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Cosmological observables could be used to construct cosmological models; however, a fixed number of
observables limited to the light cone are not enough to uniquely determine a certain model. In this
paper, we employ a reconstructed spherically symmetric, inhomogeneous model that shares the same
angular-diameter–distance–redshift relationship dA(z) and Hubble parameter H(z) besides �CDM model
(which we call LTB-�CDM model in this paper), that may provide another solution. Cosmic age, which is
off the light cone, could be used to distinguish between these two models. We derive the formulae for
age calculation with origin conditions. From the data given by 9-year WMAP measurement, we compute
the likelihood of the parameters in these two models respectively by using the Distance Prior method and
perform likelihood analysis by generating Monte Carlo Markov Chain for the purpose of bringing tighter
constraints on the parameters Ωm and H0 (the parameters that we use for calculation). The results yield:
t�CDM = 13.76 ± 0.09 Gyr, tLTB-�CDM = 11.38 ± 0.15 Gyr, both in 1σ agreement with the constraint of
cosmic age given by metal-deficient stars.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

In the past decades, remarkable progress has been made in
measuring cosmological parameters to unprecedented accuracy.
Data of the Cosmic Microwave Background Radiation (CMBR) [1]
indicates a flat Universe, and the observations of type Ia super-
novae (SNe Ia) [2,3] show that the universe is undergoing an ac-
celerated expansion. The matter content of the universe falls well
short of the energy density necessary to provide a flat curvature
in the standard cosmological model which is homogeneous and
isotropic, the Friedmann–Lemaître–Robertson–Walker (FLRW) met-
ric. The most popular interpretation of this mismatch is that the
‘missing’ density is assumed to be present in the form of dark en-
ergy which provides a pressure leading to the acceleration of the
universe.

The observations that lead to the assumptions of dark energy
are true, but do not necessarily imply that dark energy as usually
envisioned indeed exists. Another theoretical approach was raised
to explain the current cosmic observations, in which there is no
need for dark energy, no need for new long-range forces or modi-
fications of general relativity, new ultra-light particles or anthropic
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reasoning. We follow the prescription of [4], applied to �CDM
model by [5] and explore the implications of the fact that one can
construct a spherically symmetric inhomogeneous model that ex-
actly reproduces the angular-diameter–distance–redshift relation-
ship dA(z) and Hubble parameter H(z) of any given observations
based on �CDM model, which we call LTB-ΛCDM model in this pa-
per.

As �CDM and LTB-�CDM models share the same observables
limited on the light cone, we can only distinguish these two mod-
els by other physical quantities off the light cone. The age of the
Universe, which satisfies this requirement, can be a good choice to
break the degeneracy. The method to calculate the age of the uni-
verse at r = 0 (corresponding to our position in the universe) in
LTB-�CDM model is based on the original conditions of spherical
coordinate.

To calculate the age of the universe, we use the parameters
given by 9-year WMAP. However, directly using the WMAP results
for Ωm and H0 overestimates the uncertainty, due to the fact that
these two parameters are not orthogonal, which means their un-
certainties are correlated. Instead, in [6] there is a method called
Distance Prior, which is used to test different dark energy mod-
els. Using this method, we compute the likelihood of each set of
parameters (Ωbh2,Ωch2,h) and the corresponding cosmic age of
the two models respectively, and figure out the best-fit value of
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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the result. For the calculation of the uncertainties, we generated
Monte Carlo Markov Chain.

Another advantage of selecting the age of the universe as a
touchstone of distinguishing these two models should be men-
tioned here. The age of some of the old objects in the universe,
such as metal-deficient stars, old galaxies, global clusters, etc., pro-
vide the lower limit of the age of the universe. By comparing the
results, we can verify the validity of this specific model. Formed
shortly after the Big Bang, metal-deficient stars are considered to
share the same age as the universe roughly, and that is the reason
why we choose HD 140283 [7] and HE 15230901 [8] for validity
testing.

This paper is organized as follows. In Section 2, we review the
LTB models and the reconstruction of this model constrained by
the observations on the light cone. In Section 3, we introduce the
method to calculate the cosmic age in both in the �CDM model
and the LTB-�CDM model, then we make use of the data given by
9-year WMAP [1] to calculate the cosmic age in these two models
and make likelihood analysis by generating Monte Carlo Markov
Chain. In Section 4, we show the result of the parameters, verify
the validity of these two models by comparing the results with the
age of old objects in the universe and introduce the cosmic age
method set in this paper. Finally, we give conclusions in Section 5.

