes the last move wins, he might have solved the game. Instead, the problem has
remained open for over 70 years.
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Fig. 1. The starting position in 3 × 14 Dawson’s Chess.

This is no accident: combinatorial games with misère play—in which the last player to move
loses—tend to be vastly more complicated than their normal-play (last-player-winning) counter-
parts. Many authors have attempted to solve Dawson’s Chess, and a variety of related misère-play
games, only to be met with fierce resistance.

In this paper, we present strategies for several previously-unsolved misère-play games. The
solutions were obtained using a combination of new theoretical advances and powerful com-
putational techniques. These advances also shed light on the question of just why misère play
is so much harder than normal play. Although Dawson’s Chess remains open, we have pushed
the analysis further than ever before; and there is significant hope that our techniques can be
improved to obtain a full solution.

1.1. Impartial combinatorial games

A combinatorial game is impartial if both players have exactly the same moves available at
all times.1 A complete theory of normal-play impartial games was convincingly developed in the
1930s, independently by R.P. Sprague and P.M. Grundy [28,29]. They showed that every position
in every impartial game is equivalent (in normal play) to a single-heap position in the game Nim.

In the 1956 issue of the Proceedings of the Cambridge Philosophical Society, there appeared
two papers, back-to-back, that highlighted the sharp differences between normal and misère play.
The first was a seminal article by Richard K. Guy and Cedric A.B. Smith, The G-Values of
Various Games [16], in which the authors introduced a broad class of impartial games known
as octal games. Guy and Smith applied the Sprague–Grundy theory to obtain complete normal-
play solutions to dozens of such games, including Dawson’s Chess.2 Their analysis was such an
enormous success that it left little to be discovered about octal games in normal play.

The second article was by Grundy and Smith [14], and concerned impartial games with misère
play. In contrast to the Guy–Smith paper, it has a somewhat dispiriting introduction:

Various authors have discussed the ‘disjunctive compound’ of games with the last player winning
(Grundy [13]; Guy and Smith [16]; Smith [27]). We attempt here to analyze the disjunctive compound
with the last player losing, though unfortunately with less complete success . . . .

At the source of the “less complete success” was the apparent lack of a natural analogue of the
Sprague–Grundy theory in misère play—in particular, the almost negligible canonical simplifica-
tion of most misère-play impartial game trees. Grundy and Smith speculated that improvements
might be lurking, but their efforts to produce additional simplication rules were unsuccessful.

1 Although Dawson’s Chess appears to distinguish between Black and White, the reader might wish to verify that this
is illusory: the mandatory-capture rule guarantees that their moves are, in fact, equivalent.

2 In fact, in 1947 Guy succeeded Dawson as endgames editor of the British Chess Magazine, and he credits Dawson’s
Chess as a motivating influence: “It may be of historical interest to note that Dawson showed the problem to me around
1947. Fortunately, I forgot that Dawson proposed it as a losing game, was able to analyze the normal-play version and
rediscover the Sprague–Grundy theory.” [15]
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Finally, in 1976 Conway proved through an intricate argument [5, Theorem 77] that no such
improvements exist. Thirty years later, he offered the following remarks.

The result I am most proud of in misère impartial combinatorial games is that the Grundy and Smith
reduction rules are in fact the only ones available in general in the global semigroup of all misère games.
. . . Grundy quite specifically did not believe that this would be the case. [6]

Conway’s result shows that the complications observed by Grundy and Smith are intrinsic.
Yet for many misère games, including many octal games, there is a path forward. The Grundy–
Smith equivalence can be localized to the set of all positions that arise in the play of a particular
game. This associates to every game Γ a certain commutative monoid Q, the misère quotient
of Γ . Together with a small amount of additional information, one can recover from Q a per-
fect winning strategy for Γ . The monoid Q therefore serves as a local misère analogue of the
Sprague–Grundy theory.

The main ideas behind the quotient construction are described in [17,18], and we will review
them in the next section; but they only set the stage for the goals of this paper:

1. To record what is been discovered about the misère play of particular games, in the spirit of
Guy and Smith;

2. To develop a structure theory for misère quotients; and
3. To identify new problems and areas of interest in the structure of misère play.

Henceforth, we will assume that the reader is familiar with the classical Sprague–Grundy
theory. To a lesser extent, we will also assume familiarity with the canonical theory of misère
games. See Winning Ways [3, Chapters 4 and 13] for an outstanding introduction to both topics.
Readers looking for a gentle introduction to misère quotients may consult the unpublished lecture
notes [25], which include most of the necessary background.

Section 2 of this paper is an informal exposition of the misère quotient construction. In Sec-
tions 3 and 4, we formalize the construction and develop a rudimentary structure theory. Section 5
dives a bit more deeply into the general structure of misère quotients, and in Section 6 we discuss
a connection between the combinatorial structure of normal and misère play.

Finally, Appendix A summarizes the solutions to various octal games, obtained using the
techniques of this paper. Several interesting counterexamples are also presented there. A sup-
plementary appendix, available online on the arXiv [20], contains further details regarding these
solutions as well as descriptions of the algorithms used to calculate them.

2. Misère quotients

Let G be an impartial game. We denote by o+(G) the normal-play outcome of G. Thus
o+(G) = P if second player (the previous player) can force a win, assuming normal play; oth-
erwise, o+(G) = N , indicating that first player (the next player) can force a win. Likewise,
we denote by o−(G) the misère-play outcome of G. We say that G is a normal P-position
if o+(G) = P , etc.

Now let G and H be impartial games. We define

G =+ H if o+(G + X) = o+(H + X), for every impartial game X,

G =− H if o−(G + X) = o−(H + X), for every impartial game X.
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It is customary to write simply G = H instead of G =− H when we are firmly in the context of
misère games.

A major goal of combinatorial game theory is to understand the structure of the equivalence
classes of games modulo equality. As mentioned in the introduction, Sprague and Grundy com-
pleted this program convincingly for normal play.

Fact 2.1 (Sprague–Grundy Theorem). Let G be any impartial game. Then for some Nim-heap
∗n, we have G =+ ∗n.

The Sprague–Grundy Theorem yields a remarkably simple structure for the normal-play
equivalence classes of impartial games. In misère play, however, the situation is vastly more
complex. For example, consider just those impartial games born by day 6. In normal play, there
are precisely seven of them, up to equivalence: 0,∗,∗2, . . . ,∗6. By contrast, Conway has shown
that in misère play there are more than 24171779 [5].

The solution to this problem is to localize the definition of equality. Let A be some fixed set
of games, closed under addition, and suppose that whenever G ∈ A , then every option of G is
also in A . (Typically, A will be the set of all positions that arise in some fixed game Γ , such as
Dawson’s Chess.) Then define, for all G,H ∈ A ,

G ≡A H if o−(G + X) = o−(H + X), for every X ∈ A .

It is easily seen that ≡A is an equivalence relation. It is furthermore a congruence: if G ≡A H

and K ∈ A , then since A is closed under sums, we have G + K ≡A H + K . Consequently,
addition modulo ≡A defines a monoid Q:

Q= A / ≡A .

Moreover, if G ≡A H , then necessarily o−(G) = o−(H) (taking X = 0 in the definition of
equivalence). Therefore each x ∈ Q has a well-defined outcome, and we can put

P = {[G]≡A : G ∈ A , o−(G) = P
}
.

The structure (Q,P) is the misère quotient of A , and we denote it by Q(A ). We will refer to P
as the P-portion of Q(A ).

As we will see, the misère quotient of A is often finite, even when A is infinite. In such
cases, our reduction makes the theory tractable, as follows. Let Φ : A → Q be the quotient
map, defined by Φ(G) = [G]≡A . Suppose we can identify a set of generators H ⊂ A , together
with the images Φ(H) ∈ Q of each generator H ∈ H . (For example, A might be the set of all
Dawson’s Chess positions, and H the set of Dawson’s Chess positions consisting of a single
contiguous row of pawns.) Given a position G ∈ A , we can write G as a sum of generators,
G = H1 + H2 + · · · + Hk , and compute the images x1 = Φ(H1), x2 = Φ(H2), . . . , xk = Φ(Hk).
Then we simply check whether

x1 · x2 · · · · · xk ∈P,

and this determines o−(G). The problem of finding the outcome of the (possibly quite compli-
cated) sum G is therefore reduced to a small number of operations on the finite multiplication
table Q.

In this paper, we are principally concerned with octal games [3,16], in which the positions
are sums of heaps of tokens. If Γ is an octal game, we will usually denote by Hn a Γ -heap of
size n. We denote by A the set of all positions of Γ (the “heap algebra”) and by H the set
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of single-heap positions. When convenient, we will regard A as a free commutative monoid
on the countable generating set H . Finally, it will be useful to write Hn = {H1, . . . ,Hn} and
An = 〈Hn〉, the submonoid of A generated by Hn. We refer to Q(An) as the nth partial quotient
of Γ . For convenience, we will sometimes write Q(Γ ) and Qn(Γ ) in place of Q(A ) and Q(An),
respectively.

To present the solution to Γ , it suffices to specify three things: the monoid Q, the P-port-
ion P , and the quotient map Φ : A → Q. Since Φ is a monoid homomorphism, we need only
specify the values Φ(Hn) for each n. We can use this information to reconstruct perfect play
for Γ , as described above.

In this paper we will describe several such solutions to various octal games. These solutions
were obtained with the help of MisereSolver [24], our software for computing misère quotients,
which is described in detail in the supplement [20]. The one missing ingredient is the Guy–
Smith–Plambeck Periodicity Theorem, which enables one to compute (Q,P,Φ) in terms of
some finite partial quotient Q(An). For the record, we state the theorem here.

Fact 2.2 (Periodicity Theorem [16,17]). Let Γ be an octal game, let d be the index of its
last non-zero code digit, and let A be the free commutative monoid on the set of heaps
H = {H1,H2,H3, . . .}. Let (Q,P) be the misère quotient of A , with quotient map Φ : A → Q.
Suppose that

Φ(Hn+p) = Φ(Hn), for all n such that n0 � n < 2n0 + p + d.

Then

Φ(Hn+p) = Φ(Hn), for all n � n0.

Therefore, if we compute a partial quotient Q(An0+2p+d) that satisfies the hypotheses of the
Periodicity Theorem, then we obtain a complete solution for Γ , with Q(A ) ∼= Q(An0+2p+d).

2.1. Example: misère guiles

Guiles is the octal game 0.15. It was previously unsolved (despite non-trivial effort), but Mis-
ereSolver can nonetheless dispense a complete solution in under one second. A presentation for
the misère quotient (Q,P) is shown in Fig. 2, together with the single-heap values of the quotient
map Φ . The monoid Q has 42 elements; 12 of these are in P .

2.2. The tame quotients

In a sense, the simplest misère quotients are those that arise in Nim. Put T0 = Q(0), and for
each n � 1 define

Tn = Q
(∗2n−1).

Finally, put

T∞ = Q(0,∗,∗2,∗3, . . .),

the quotient of misère Nim.
The quotients Tn are extremely common, and they correlate with an important property of

misère games known as tameness. Roughly speaking, an impartial game is said to be tame if
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1 2 3 4 5 6 7 8 9 10

0+ a a 1 a a b b a b b

10+ a a 1 c c b b d b e

20+ c c f c c b g d h i

30+ ab2 abg f abg abe b3 h d h h

40+ ab2 abe f 2 abg abg b3 h d h h

50+ ab2 abg f 2 abg abg b3 b3 d b3 b3

60+ ab2 abg f 2 abg abg b3 b3 d b3 b3

70+ ab2 ab2 f 2 ab2 ab2 b3 b3 d b3 b3

80+ ab2 ab2 f 2 ab2 ab2 · · ·

Q∼= 〈
a, b, c, d, e, f, g,h, i

∣∣ a2 = 1, b4 = b2, bc = ab3, c2 = b2, b2d = d,

cd = ad, d3 = ad2, b2e = b3, de = bd, be2 = ace, ce2 = abe, e4 = e2,

bf = b3, df = d, ef = ace, cf 2 = cf , f 3 = f 2, b2g = b3, cg = ab3,

dg = bd, eg = be, fg = b3, g2 = bg, bh = bg, ch = ab3, dh = bd,

eh = bg, f h = b3, gh = bg, h2 = b2, bi = bg, ci = ab3, di = bd, ei = be,

f i = b3, gi = bg, hi = b2, i2 = b2〉

P = {
a, b2, bd, d2, ae, ae2, ae3, af, af 2, ag, ah, ai

}

Fig. 2. The misère quotient of Guiles (0.15).

its misère-play strategy can be described in terms of the misère-play strategy of Nim. There are
several ways to formalize the definition; Conway [3,5] uses a modification of Grundy values
known as genus symbols. For the purposes of this paper, we simply define a set of games A to
be tame if its misère quotient is isomorphic to Tn for some n.3 Otherwise, we say that A is wild.

It is worthwhile to write down explicit presentations for the Tn:

T1 ∼= 〈
a

∣∣ a2 = 1
〉
,

T2 ∼= 〈
a, b

∣∣ a2 = 1, b3 = b
〉
,

Tn
∼= 〈

a, b1, b2, . . . , bn−1
∣∣ a2 = 1, b3

1 = b1, b3
2 = b2, . . . , b3

n−1 = bn−1,

b2
1 = b2

2 = b2
3 = · · · = b2

n−1

〉
,

T∞ ∼= 〈
a, b1, b2, . . .

∣∣ a2 = 1, b3
1 = b1, b3

2 = b2, . . . , b2
1 = b2

2 = b2
3 = · · ·〉.

Now T1 ∼= Z2 (as a monoid). For n � 2, the structure of Tn is best described as follows.
Note that b2

1 = b2
2 = · · · = b2

n−1; let z be this value. Then every x ∈ Tn satisfies zx = x, except
for x = 1, a. If we let

Kn = {x ∈ Tn: zx = x},
then Kn is a group with identity z, and we have Tn = Kn ∪ {1, a}. Furthermore, Kn

∼= Zn
2, with

generators za, b1, b2, . . . , bn−1. The remaining two elements {1, a} form a separate copy of Z2.
Therefore |Tn| = 2n + 2.

3 The two definitions are equivalent: A is tame (in the quotient sense) if and only if every G ∈ A is tame (in Conway’s
sense). See [26] for a proof of this fact, and [17,18] for further discussion of the relationship between misère quotients
and genus symbols.

Note also that the definition of “tame” in Winning Ways [3] is somewhat more general than Conway’s original def-
inition [5] (“hereditarily tame”). However, our hereditary closure assumption on A guarantees that the two definitions
coincide for our purposes.
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Likewise, we can define K∞ in the same way, and we have

K∞ ∼=
⊕

N

Z2,

and T∞ = K∞ ∪ {1, a}.
Readers familiar with Conway’s genus theory will recognize 1 and a as the fickle units, and z

and az as the firm units.
T2, in particular, is especially common; for example, it is the quotient of 0.23, 0.31 (“Stalk-

ing”) and 0.52.

2.3. The smallest wild quotient

The smallest wild misère quotient is an eight-element monoid that we denote by R8:

R8 = 〈
a, b, c

∣∣ a2 = 1, b3 = b, bc = ab, c2 = b2〉; P = {
a, b2}.

In Section 4 of this paper, we will prove that T0, T1 and T2 are the only quotients smaller than R8.
It is also possible to show that R8 is the unique misère quotient of order 8 (up to isomorphism),
though this is more difficult; see [26].

Many octal games have misère quotient R8, including 0.75 (Section A.2.3), 0.512, and 4.56.

3. Bipartite monoids

In this section we introduce an algebraic framework for the misère quotient construction.

Definition 3.1. A bipartite monoid is a pair (Q,P), where Q is a monoid and P ⊂ Q is an
identified subset of Q.

For example, let A be a set of impartial games, closed under addition. Let B ⊂ A be the set
of normal-play P-positions in A . Then (A ,B) is a bipartite monoid. If instead we take B to
be the set of misère-play P-positions, we get a different bipartite monoid.

We will be largely concerned with quotients of bipartite monoids. The discussion can be
framed categorically, as follows.

Definition 3.2. Let (Q,P), (Q′,P ′) be bipartite monoids. A homomorphism f : (Q,P) →
(Q′,P ′) is a monoid homomorphism Q→ Q′ such that

x ∈P ⇐⇒ f (x) ∈ P ′

for all x ∈ Q.

Then (Q′,P ′) is a quotient of (Q,P) if there exists a surjective homomorphism (Q,P) →
(Q′,P ′).

Definition 3.3. Let (Q,P) be a bipartite monoid. Two elements x, y ∈ Q are indistinguishable
if, for all z ∈ Q, we have

xz ∈P ⇐⇒ yz ∈ P .
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Our motivation for this definition comes from the game-theoretic interpretation. For example,
let A be the set of all impartial games, and let B consist of all normal P-positions. Then
X,Y ∈ A are indistinguishable if and only if X + Z and Y + Z have the same outcomes, for
all Z. Thus indistinguishability coincides with Grundy equivalence.

Definition 3.4. A bipartite monoid (Q,P) is reduced if its elements are pairwise distinguishable.
We write r.b.m. as shorthand for reduced bipartite monoid.

Every bipartite monoid (Q,P) has a quotient that is reduced, and there is a simple procedure
for constructing this r.b.m. Fix (Q,P), and define, for all x, y ∈Q,

x ρ y ⇐⇒ x and y are indistinguishable.

Now ρ is a congruence: it is an equivalence relation, and if v ρ w and x ρ y, then vx ρ wy.
Thus the equivalence classes mod ρ form a monoid Q′. Moreover, if x ρ y, then x ∈P ⇔ y ∈ P
(taking z = 1 in the definition of indistinguishability). Therefore, the set P ′ = {[x]ρ : x ∈ P} is
well-defined, and it is easily seen that (Q′,P ′) is a quotient of (Q,P). Finally, (Q′,P ′) must
be reduced: if [x]ρ and [y]ρ are indistinguishable in (Q′,P ′), then x and y are indistinguishable
in (Q,P), whereupon [x]ρ = [y]ρ .

Definition 3.5. Let (Q,P) be a bipartite monoid. The reduction of (Q,P) is the r.b.m. (Q′,P ′)
defined by Q′ = Q/ρ, P ′ = {[x]ρ : x ∈P}.

Example. Let A be a set of impartial games, closed under addition, and let B be the set of
normal-play P-positions in A . Let (Q,P) be the reduction of (A ,B).