2. Modeling

In Subsection 2.1, we briefly review the Lemaître–Tolman–Bondi
(LTB) model in general. Then in Subsection 2.2, following the pro-
cedures of [5], we elucidate how to reconstruct a particular LTB
model that exactly reproduces the selected observable features,
namely the angular-diameter–distance–redshift relationship dA(z)
and Hubble parameter H(z), of the �CDM model.

2.1. Lemaître–Tolman–Bondi models

The LTB models are spherically symmetric cosmological solu-
tions to the Einstein equations where the gravitational source is
dust. Assuming that the system has purely radial motion and the
motion is geodesic without shell crossing (otherwise we cannot
ignore the pressure), the line element in the comoving and syn-
chronous gauge can be written as:

ds2 = −dt2 + R ′ 2(r, t)

1 + 2E(r)
dr2 + R2(r, t)dΩ2, (1)

where dΩ2 = dθ2 + sin2 θ dφ2. Here R(r, t) represents the areal ra-
dius. The proper area of a sphere of coordinate radius r on a time
slice of constant t is 4π R2. E(r) plays two roles in LTB metric:
(1) the geometric role, determining the local ‘embedding angle’
of spatial slices that represents the spatial curvature; (2) the dy-
namic role, determining the local energy per unit mass of dust
particles, hence the type of evolution of R , in other words, rep-
resenting the energy per unit mass of the particles on that shell.
The prime superscript is to denote ∂/∂r, and the overdot to de-
note ∂/∂t , in agreement with [4,5]. The Robertson–Walker metric
can be recovered by performing R(r, t) → a(t)r and 2E(r) → −kr2.

In spherically symmetric models, in general, there are two ex-
pansion rates [16]:

H⊥ ≡ Ṙ(r, t)/R(r, t),

H‖ ≡ Ṙ ′(r, t)/R ′(r, t), (2)

at the transverse direction and the longitude direction respectively.
In LTB models, the longitudinal expansion rate H‖(z) has the same
form as Hubble parameter H(z) in �CDM model, which is assured
by definition [9].
With the dust equation of state, the Einstein field equations can
be expressed as

H2⊥(r, t) + 2H‖(r, t)H⊥(r, t) − 2E(r)

R2(r, t)
− 2E ′(r)

R(r, t)R ′(r, t)
= κρM(r, t), (3)

Ṙ2(r, t) + 2R(r, t)R̈(r, t) − 2E(r) = 0, (4)

where κ = 8πG . These represent the generalization of the Fried-
mann equation for a homogeneous and isotropic universe to a
spherically symmetric inhomogeneous universe. Solving the Ein-
stein equations, we get

H2⊥ = Ṙ2(r, t)

R2(r, t)
= 2E(r)

R2(r, t)
+ 2M(r)

R3(r, t)
, (5)

κρM(r, t) = 2M ′(r)
R2(r, t)R ′(r, t)

. (6)

Eq. (5) can be solved in terms of a parameter η = η(t, r):

R(r, t) = M(r)

χ(r)
φ(r, t), (7)

t(r) − tBB(r) = M(r)

χ3/2(r)
ξ(r, t), (8)

where

χ(r) =
⎧⎨⎩ 2E(r)

1
−2E(r)

φ =
⎧⎨⎩

coshη − 1
η2/2
1 − cosη

ξ =
⎧⎨⎩

sinhη − η

η3/6
η − sinη

when

{ E > 0 (hyperbolic evolution)
E = 0 (parabolic evolution)
E < 0 (elliptic evolution).

(9)

The LTB model is defined by three arbitrary functions of coordi-
nate radius r: M(r), E(r), tBB(r). The role of E(r) is stated in the
explanation of the metric. M(r), appearing as a “constant” while
integrating Eq. (4), is the effective gravitational mass with comov-
ing radius r, which characterizes the gravitational mass contained
with the comoving spherical shell at any given r. tBB is another
arbitrary function that also comes out as an integration “constan-
t” and is interpreted as the “Big Bang time”. Note that there is
no implication of a simultaneous bang surface without further as-
sumptions.

We now denote quantities on the light cone by a hat. On radial
null geodesics, ds2 = dθ2 = dφ2 = 0. From Eq. (1), the photon radial
null geodesic equation for t̂(r) satisfies:

dt̂(r)

dr
= − R ′(r, t̂(r))√

1 + 2E(r)
(10)

where radial coordinate r has no physical importance. In order to
simplify calculation, we rescale r on the light cone as

R̂ ′ = √
1 + 2E(r). (11)

The total derivative of R is formed as:

dR̂

dr
= R̂ ′ + ̂̇R dt̂

dr
. (12)