• If the Grundy values in A are bounded, say {0,1, . . . ,2n − 1}, then by the Sprague–Grundy
Theorem Q ∼= Zn

2.
• If the Grundy values in A are unbounded, then

Q∼=
⊕

N

Z2.

In either case, P = {0}, and if Φ : A → Q is the quotient map, then Φ(X) is the Grundy value
of X (in binary).

Example. Let A be the set of all impartial games, and let B be the set of all misère P-positions.
Then X ρ Y if and only if X =− Y (if and only if X and Y have the same misère canonical form).

We now show that the reduction of (Q,P) is the unique reduced quotient of (Q,P), up to
isomorphism.

Proposition 3.6. Let (Q,P) and (S,R) be bipartite monoids, with reductions (Q′,P ′)
and (S ′,R′), respectively. Suppose that (S,R) is a quotient of (Q,P), i.e., there exists a surjec-
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tive homomorphism f : (Q,P) → (S,R). Then there is an isomorphism i: (Q′,P ′) ∼= (S ′,R′)
making the following diagram commute:

Q
f

Q′

i

S S ′.

Proof. Since f is a surjective homomorphism of bipartite monoids, we have

[x] = [y] iff xz ∈ P ⇔ yz ∈ P for all z ∈ Q
iff f (xz) ∈R ⇔ f (yz) ∈R for all z ∈Q
iff f (x)w ∈ R⇔ f (y)w ∈ R for all w ∈ S
iff

[
f (x)

] = [
f (y)

]
.

Therefore we can define i : Q′ → S ′ by i([x]) = [f (x)], and the conclusions are apparent. �
Corollary 3.7. A r.b.m. has no proper quotients (in the category of bipartite monoids).

4. The structure of misère quotients

Let A be a set of impartial games. We say that A is hereditarily closed if, whenever G ∈ A
and G′ is an option of G, then also G′ ∈ A . When A is both closed under addition and heredi-
tarily closed, we simply say that A is closed. We denote by cl(A ) the closure of an arbitrary set
A (that is, the smallest closed superset of A ).

Definition 4.1. Let A be a closed set of impartial games, and let B be the set of all misère
P-positions in A . Then the misère quotient of A , denoted Q(A ), is the reduction (Q,P)

of (A ,B).

For convenience, we will sometimes write Q(A ) in place of Q(cl(A )), even when A is not
closed. Likewise, if G is a single game, we may write Q(G) in place of Q(cl({G})).

Some aspects of the theory can be generalized to sets that are closed under addition, but are
not hereditarily closed. However, virtually all sets of games that are interesting to us will be
hereditarily closed. For example, if A is the set of positions that arise in some specified heap
game Γ , then A is necessarily closed, since all options are to sums of smaller heaps. Thus there
is not much harm in taking closure to be a basic assumption. Furthermore, giving up closure
would require us to loosen the theory considerably.

Notice, for example, that closure implies that 0 ∈ A . Furthermore, if A is non-trivial, then it
must contain a game of birthday exactly 1. The only such game is ∗, so necessarily ∗ ∈ A . This
gives our first proposition:

Proposition 4.2. Every non-trivial misère quotient contains an element a �= 1 satisfying a2 = 1.

Proof. Let a = Φ(∗). Since ∗ + ∗ = 0, we have ∗ + ∗ ≡A 0; therefore a2 = 1. Furthermore, 0
is an N -position and ∗ is a P-position, so a �= 1. �

Now we rattle off some elementary facts about Φ-values:
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Proposition 4.3. Let (Q,P) = Q(A ) be a non-trivial misère quotient and fix x ∈ Q. Then there
is some y ∈ Q with xy ∈ P .

Proof. If x = 1, then xΦ(∗) = Φ(∗) ∈ P . Otherwise, fix some G ∈ A with x = Φ(G), and
consider G + G. If Φ(G + G) ∈ P , then we can simply put y = x. If Φ(G + G) /∈ P , then
G + G is an N -position. Since x �= 1, we have G �= 0, so there is some G′ with G + G′ a
P-position. But then Φ(G + G′) ∈ P , so we can put y = Φ(G′). �
Corollary 4.4. Let (Q,P) = Q(A ), let Φ : A → Q be the quotient map, and fix G ∈ A . If G′
is an option of G, then Φ(G′) �= Φ(G).

Proof. Since G has an option, A must be non-trivial, so by Proposition 4.3 there is some y ∈Q
with Φ(G)y ∈ P . Fix H with Φ(H) = y, so that G + H is a P-position. Then necessarily
G′ + H is an N -position, so Φ(G′)y /∈P , and y distinguishes Φ(G′) from Φ(G). �

We now establish some interesting results regarding the order of a misère quotient Q. We first
show that, except for the trivial quotient Q(0), every misère quotient has even order.

Theorem 4.5. Let (Q,P) be a misère quotient. If (Q,P) is finite and non-trivial, then |Q| is
even.

Proof. Write (Q,P) = Q(A ) for some closed set of games A , and let Φ : A → Q be the
quotient map. Since A is non-trivial, we have ∗ ∈ A . Put a = Φ(∗), and define f : Q → Q by
f (x) = ax.

Now for every G ∈ A , we know that G+∗ ∈ A . Since G is an option of G+∗, Corollary 4.4
gives Φ(G) �= Φ(G + ∗). But Φ(G + ∗) = aΦ(G), so we conclude that f (x) �= x for all x ∈Q.
Furthermore, since ∗+∗ = 0, we have f (f (x)) = x for all x ∈ Q. Therefore f induces a perfect
pairing of elements of Q. �

Next we show that there is no misère quotient of order 4, and that the quotients of orders 1, 2
and 6 are unique (up to isomorphism).

Lemma 4.6. Let A be a closed set of games, let (Q,P) = Q(A ), and let B ⊂ A be a closed
subset. Then there is a submonoid R of Q such that

Q(B) is the reduction of (R,P ∩R).

Proof. Let Φ : A → Q be the quotient map and put R = {Φ(G): G ∈ B}. Since B is closed,
R is a submonoid of Q. Furthermore, the restriction

Φ � B : B →R

is a surjective homomorphism of bipartite monoids. Therefore the reduction of (R,P ∩ R) is
also a quotient of B. By uniqueness (Proposition 3.6), it must be the misère quotient of B. �
Lemma 4.7. Let A ,B be closed sets of games. Suppose that every G ∈ A is canonically equal
to some H ∈ B, and vice versa. Then Q(A ) ∼= Q(B).
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Proof. Let S be the monoid of canonical equivalence classes of misère games, and let R⊂ S be
the set of canonical P-positions. (Thus (S,R) is the reduction of the universe of misère games.)
By assumption on A and B, the natural homomorphisms A → S and B → S have the same
image. Let Q ⊂ S be this image and let P = Q ∩ R. Let (Q′,P ′) be the reduction of (Q,P).
Then (Q′,P ′) is a quotient of both A and B, so by Proposition 3.6, we have

Q(A ) ∼= (Q′,P ′) ∼= Q(B). �
Lemma 4.8. Let A be a non-empty closed set of games. Then either:

(i) Every G ∈ A satisfies either G = 0 or G = ∗; or
(ii) there exists a G ∈ A with G = ∗2.

Proof. Suppose (i) fails. Then there is some G ∈ A with G �= 0,∗. Choose such G with minimal
birthday. Then every G′ satisfies either G′ = 0 or G′ = ∗. Thus either G = {0}, or G = {∗}, or
G = {0,∗}. But the first two possibilities imply G = ∗ and G = 0, respectively; by assumption
on G, neither is true, so G = {0,∗} = ∗2. �
Theorem 4.9. Let A be a non-empty closed set of games. Then either:

(i) Q(A ) ∼= T0; or
(ii) Q(A ) ∼= T1; or

(iii) there exists a closed subset B ⊂ A such that Q(B) ∼= T2.

Proof.

Case 1. Every G ∈ A satisfies either G = 0 or G = ∗. If A = {0}, then Q(A ) = T0, by def-
inition. Otherwise, A must contain a game of birthday exactly 1; ∗ is the only such game, so
∗ ∈ A . By Lemma 4.7, Q(A ) ∼= Q(∗) = T1.

Case 2. Otherwise, by Lemma 4.8, there is some G ∈ A with G = ∗2. Choose such G with
minimal birthday and let B = cl({G}). By minimality of G, every element of B is equal to some
element of cl({∗,∗2}). By Lemma 4.7, Q(B) ∼= Q(∗,∗2) = T2. �
Corollary 4.10. There is no misère quotient of order 4, and exactly one each of orders 1, 2 and 6
(up to isomorphism).

Proof. Let (Q,P) = Q(A ) be a misère quotient. Consider each possibility in Theorem 4.9.
In case (i), |Q| = 1. In case (ii), |Q| = 2. Finally, in case (iii), there is some B ⊂ A with
Q(B) ∼= T2. By Lemma 4.6, there is some R< Q whose reduction is T2. Therefore

6 = |T2| � |R| � |Q|.
Furthermore, if |Q| = 6, then both inequalities collapse and

T2 ∼= (R,P ∩R) = (Q,P). �
In fact, there is also just one quotient of order 8, but this is harder to establish. See [26] for a

proof.
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5. Transition algebras and the mex function

Let A be a set of games with quotient (Q,P) = Q(A ), and let G be a game with
opts(G) ⊂ A . Consider the set Φ ′′G ⊂ Q defined by

Φ ′′G = {
Φ(G′): G′ is an option of G

}
.

What can we say about the extension Q(A ∪{G})? In normal play, we know that Q(A ∪{G}) ∼=
Q(A ) if and only if Φ ′′G excludes at least one Grundy value in A . Furthermore, in that case
we necessarily have Φ(G) = mex(Φ ′′G).

In this section we investigate analogous questions in misère play: Given just Φ ′′G, can we
determine whether Q(A ∪{G}) ∼= Q(A )? If so, can we determine Φ(G), again given just Φ ′′G?

The answer to both of these questions is yes, but we need more information than is contained
in the quotient Q(A ). The primary goal of this section is to introduce an intermediate structure
T = T (A )—the transition algebra of A —that carries exactly the right information to answer
these questions. As we will see, there exists a partial function F : Pow(Q) → Q, depending only
on T , such that whenever opts(G) ⊂ A :

(i) F(Φ ′′G) is defined iff Q(A ∪ {G}) ∼= Q(A ); and
(ii) when F(Φ ′′G) is defined, then Φ(G) = F(Φ ′′G).

We call F the mex function for T .
Transition algebras appear to be necessary: there exist sets of games A and B, with

Q(A ) ∼= Q(B), whose mex functions are non-isomorphic. Further, T is finite whenever Q is
finite, so transition algebras indeed provide a useful simplification (as compared to working
directly with A ). They have several other applications as well: in attacking the classification
problem4 [26], and in the design of algorithms for computing misère quotients [20].

For the rest of this section, fix a closed set of games A with misère quotient (Q,P) = Q(A )

and quotient map Φ : A → Q. We begin with an auxiliary definition.

Definition 5.1. Let x ∈Q. Then the meximal set of x in Q is given by

Mx = {y ∈Q: there is no z ∈Q such that both xz, yz ∈P}.

Example. Let Q = T2 = 〈a, b | a2 = 1, b3 = b〉, let P = {a, b2}, and let x = b2. Then Mx =
{b, ab, ab2}. Let G = ∗2 + ∗2 and H = ∗2 + ∗2 + ∗ + ∗. We have Φ(G) = Φ(H) = x (and in
fact, G = H canonically). However, Φ ′′G = {b, ab} � Mx , while Φ ′′H = {b, ab, ab2} = Mx .

Meximal sets are motivated by the following lemma.

Lemma 5.2. Let G ∈ A and put x = Φ(G). Then Φ ′′G ⊂ Mx .

Proof. Suppose (for contradiction) that there is some y ∈ Φ ′′G with y /∈ Mx . By definition
of Mx , there must be some z such that both xz, yz ∈ P . Fix G′ ∈ opts(G) and X ∈ A such that
Φ(G′) = y and Φ(X) = z. Then G + X and G′ + X are both P-positions, a contradiction. �

4 That is, the problem of determining the number of non-isomorphic quotients of order n.
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We will soon show a converse: if Φ ′′G = Mx , then necessarily Φ(G) = x. First we introduce
the transition algebra of A .

Definition 5.3. The transition algebra of A is the set of pairs

T (A ) = {(
Φ(G),Φ ′′G

)
: G ∈ A

}
.

We define the map Ψ : A → T (A ) by Ψ (G) = (Φ(G),Φ ′′G).

Remark. Since T ⊂ Q× Pow(Q), we have that |T | � |Q| · 2|Q|. In particular, if Q is finite, then
so is T .

The image Ψ (G) of a game G identifies not just Φ(G), but also the Φ-values of all options
of G. Thus Ψ (G) determines all possible transitions from G to its options, as projected down
to the misère quotient. The following lemma shows that T has a commutative monoid structure
with identity (1,∅).

Lemma 5.4. If (x,E), (y,F) ∈ T , then so is (xy, yE ∪ xF).

Proof. If Ψ (G) = (x,E) and Ψ (H) = (y,F), then Ψ (G + H) = (xy, yE ∪ xF). �
The projection map T →Q given by (x,E) �→ x is a monoid homomorphism, and this makes

T into a bipartite monoid with reduction Q. Further, it is trivially verified that Ψ is a homomor-
phism of bipartite monoids, and therefore (by Proposition 3.6) the following diagram commutes:

A
Ψ

Φ

T (A )

Q(A ).

Transition algebras have several important uses. The first is given by the following lemma,
which establishes the existence of the mex function F and shows that it depends only on T .

Theorem 5.5 (Generalized Mex Rule). Let T = T (A ) and let G be a non-zero game with
opts(G) ⊂ A . The following are equivalent, for x ∈ Q.

(a) Q(A ∪ {G}) ∼= Q(A ) and Φ(G) = x.
(b) The following two conditions are satisfied:

(i) Φ ′′G ⊂ Mx ; and
(ii) for each (y,E) ∈ T and each n � 0 such that xn+1y /∈ P , we have either: xn+1y′ ∈ P

for some y′ ∈ E ; or else xnx′y ∈ P for some x′ ∈ Φ ′′G.

Proof. (a) ⇒ (b): (i) is just Lemma 5.2. For (ii), fix (y,E) ∈ T and n � 0, and suppose
xn+1y /∈ P . Fix Y ∈ A such that Ψ (Y ) = (y,E). Then (n + 1) · G + Y is an N -position, so
either (n + 1) · G + Y ′ is a P-position, or else n · G + G′ + Y is a P-position. But these imply,
in turn, that xn+1Φ(Y ′) ∈P and xnΦ(G′)y ∈P .

(b) ⇒ (a): Fix H ∈ A with Φ(H) = x, and write B = cl(A ∪ {G}). We will show that

o−(G + X) = o−(H + X), for all X ∈ B. (†)
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This implies that G ≡B H , so that Q(B) ∼= Q(A ) and Φ(G) = x.
Assume (for contradiction) that (†) fails, and fix K ∈ B with o−(G + K) �= o−(H + K).

Since B = cl(A ∪ {G}), we can write K = n · G + Y , for some n � 0 and Y ∈ A . Choose such
K with n minimal; and having done so, choose K to minimize the birthday of Y . In particular,
this implies that no option of K witnesses the failure of (†). We now have two cases.

Case 1. G + K is an N -position, but H + K is a P-position. Now G + K ′ cannot be a P-
position, for any option K ′ of K : for then minimality of K would imply that H + K ′ is also
a P-position, contradicting the assumption on H + K . Therefore n = 0 (so that K ∈ A ), and
G′ + K is a P-position for some option G′ of G. We conclude that

Φ(H)Φ(K) = xΦ(K) ∈ P and Φ(G′)Φ(K) ∈P .

Thus Φ(G′) /∈ Mx , contradicting condition (b)(i).

Case 2. G + K is a P-position, but H + K is an N -position. Observe that, by (repeated
application of) the minimality of n, we have

o−(n · G + X) = o−(n · H + X), for all X ∈ A . (‡)

Now H + n · G + Y = H + K is an N -position and H + Y ∈ A , so by (‡) we have that
H + n · H + Y is an N -position. Put (y,E) = Ψ (Y ). By assumption, Φ(H + n · H + Y) =
xn+1y /∈P . To complete the proof, we show that this contradicts condition (b)(ii).

First, if y′ ∈ E , then y′ = Φ(Y ′) for some option Y ′ of Y . But since G + K is a P-position,
we know that G+n ·G+Y ′ is an N -position. By minimality of K , this implies H +n ·G+Y ′
is an N -position, and by (‡), H + n · H + Y ′ is also an N -position. Therefore xn+1y′ /∈ P . So
y′ cannot fulfill condition (b)(ii).

Finally, suppose x′ ∈ Φ ′′G, and write x′ = Φ(G′). Then G′ +n ·G+Y is an N -position. But
G′ +Y ∈ A , so by (‡) we know that G′ +n ·H +Y is also an N -position. Therefore xnx′y /∈ P ,
so x′ cannot fulfill condition (b)(ii). This completes the proof. �
Corollary 5.6 (Mex Interpolation Principle). Let G be a game with opts(G) ⊂ A , and suppose
that

Φ ′′H ⊂ Φ ′′G ⊂ Mx,

for some H ∈ A (H not identically 0) with Φ(H) = x. Then Q(A ∪ {G}) ∼= Q(A ) and
Φ(G) = x.

Proof. It suffices to show that G satisfies conditions (i) and (ii) in the Generalized Mex Rule.
(i) is assumed. Now condition (ii) must hold for H (again by the Generalized Mex Rule); since
Φ ′′H ⊂ Φ ′′G, it must hold for G as well. �
Corollary 5.7. Assume A is non-trivial, and let G be a game with opts(G) ⊂ A and
Φ ′′G = Mx . Then necessarily Q(A ∪ {G}) ∼= Q(A ) and Φ(G) = x.

Proof. Fix H ∈ A with Φ(H) = x. Since A is non-trivial, we may choose an H that is not
identically zero: if x = 1 then we can choose H = ∗ + ∗. By Lemma 5.2, we have Φ ′′H ⊂ Mx .
Now the corollary follows from the Interpolation Principle. �
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{a, b, ab}

{a}

{1, a, ab, b2, ab2}

{1, a} {b2, ab2}

{b, ab, ab2}

{b} {ab} {ab2}

1 b b2

{1, b, ab}

{1}

{1, a, b, b2, ab2}

{1, a, b} {b, b2, ab2}

{b, ab, b2}

{b2}

a ab ab2

Fig. 3. Schematic of the mex function for T (∗2). Each of the six elements of T2 is shown together with its meximal set
and antichain of lower bounds.