At the origin of spherical coordinates (r = 0), we assume that
R(0, t) = 0 and Ṙ(0, t) = 0 for all t; the density is non-zero; the
type of time evolution (hyperbolic, parabolic, elliptical) is con-
sistent with its nearest neighborhood; all functions are smooth
and have first derivatives. Eq. (7) tell us that R(r, t)E(r)/M(r) and
E(r)3/2/M(r) must be finite at r = 0. We expect M → 0, when
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r → 0, therefore E → 0 and E ∼ M2/3. Using the Eqs. (5) and (12),
we get:

dR̂

dr

∣∣∣∣
r=0

= R̂ ′∣∣
r=0 + ̂̇R dt̂

dr

∣∣∣∣
r=0

= 1, R̂ = r, (13)

to the leading order. Substitute this relationship into Eq. (6), we get

2M ′(r)
∣∣
r=0 = 1

2
κρM(r, t)R2(r, t)R ′(r, t)

∣∣
r=0 = 3ΩM H2

0r2, (14)

2M(r)
∣∣
r=0 = Ωm H2

0r3, (15)

to the leading order, where κρM0 = 3ΩM H2
0 and H0 is the Hubble

constant. And E(r) satisfies:

H2
0 = 2M(r)

R3
+ 2E(r)

R2
, (16)

2E(r) = (1 − Ωm)r2. (17)

To match the theory with the observations, we need to asso-
ciate the physical quantities with the redshifts, which is done by
using the redshift equation [10]

d ln(1 + z)

dt
= − Ṙ ′(r, t)

R ′(r, t)
. (18)

Thus the redshift of the photon z(r) takes the form

dz(r)

dr
= (1 + z)

Ṙ ′(r, t̂(r))√
1 + 2E(r)

. (19)

Using the reciprocity theorem [11], the luminosity distance can be
converted to the angular diameter distance:

d̂A(z) = R̂(z) = d̂L(z)

(1 + z)2
. (20)

2.2. Reconstructing LTB model with �CDM observational features on
the light cone.

This reconstruction procedure and results follow [5], which
allows one to construct an LTB model that reproduces: (1)
the angular-diameter–distance–redshift relationship d̂A(z); (2) the
Hubble parameter H(z) of the fiducial �CDM model. The recon-
struction of LTB model was first set by [4] to construct cosmo-
logical models that can fit the observations limited on the light
cone with given source evolution, namely the absolute luminosity
of the source at the time of emission L̂(z) and true density over
the source number density m̂(z). This theory was applied to repro-
duce the observables that match �CDM predictions by [5]. Note
here that the profiles in this paper are result of reproducing ob-
servables that match �CDM model predictions, not from fitting to
any real data.

The reconstruction procedures are listed as follows:

1. Use the first assumption that in the reconstructed LTB model,
the angular-diameter–distance–redshift relationship matches
that of the �CDM model, where the angular diameter distance
takes the form:

d̂A(z) = 1

(1 + z)

z∫
0

dz1

H�CDM(z1)
= R̂(z). (21)

2. Use the second assumption that in the LTB-�CDM model,
the Hubble parameter H(z) is in agreement with the fiducial
�CDM model, we get the relationship of z and r.
dz

dr
= (1 + z)H�CDM(z)

=
[

dR̂(z)

dz
(1 + z)

]−1

×
[

1 − 1

2

z∫
0

κρ̂(z)R̂(z1)(1 + z1)
dr

dz1
dz1

]
, (22)

where the first equation is the derivation of Hubble parameter
and the second equation is derived in the process of the re-
construction of the model (for more detailed formulae, see [4]
and [5]).

3. Solve the differential equation given by [4] of M(r) with an
initial condition of M(0) = 0,

dM

dr
+ κρ̂ R̂

2dR̂/dr
M = κρ̂ R̂2

4dR̂/dr

[(
dR̂

dr

)2

+ 1

]
, (23)

and E(r) is formed as:

2E(r) =
{

1

2

[(
dR̂

dr

)2

+ 1

]
− M

R̂

}2 / (
dR̂

dr

)2

− 1 (24)

4. Derive the third arbitrary function tBB(r) of LTB-�CDM model
that satisfies Eqs. (7) and (8).

3. The calculation of cosmic age

3.1. Cosmic age in ΛCDM model and LTB-ΛCDM model

In the fiducial �CDM model, as mentioned in the introduction
section, we treat the additional opponent as the time indepen-
dent vacuum energy, a cosmological constant Λ. Relating the Hub-
ble parameter with its present day value and ignoring radiation
component (which is taken into consideration at high redshifts),
we get:

H2(z) = H2
0

[
Ωm(1 + z)3 + ΩΛ

]
. (25)