The Interpolation Principle yields substantial information about the mex function F for T .
For a fixed x ∈Q, consider the collection

Ξ = F−1(x) = {
E ⊂ Q: E �= ∅ and F(E) = x

}
,

ordered by inclusion. (Note that the clause E �= ∅ only matters when x = 1, since necessarily
F(∅) = 1.) By the Interpolation Principle, we know that Mx ∈ Ξ , and by Lemma 5.2 it serves
as an absolute upper bound for Ξ . Now let Λ be the antichain of minimal elements of Ξ . Again
by the Interpolation Principle, Ξ is completely determined by Λ and Mx : indeed,

Ξ = {E ⊂ Q: L⊂ E ⊂ Mx, for some L ∈ Λ}.
Therefore Ξ has the structure of an upward-closed subset of the complete Boolean lattice on Mx .
As an example, Fig. 3 illustrates the structure of Ξ in T (∗2) for each of the six elements x ∈
T2 = Q(∗2).

It is a remarkable fact that the upper bound Mx depends only on Q. By contrast, the set Λ of
lower bounds might depend on the fine structure of T .

We conclude with a note of caution. The Generalized Mex Rule asserts only that Q(A ∪
{G}) ∼= Q(A ). It need not be the case that T (A ∪{G}) = T (A ). Furthermore, the mex function
F+ for T (A ∪ {G}) need not be the same as the mex function F for T (A ): it is possible that
dom(F+) � dom(F ). However, we can conclude that F = F+ in the special case of interpola-
tion:

Proposition 5.8 (Mex Interpolation Principle, Strong Form). Let G be a game with opts(G) ⊂ A ,
and suppose that

Φ ′′H ⊂ Φ ′′G ⊂ Mx,

for some H ∈ A (H �= 0) with Φ(H) = x. Let F and F+ be the mex functions for T (A ) and
T (A ∪ {G}), respectively. Then F = F+.

Proof. We must show that, for each D ⊂ Q and w ∈Q,

F(D) = w iff F+(D) = w.
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Now by the Generalized Mex Rule, F(D) = w iff D ⊂ Mw and

For each (y,E) ∈ T (A ) and each n � 0 such that wn+1y /∈P ,

either: wn+1y′ ∈ P for some y′ ∈ E ; or else wnw′y ∈ P for some w′ ∈ D.
(†)

Likewise, F+(D) = w iff D ⊂ Mw and

For each (y,E) ∈ T (A ∪ {G}) and each n � 0 such that wn+1y /∈ P ,

either: wn+1y′ ∈ P for some y′ ∈ E ; or else wnw′y ∈ P for some w′ ∈ D.
(‡)

Now T (A ) ⊂ T (A ∪ {G}), so (‡) ⇒ (†). To prove that (†) ⇒ (‡), it suffices to show the
following: whenever (y,E) ∈ T (A ∪ {G}), then there is some E ′ ⊂ E with (y,E ′) ∈ T (A ).
But this is a simple consequence of the assumptions on G: for any Y ∈ A and n � 0, we have
Φ(n ·H +Y) = Φ(n ·G+Y), and furthermore Φ ′′(n ·H +Y) ⊂ Φ ′′(n ·G+Y). This completes
the proof. �

Finally, note that if Q(A ∪ {G}) �= Q(A ), then the content of Q(A ∪ {G}) cannot be
determined on the basis of Φ ′′G alone: it is sensitive to the most minute structural details
of cl(A ∪ {G}).

6. The kernel and normal play

The strategy for misère Nim has been known since Bouton [4], and it is usually formulated as
follows:

Play normal Nim until your move would leave a
position consisting entirely of heaps of size 1. Then

play to leave an odd number of heaps of size 1.

In this section we introduce a suitable generalization of this strategy to a wide class of games.
First we recall some basic facts from commutative semigroup theory. Proofs of these results can
be found in a standard reference such as [12].

Let Q be a monoid and fix x, y ∈ Q. We say that x divides y, and write x | y, if xz = y

for some z ∈ Q. x and y are mutually divisible if x | y and y | x. It is easy to see that mutual
divisibility is a congruence. The congruence class of x is called the mutual divisibility class of x.

An idempotent is an element x ∈ Q such that x2 = x. If x is an idempotent, then its mutual
divisibility class G is a group with identity x. Furthermore, G is maximal among groups contained
in Q.

If Q is finite, then we can enumerate its idempotents z1, z2, . . . , zk . The mutual divisibility
class K of their product z = z1z2 · · · zk is called the kernel of Q. Multiplication by z defines a
surjective homomorphism Q → K, and any surjective homomorphism from Q onto a group G
factors through this map. Thus K is the group of differences obtained by adjoining formal inverses
to Q.

Proposition 6.1. Let (Q,P) = Q(A ) be a finite misère quotient and let K be the kernel of Q.
Then K ∩P is non-empty.
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Proof. Let z be the identity of K. If z ∈ P , then we are done. Otherwise, fix G with Φ(G) = z.
Then Φ(G + G) = z2 = z. Now G + G is an N -position, so some option G + G′ must be a
P-position. But

Φ(G + G′) = zΦ(G′) ∈K. �
Definition 6.2. A finite r.b.m. (Q,P) is said to be regular if |K ∩ P| = 1, and normal if
K ∩P = {z}.

Definition 6.3. The quotient map Φ : A →Q is said to be faithful if

Φ(G) = Φ(H) �⇒ G and H have the same normal-play Grundy value.

If Φ is faithful and (Q,P) is regular (respectively normal), then we say that Φ is faithfully
regular (respectively faithfully normal).

There do exist irregular quotients; see Appendix A for an example. However, they are ex-
tremely rare, and in fact most known quotients are normal (including all known full solutions for
octal games). We are not aware of any example of an unfaithful quotient map. Note that faithful-
ness depends only on the transition algebra T (A ), so it is a slightly more robust property than
appears at first glance.

Theorem 6.4. Let A be a closed set of games with finite regular misère quotient (Q,P) and
faithful quotient map Φ : A → Q. Let K be the kernel of Q and let z be the identity of K. Then
for all G,H ∈ A , we have

zΦ(G) = zΦ(H) ⇐⇒ G and H have the same normal-play Grundy value.

Proof. For the forward direction, suppose zΦ(G) = zΦ(H). Fix Z ∈ A with Φ(Z) = z. Then
Φ(G + Z) = Φ(H + Z). Since Φ is faithful, we know that G + Z and H + Z have the same
Grundy value. Therefore so do G and H .

To complete the proof, we must show that if G,H ∈ A have the same Grundy value, then
zΦ(G) = zΦ(H).

First of all, since Q is regular, we know that K ∩P contains a unique element y. Fix Y with
Φ(Y) = y and let r be the Grundy value of Y . Suppose G ∈ A is any game of Grundy value r ;
we will show that zΦ(G) = y.

Fix Z ∈ A with Φ(Z) = z, and put X = G + Z + Z. Since z is an idempotent, we have
Φ(X) = zΦ(G). Furthermore, every option of X has the form G′ + Z + Z or G + Z′ + Z, so
Φ ′′X ⊂ K. But since X has Grundy value r , none of its options can have Grundy value r , so
y /∈ Φ ′′X. Since y is the unique element of K ∩P , we infer that (Φ ′′X) ∩P = ∅, whence X is a
P-position. Thus Φ(X) = zΦ(G) ∈ P , and by uniqueness of y we conclude that zΦ(G) = y.

Now fix any G,H ∈ A and suppose G and H have the same Grundy value. Then G+G+Y

and G + H + Y both have Grundy value r , so by the above argument, zΦ(G + G + Y) =
zΦ(G + H + Y) = y. Put x = Φ(G + Y); then

zΦ(G + G + Y) = zxΦ(G) and zΦ(G + H + Y) = zxΦ(H).

Since K is a group, there is some w with wx = z, and it follows that zΦ(G) = zΦ(H), as
needed. �
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Theorem 6.4 yields a one-to-one correspondence between elements of K and normal-play
Grundy values of games in A . It follows that the normal-play structure of A is exactly captured
by the kernel K.

For example, in Section 2 we described the structure of the partial quotients for Nim: if n � 2,
then Q(∗2n−1) = {1, a} ∪ Kn, where Kn

∼= Zn
2 . Now if G ∈ cl(∗2n−1), then Φ(G) ∈ Kn if and

only if G contains at least one Nim-heap of size � 2. Otherwise, Φ(G) = 1 or a. Thus positions
with at least one heap of size � 2 map down to normal play, while positions with all heaps of size
� 1 require more delicate consideration; and we recover Bouton’s strategy for misère Nim. This
points the way to the promised generalization, which works for all faithfully normal games Γ :

Play normal Γ until your move would leave a position outside of K.
Then pay attention to the fine structure of the misère quotient.

The difference, of course, is that for misère Nim this “fine structure” is painfully simple, while
for arbitrary Γ it can be quite complicated indeed.

When Γ is faithfully regular but abnormal, Grundy values still carry sufficient information
to play optimally inside K, but the actual winning moves are different than in normal play. For
example, if K ∩ P = {az}, where a = Φ(∗), then the winning move inside K is to any position
of Grundy value 1.

Regularity also has strong consequences for the structure of (Q,P).

Lemma 6.5. Let (Q,P) = Q(A ) be a finite regular misère quotient with faithful quotient map
Φ : A → Q. Let K be the kernel of Q and let z be the identity of K.

(a) If x ∈Q is an idempotent and Φ(G) = x, then G has Grundy value 0.
(b) K ∼= Zn

2 , for some n.
(c) Suppose A is the set of positions in some heap game Γ . If Γ is misère-play periodic, then

it is normal-play periodic, and its normal period divides its misère period.

Proof. (a) G + G necessarily has Grundy value 0. But Φ(G + G) = x2 = x, so

zΦ(G) = zx = zΦ(G + G),

whence by Theorem 6.4 G has Grundy value 0.
(b) Let x ∈ K and fix any G with Φ(G) = x. Then G + G has Grundy value 0, so by The-

orem 6.4 zΦ(0) = zΦ(G + G). Therefore z = zx2 = x2. Since x was arbitrary, this shows that
every element of K has order 2.

(c) Suppose that Γ is misère-play periodic. Then for some n0,p, we have Φ(Hn+p) = Φ(Hn)

for all n � n0. Therefore zΦ(Hn+p) = zΦ(Hn) for all n � n0. By Theorem 6.4, Hn+p and Hn

have the same Grundy value, for all n � n0, and the conclusion follows. �
Acknowledgments

The authors wish to thank Dan Hoey for many helpful comments and suggestions, and the
referees for their extremely careful and insightful reading of the manuscript.



T.E. Plambeck, A.N. Siegel / Journal of Combinatorial Theory, Series A 115 (2008) 593–622 611
Appendix A. The Φ-values of various games

We summarize extensive computations obtained using MisereSolver [24], an extension to the
CGSuite computer algebra system [23]. The algorithms that drive MisereSolver are described in
the supplement [20].

Many of the games presented here were previously unsolved. Several others had been solved
using other methods, but the misère quotient techniques yield cleaner solutions with much less
effort. We have noted in the text each case in which we are aware of a prior solution.

A.1. General comments

A.1.1. Many details omitted
The quotients presented in this paper represent relatively simple examples. The most compli-

cated quotients we have computed involve thousands of elements, and to write out their minimal
presentations would require several largely unenlightening pages. Such presentations are avail-
able on our website [19], and they are easily reproducible with MisereSolver [24], so we have
omitted them for most quotients with more than 50 elements.

A.1.2. Notation for misère canonical forms
Several of the most interesting examples have the form Q(G), for some specific game G in

misère canonical form. To describe such games, we use a slightly modified form of the notation
introduced by Conway [5, Chapter 12]. The notation ∗n, where n is a single-digit number, rep-
resents (as always) a Nim-heap of size n. If G, H , K are misère canonical forms, stripped of
their preceding ∗’s, then ∗GHK is the game whose options are to ∗G, ∗H and ∗K . Parentheses
are used to denote sub-options: ∗(GH)K has options to ∗GH and ∗K . Finally, ∗G# denotes the
game whose only option is to ∗G.

For example, ∗2#320 has four options: 0, ∗2, ∗3, and the game ∗2# whose only option is to ∗2.

A.1.3. Partial quotients and infinite quotients
In Section 2, we defined the nth partial quotient Qn(Γ ), obtained by requiring all heaps

to have size at most n. It appears that many octal games have some infinite partial quotients.
Currently, MisereSolver is limited to computations on finite misère quotients; when Qn(Γ ) is
infinite, the software goes into an infinite loop at heap size n, analyzing successively larger finite
approximations to Qn.

Unfortunately, it is often difficult to prove by hand that a quotient is infinite. This means that
in most cases, we can only speculate whether a quotient is truly infinite, or whether we just have
not run MisereSolver for long enough. (However, see Section A.7 for a proof that Q5(0.31011)

is infinite.)
Figure 6 gives the largest known partial quotient for every unsolved two-digit octal game. In

each case, we are reasonably sure that the next partial quotient is infinite, but a solution to the
following problem would give us more confidence.

Open Problem. Specify an algorithm to determine whether a given quotient Q(A ) is infinite.

A classical theorem of Rédei [12,21] implies that every finitely generated commutative
monoid is finitely presented. Since each partial quotient Qn(Γ ) is necessarily finitely gener-
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Code pd ppd |Q| Comments Solved by

0.15 10 66 42 Guiles, §A.2.1
0.26̇0̄ † ∞ Allemang [2]
0.340̇ 8 7 12 §A.2.4; Q ∼= S12 Flanigan [3]
0.44̈0̄ 24 143 40 Duplicate 0.77 Sibert [7]
0.530̇ 9 21 16 §A.2.3 Allemang [2]
0.570̇ † ∞ Duplicate 4.7 Allemang [2]
0.710̇ 6 3 36 §A.2.3 Flanigan [3]
0.720̄ 4 16 24 §A.2.3 Allemang [2]
0.750̄ 2 8 8 §A.2.3; Q ∼=R8 Allemang [2]
0.770̇ 12 71 40 Kayles, §A.2.2 Sibert [7]
4.4̈0̄ 12 71 40 Cousins of 0.77 Sibert [7]
4.70̇ † ∞ Knots, §A.2.3 Allemang [2]
0.044̈ 24 142 40 Duplicate 0.77 Sibert [7]
0.074̄ 24 142 40 Duplicate 0.77 Sibert [7]
0.115 14 92 42 7

5 -plicate 0.15
0.123 5 5 20 Plambeck [17]
0.144 10 12 30
0.152 48 25 34
0.153 14 32 16
0.157 † ∞ Triplicate 4.7 Allemang [2]
0.24̇1̈ 10 4 36 Cousins of 0.317
0.315̈ 10 4 36
0.351 8 4 22 Plambeck
0.512̇ 6 16 8 Q ∼=R8
0.64̄4̄ 442 3255 172
0.712̇ 6 3 14 Q ∼=R14
0.716̇ 2 22 14 Q ∼=R14
4.56̇ 4 11 8 Q ∼=R8
4.74̇ 2 8 8 Q ∼=R8

ḋ means “d or d + 1”; d̈ means “d or d + 2”; d means “d , d + 1, d + 2 or d + 3”

† Algebraic periodic; see Section A.2.3 and the supplement [20].

Fig. 4. Wild two- and three-digit octal games with known misère quotients.

ated, there is hope that our techniques can be extended to obtain solutions for many octal games
with infinite partial quotients.

Open Problem. Specify an algorithm to compute a presentation for the (possibly infinite) quo-
tient Q(A ), whenever A is finitely generated.

A.2. Wild octal games with known solutions

We now summarize the wild two- and three-digit octal games whose misère-play solutions
are known. The results are tabulated in Fig. 4. Each row of the table shows a game code (or a
schema of equivalent codes), together with the period, preperiod, and quotient order of the misère
solution. We have also included an appropriate attribution in each case where we are aware of
a prior solution.

Comments and historical notes on some individual games follow.
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A.2.1. Guiles
The game 0.15 is named Guiles in honor of Richard Guy (the name is short for “Guy’s

Kayles”). Its misère quotient was discussed in Section 2; it has 42 elements, with a P-portion
of size 12. See Fig. 2, and also [18].

A.2.2. Kayles
William L. Sibert tells the interesting story of his discovery of the complete analysis of misère

Kayles (0.77) in [22]. In [7], Sibert’s original solution is reformulated and simplified consider-
ably. The misère quotient of Kayles, a monoid with 40 elements, is discussed at length in [17,
Section 11.5] and [18]. For completeness, we reproduce the solution in the supplement [20].
Other octals with misère quotient isomorphic to Kayles include 0.074–0.077 and 0.440–0.443
(duplicate Kayles), as well as 0.044 and 0.046 (triplicate Kayles).

A.2.3. Allemang’s games
Allemang gives solutions for the wild octals 0.26, 0.53, 0.72, 0.75 and 4.7 in terms of his

generalized genus theory [1,2]. 0.53 and 0.72 have quotients of orders 16 and 24, respectively.
Q(0.75) ∼= R8; see Section 2.3. 0.26 and 4.7 are algebraic periodic in the vague sense described
in Section A.5; see Figs. 8 and 9 for their presentations, and [20] for correctness proofs.

Allemang’s solution to 0.26 is slightly flawed5; we give a corrected analysis in [20]. His solu-
tion to 0.54 is also incorrect, but this appears somewhat more difficult to repair. See Section A.3.4
for further discussion of 0.54.

4.7 has several duplicates and triplicates; these are listed in Fig. 4. In addition, the games
0.516̇ and 0.574̇ appear to have the same misère quotient as 4.7, but we do not include solutions
here.

A.2.4. Flanigan’s games
Complete analyses of misère 0.34 and 0.71 are due to Jim Flanigan [3]. The game 0.34 has

period eight (in both normal and misère play) and quotient order 12. Although the normal-play
Grundy sequence of 0.71 has period two, its misère period is six. |Q(0.71)| = 36.

A.2.5. Lemon Drops
The game 0.56 is called Lemon Drops in Winning Ways [3]. It is tame, so the normal-play

period of 144 [11] remains the same in misère play.

A.2.6. 0.123
This game is studied exhaustively in [17]. Its misère quotient has order 20.

A.2.7. 0.241
The normal-play period of 0.241 is 2, while its misère-play period is 10. 0.71, discussed above,

exhibits similar behavior. Note that by Lemma 6.5, the normal period of any faithfully regular
octal game always divides its misère period.

A.2.8. 0.644
This game has misère period 442 and preperiod 3255, the same as in normal play. This is the

largest known misère period for a wild octal game. Q(0.644) has order 172. The misère quotient

5 For example, H13 + H17 + H31 is a P-position, but is misidentified in [1] as an N -position.
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1 2 3 4 5 6 7 8 9 10 11 12

0+ 1 a a b b ab c c d e f g

12+ h b i ab2 j k l m n o p q

24+ r abo anq b3 s t abm cq2 u cjk v w

36+ x b3 y agt z b2i α β b3 γ δ b4c

48+ bco abζ ε b3 ζ ab3c grx η abζ abζ b3 ab3c

60+ θ b3 b4c ab4 cf θ b4c ab3c ab3c b3 b3 ab4 b4c

72+ b4c ab4 ab3c b3 b3 ab3c b4c b4c ab4 ab4 b3 ab3c

84+ ab3c b3 b4c ab4 ab4 b4c ab3c ab3c b3 b3 ab4 b4c

96+ b4c ab4 ab3c b3 b3 ab3c b4c b4c ab4 ab4 b3 ab3c

108+ ab3c b3 b4c ab4 ab4 · · ·
Fig. 5. The values of 0.4107 have eventual period 24, despite many initial irregularities.

“grows” for the last time at heap 333—that is, Q = Q333, while Q �= Q332. Intriguingly, the
(normal) Grundy function also attains its maximum G -value of 64 at heap 333. This behavior is
explained in the forthcoming paper [26].

A.2.9. 0.4107
A great variety of misère quotients can be found among the four-digit octals; we include

here just one particularly striking example. 0.4107 has period 24, preperiod 66, and quotient
order 506. Its quotient has a minimal set of 34 generators

{a, b, c, . . . , x, y, z,α,β, γ, δ, ε, ζ, η, θ}.
The Φ-values are shown in Fig. 5. There are many irregular values among the smaller heaps, until
finally a pattern abruptly emerges at heap size 66. (See [19] for the full quotient presentation.)

The sudden emergence of periodic behavior, after so much irregularity, is extraordinary. One
wonders how many other solutions lurk just beyond the reach of our computational resources.

A.3. Unsolved two- and three-digit octals

We now briefly discuss some of the most important unsolved octal games. Figure 6 lists the
normal-play period of each unsolved two-digit octal. Also listed is the largest n for which the
partial quotient Qn is known, together with the order |Qn|.

We suspect that every unsolved two-digit octal has an infinite misère quotient. 0.54 is likely
to be algebraic periodic in the sense of Section A.5; in the remaining cases, we suspect that the
listed value of n represents the last finite partial quotient. Validating or refuting these suspicions
will require more sophisticated techniques (or extremely diligent effort).

The unsolved three-digit octals are too numerous to list in a table of this form; they are sum-
marized compactly in the supplement [20], and on our website [19] in more detail. Some specific
comments follow.

A.3.1. Treblecross
0.04 is a cousin of Treblecross, the game of “one-dimensional Tic-Tac-Toe” [3].

A.3.2. Dawson’s Kayles
Guy and Smith [16] first observed that Dawson’s Chess is equivalent to the octal game 0.137.

It is a cousin of the two-digit octal 0.07, which is commonly known as Dawson’s Kayles.
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Code N pd n |Qn| Comments

0.04 — 44 864 Treblecross, §A.3.1
0.06 — 15 48
0.0̇7 34 33 638 Dawson’s Kayles, §A.3.2
0.14 — 20 96
0.16 149459 17 434
0.35 6 35 3182
0.36 — 20 304 §A.3.3
0.37 — 15 304 §A.3.3
0.40̄ 34 34 638 Cousins of 0.07
0.45̈ 20 26 550
0.54 7 † §A.3.4
0.60̄ — 16 304 Officers [3]
0.64̄ — 13 346
0.74 — 14 74
0.76 — 11 34

ḋ means “d or d + 1”; d̈ means “d or d + 2”; d means “d , d + 1, d + 2 or d + 3”

† 0.54 appears to be algebraic periodic.

Fig. 6. Unsolved two-digit octal games.

Guy and Smith showed that normal-play Dawson’s Kayles (and therefore Dawson’s Chess as
well) has a period 34 Grundy sequence. Unpublished work by Ferguson [9], based on Conway’s
genus theory, analyzed misère play of 0.07 to heap size 24. Using MisereSolver, we can extend
the analysis to heap size 33: the partial quotient Q33(0.07) has order 638, with a P-portion
of size 109. The full presentation is too messy to justify its inclusion here, but it can be found
online [19] or reproduced with MisereSolver.

The games 0.40̄0̄ (in the schema notation of Fig. 6) are all equivalent to Dawson’s Kayles.

A.3.3. 0.36 and 0.37
The largest known partial quotients of 0.36 and 0.37 are isomorphic: Q20(0.36) ∼= Q15(0.37).

However, their Φ-values are somewhat different. To what extent does this similarity continue?

A.3.4. 0.54
Allemang [2] gives an incorrect solution to the game 0.54. It appears to be algebraic periodic,

with an infinite misère quotient. However, its quotient seems to be more complicated than those
of 0.26 and 4.7; better techniques for identifying algebraic periodicity are needed. The three-digit
octal game 0.145 exhibits similar (but not identical) behavior.

A.3.5. 0.316
|Q23(0.316)| = 8704. This is the largest known finite partial quotient of an unsolved three-

digit octal.

A.3.6. 0.414
The partial quotients Qn(0.41̈4̇) grow surprisingly slowly as n increases. For this reason,

MisereSolver can quickly compute many corresponding Φ-values. Other wild games with similar
behavior include 0.64̄4̄, 0.764̄, 0.776̇, and 4.44̄. Among these, only 0.64̄4̄ has been solved. Since
none of the others have known normal-play solutions [10], it seems unlikely that their misère-
play solutions are forthcoming.



616 T.E. Plambeck, A.N. Siegel / Journal of Combinatorial Theory, Series A 115 (2008) 593–622
Code pd ppd |Q|
0.0122̇ 7 8 20
0.1023 7 6 20
0.1032 7 8 20
0.1033 7 7 20
0.1231 5 5 20
0.1232̇ 6 6 46
0.1321 5 6 20
0.1323 6 7 46
0.1331 5 5 20

Code pd ppd |Q| Comments

0.20̇12 5 4 20
0.3101 2 5 14
0.3102 — |Q11| = 74
0.3103 5 3 20
0.3112 5 6 20
0.3122 — |Q6| = 52
0.3123 — |Q11| = 328
0.3131 2 7 12
0.3312 — |Q13| = 264

Fig. 7. The twenty-one wild four-digit quaternary games.

Nonetheless, it is interesting to study this type of behavior. There is a close relationship be-
tween slow-growing partial quotients and small P-portions; see [26] for details.

A.4. Quaternary games

A quaternary game is an octal game whose code digits are restricted to 0, 1, 2 and 3. Thus
heaps may never be split, and the only available moves are to remove some number of tokens
from a heap. Despite these severe rules restrictions, many quaternary games exhibit interesting
and surprisingly intricate misère quotients.

There are twenty-one wild four-digit quaternaries. Of these, seventeen have known solutions;
these are summarized in Fig. 7. Only 0.3102, 0.3122, 0.3123, and 0.3312 remain unsolved. The
first author has offered a reward of $200 for the solution to 0.3102, and $25 each for the others.
It appears likely that their misère quotients are infinite, so the solutions might be quite difficult
to obtain. Figure 7 lists their largest known partial quotients.

A.5. Algebraic Periodicity

According to the Periodicity Theorem (Fact 2.2), the full misère quotient Q(Γ ) can some-
times be obtained from a finite number of partial quotients. In order to apply the Periodicity
Theorem, the partial quotients must “stabilize” after a certain point, so that Qn(Γ ) = Q(Γ ) for
all sufficiently large n.

Many misère games show another, more intriguing type of limiting behavior. Such games
have progressively larger partial quotients that exhibit a strong algebraic regularity. When this
regularity continues indefinitely, the full quotient can be deduced from a finite number of par-
tial quotients; but unlike in the “stable” case, the full quotient is infinite, whereas every partial
quotient is finite. We have christened this behavior “algebraic periodicity,” but we cannot give a
precise definition because we do not fully understand how to describe it in general.

Two examples, the octal games 0.26 and 4.7, are shown in Figs. 8 and 9. Since we do not have
any computational methods for verifying algebraic periodicity, we must resort to manual proofs
of these figures. The proofs are unenlightening, so we have relegated them to the supplement [20].

Algebraic periodicity is a rich area for further study. Many other games show this type of
behavior, including 0.54, 0.145, 0.157, 0.175, 0.355, 0.357, 0.516, 0.724, and 0.734. We suspect
that a general method for identifying and generalizing algebraic-periodic behavior—if one can
be found—would quickly dispense solutions to many of them.



T.E. Plambeck, A.N. Siegel / Journal of Combinatorial Theory, Series A 115 (2008) 593–622 617
Q∼= 〈
a, b, cn

∣∣ a2 = 1, bn+1cn = b2n+3,(
cmcn = bm+2cn

)
m�n

〉

P = {
a,

(
b2m

)
m�1,

(
bmcn

)
m�n and m+n odd

}

1 2 3 4

0+ 1 a b ab

4+ 1 a b ab

8+ c0 ac0 c1 ab3

12+ c2 abc1 c3 abc2
16+ c4 abc3 c5 abc4
20+ c6 abc5 · · ·

Fig. 8. Presentation and quotient map for 0.26.

Q∼= 〈
a, b, c, dn

∣∣ a2 = 1, bc = ab3, c2 = b4,

bn+1dn = an+1b2n+5, cdn = ab2dn,

dmdn = am+1bm+4dn

〉

P = {
a,

(
b2m

)
m�1,

(
bmdn

)
m odd, n even, m<n

,(
abmdn

)
m even, n odd, m<n

}

1 2

0+ a b

2+ a b

4+ c b3

6+ d0 d1
8+ d2 d3

10+ d4 d5
12+ d6 · · ·

Fig. 9. Presentation and quotient map for 4.7.

Open Problem. Give a precise definition of algebraic periodicity (that includes at least some of
the cases listed above), and prove an analogue of the Periodicity Theorem for algebraic periodic
games.

A.6. Elements with unusual periods

If Q is a monoid and x ∈ Q, then the period of x is the least k � 1 such that xn+k = xn, for
some n. If no such k exists, then we say that x has period ∞. Note that if Q is finite, then x must
have finite period.

In normal play, every position G satisfies the equation G + G = 0. Therefore, in a normal
quotient, every element has period at most two. For a long time, we believed that the same is true
for misère quotients. However, there do exist finite misère quotients with larger-period elements,
though they are exceedingly rare.

A striking example is given by G = ∗(2#210)(2#30)3#21. It can be described as a coin-sliding
game with heaps of tokens placed on the vertices of the tree shown in Fig. 10. In this game, the
players take turns sliding a single coin “down” the tree along a single edge. The game ends when
all coins have reached leaf nodes of G, and whoever makes the last move loses.

Q(G) is a misère quotient of 200 elements; it has the following presentation:

Q(G) ∼= 〈
a, b, c, d, e

∣∣ a2 = 1, b4 = b2, b2c2 = c2, c3 = abc2,

c2d = ac2, d2 = c2, c2e2 = c2, e6 = 1
〉
,

P = {
a, b2, abc, ab3c, c2, bd, b3d, ae, ab2de, cde, b3cde, ae2, b2e2, abce2, ab3ce2,

bde2, ae3, bde3, b3de3, ae4, b2e4, abce4, ab3ce4, ab2de4, bcde4, b3cde4, ae5}.

The most striking feature of this quotient is the generator e of period 6. In particular, e2 has
period 3, an odd number.
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Fig. 10. Ready for a game of misère coin-sliding on G = ∗(2#210)(2#30)3#21.

There also exist quotients with period-4 elements. For example, let H = ∗(2#1)(2#0)4310.
Then Q(H) is a quotient of order 120 containing an element of period 4. It is the smallest known
quotient containing an element with period larger than 2.

Open Problem. Exhibit a misère quotient containing an element of period 8 (or any finite period
other than 1, 2, 3, 4, or 6).

Question. Are there any restrictions on the possible periods of misère quotient elements?

Question. What is the smallest quotient containing an element of period > 2?

A.7. The sad affair of ∗(2#0)0

We now show that Q(∗(2#0)0) is infinite. It can be verified computationally that all games
with smaller game trees have finite quotients, so in some sense ∗(2#0)0 is the simplest game that
yields an infinite quotient. This fact makes it worthy of significant attention.

∗(2#0)0 arises in various quaternary games; for example, it is the canonical form of an
0.31011-heap of size 5. It can also be represented as the coin-sliding game shown in Fig. 11.
Stacks of coins are arranged on the boxes to form a starting position. On her turn, a player may
slide one coin one space in the direction of an arrow. This might cause the coin to drop off the
board, whereupon it is removed from the game. It is easily seen that a single coin on the rightmost
box has canonical form ∗(2#0)0.

For the remainder of this section, write

A = ∗; B = ∗2; C = ∗2#; D = ∗2#0; E = ∗(2#0)0;
and put A = cl(E). Then each game in A has the form

iA + jB + kC + lD + mE,

for some quintuple of integers (i, j, k, l,m). (These correspond to the number of coins on each
successive box in Fig. 11, left-to-right.)

⇐ ⇐ ⇐ ⇐

⇓ ⇓ ⇓ ⇓

A B C D E

Fig. 11. A simple coin-sliding game with an infinite misère quotient.
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When k � 3, the P-positions admit a simple description: G is a P-position iff both i + l

and j + m are even. When k � 2, however, the P-positions are highly erratic. The outcomes for
l < 14 and m < 18 are summarized in Fig. 12. Each of the twelve grids represents the outcomes
for a particular triple (i, j, k). Within each grid, there is a black dot at (row m, column l) iff
G = iA + jB + kC + lD + mE is a P-position. The outcomes for l � 14 and m � 18 can be
obtained through the following simple recurrence:

Let G = iA + jB + kC + lD + mE, with l � 4 or m � 12. Then:

o−(G + 2D + 2E) = o−(G);
o−(G + 2D) = o−(G) if m < 3;
o−(G + 2E) = o−(G) if l < 3.

(†)

Figure 12 illustrates some striking features about this game. Most prominent is the diagonal
of P-positions in the (0,0,0) diagram, along the line m = l + 7. In fact, it is this diagonal (and
its echo in several other cases) that makes the quotient infinite. In addition, there are many strange
anomalies, such as the P-position at (i, j, k, l,m) = (1,1,2,0,3). Such anomalies are difficult
to explain as anything other than combinatorial chaos. It is remarkable that such a simple game
gives rise to so much complexity.

A comparison with normal play is instructive. It is easily checked that A,B,C,D,E have
Grundy values 1,2,0,1,2, respectively. Therefore G is a normal P-position iff both i + l and
j + m are even. Note that this coincides with the misère condition when k � 3. This is explained
by our discussion of normality in Section 6: put z = Φ(3C); then x �→ zx is a surjective homo-
morphism from Q(E) onto the group Z2 × Z2. Since z is an idempotent and zQ is a group, z

must be the kernel identity of Q. Thus we have a beautiful illustration of the generalized misère
strategy described in Section 6: follow normal play unless your move would leave fewer than
three coins on box C.

We now prove the correctness of Fig. 12 (and of the asserted outcomes when k, l,m are large).
For each G ∈ A , denote by o∗(G) the asserted outcome of G; as always, o−(G) denotes the true
outcome of G.

Lemma A.6. Let G = iA + jB + kC + lD + mE.

(a) If j � 2, then o∗(G + 2B) = o∗(G).
(b) If k � 3, then o∗(G + C) = o∗(G).

Proof. (a) is by inspection of Fig. 12; (b) is automatic from the description of o∗. �
Theorem A.7. o−(G) = o∗(G) for all G ∈ A .

Proof. Note that o∗(0) = N . Thus it suffices to show the following, for each G �= 0:

o∗(G) = P ⇐⇒ no option G′ satisfies o∗(G′) = P. (‡)

Suppose instead (for contradiction) that (‡) fails for some G ∈ A . Choose G = iA + jB +
kC + lD + mE to be a counterexample with minimal birthday. Since A + A = 0 (canonically),
we know that i = 0 or 1.

Now (‡) can be verified computationally when j < 5, k < 5, l < 7, and m < 15. Therefore we
may safely assume that at least one of these inequalities fails. There are five cases.
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Fig. 12. Schematic of the P-positions for cl(∗(2#0)0) with k � 2.
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Case 1. j � 5. Then fix H with G = H + 2B . Since j − 2 � 2, Lemma A.6(a) gives o∗(G) =
o∗(H). Furthermore, every option G′ of G can be written as G′ = H ′ + 2B . Since j − 2 � 3,
we can write H ′ = j ′B + X, for j ′ � 2. Thus Lemma A.6(a) gives o∗(H ′ + 2B) = o∗(H ′).
Therefore

{
o∗(G′): G′ ∈ opts(G)

} = {
o∗(H ′): H ′ ∈ opts(H)

}
.

It follows that (‡) fails for H as well, contradicting minimality of G.

The remaining cases are all very similar.

Case 2. k � 5. Then fix H with G = H + C. Since k − 1 � 4, Lemma A.6(b) gives o∗(G) =
o∗(H), but also {o∗(G′): G′ ∈ opts(G)} = {o∗(H ′): H ′ ∈ opts(H)}, contradicting minimality
of G.

Case 3. l � 7 but m < 3. Then fix H with G = H + 2D. Since l − 2 � 5, the recurrence (†)
gives o∗(G) = o∗(H), etc., as in previous cases.

Case 4. m � 15 but l < 3. Then fix H with G = H + 2E, and proceed as in Case 3.

Case 5. l � 7 or m � 15, and l,m � 3. Then fix H with G = H + 2D + 2E, and proceed as in
Case 3. �
Corollary A.8. Q(E) is infinite.

Proof. If l � 3 is odd, then lD +mE is a P-position iff m = l + 7. Thus the games (2n+ 3) ·D
are pairwise distinguishable. �
A.8. Irregular and abnormal quotients

In Section 6 we defined a quotient to be regular if |K ∩ P| = 1, and normal if K ∩P = {z}.
Irregular quotients are difficult to find; the smallest known example is Q12(0.324), with
|K ∩P| = 4. Simpler examples almost certainly exist, but better techniques are needed in or-
der to detect them.
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