With the fact that da/a = H(z)dt = −dz/1 + z, which leads to
dz/dt = −H(z)(1 + z), we integrate Eq. (25) to determine the age
of the universe at a given redshift z:

t�CDM(z) =
∞∫

z

dz

(1 + z)H(z)
(26)

As for the LTB-�CDM model, instead of solving the ordinary
differential equations of M(r) and E(r) by Eqs. (23) and (24),
which can only be solved numerically (see [5]). Here we take use
of an easier but still precise way. The cosmic age is referred to the
local universe. Therefore, we can just take use of the original con-
ditions (r = 0) illustrated in Section 2.1 Eqs. (13), (14) and (16) by
taking R(r, t), M(r) and E(r) to the leading order:

R̂ = r, M(r) = 1

2
Ωm H2

0r3, E(r) = 1 − Ωm

2
r2. (27)

Substitute these forms into Eq. (7), we can get the solution of the
parameter η as:

coshη = 2 − Ωm

Ωm
. (28)

With Eq. (8), we obtain the age of the universe in the LTB-�CDM
model in the local universe (r = 0) as

t0 − tBB(0) = Ωm
3/2

[sinhη − η] (29)

2(1 − Ωm) H0
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which is also the analytical solution of the integration when z = 0
(referring to the local universe):

tLTB-�CDM(0)

=
∞∫

0

dz

(1 + z)H0

√
Ωm(1 + z)3 + (1 − Ωm)(1 + z)2

. (30)

Change the lower limit of integral 0 into z, we can obtain a form to
calculate the cosmic age at a given redshift z. We will later employ
this form to calculate the cosmic age at z = 1.55, shown in Fig. 2.

3.2. WMAP parameters and likelihood analysis

Now we choose suitable parameters to calculate the age of the
universe respectively in �CDM model and LTB-�CDM model. Let
us first trace back to [4]. The initial purpose to set an LTB model
that can be found to fit given set of source evolution is to deter-
mine the degree of inhomogeneity from the observations and given
source functions. Thus we need methods of validating source evo-
lution models that do not depend on assumptions of homogeneity.
Deep cosmological surveys, which supply measurements at high
redshifts, may provide a good constraint. The purpose of this pa-
per is to find a method to distinguish between the inhomogeneous
cosmic model and the �CDM model. We consider the fact that the
inhomogeneity in LTB model plays a role of mimicking dark energy
in fiducial �CDM model.

The WMAP Collaborations has determined values for several pa-
rameters by mapping the CMBR. Using the parameters Ωm

1 and h2

directly in Eq. (29) overestimates the uncertainty, for these two pa-
rameters are degenerate. 5-year WMAP observations: Cosmological
Interpretation [6] gave a method to derive the best-fit parameters
in different dark energy models. In this paper, we briefly review
the Distance Prior method, then we will use this method to com-
pute the likelihood of each set of parameters (Ωbh2,Ωch2,h) and
find the best-fit parameters.

CMBR measures two distance ratios: (1) the angular diameter
distance to the decoupling epoch divided by the sound horizon
size at the decoupling epoch, dA(z∗)/rs(z∗); (2) the angular di-
ameter distance to the decoupling epoch divided by the Hubble
horizon size at the decoupling epoch, dA(z∗)H(z∗)/c. This consid-
eration to constrain various cosmology models. We shall qualify
the first distance ratio, dA(z∗)/rs(z∗), by the “acoustic scale”, lA ,
which is defined by

lA ≡ (1 + z∗)
π dA(z∗)

rs(z∗)
. (31)

The second ratio is often called the “shift parameter”, given by

R(z∗) ≡
√

Ωm H0
2

c
(1 + z∗)dA(z∗). (32)

We give the 9-year WMAP [1] constraints on (lA , R , z∗) that
are recommended as the WMAP distance priors for constraining
cosmology models, for a given set of parameters (Ωbh2,Ωch2,h).
Here is the brief prescription for using the WMAP distance priors:

1. Compute the redshift at the decouple epoch z∗ with the equa-
tion given below [12]

z∗ = 1048
[
1 + 0.00124

(
Ωbh2)−0.738][

1 + g1
(
Ωmh2)g2

]
1 In �CDM model, matter contains the physical baryon components and the

physical cold dark matter components, which satisfies: Ωm = Ωb + Ωc .
2 H0 = 100h km s−1 Mpc−1.
Table 1
Inverse covariance matrix for the WMAP distance priors.

lA R z∗
lA 3.182 18.253 −1.429
R 11 887.879 −193.808
z∗ 4.556

where g1 = 0.0783(Ωbh2)−0.238

1 + 39.5(Ωbh2)0.763
,

g2 = 0.560

1 + 21.1(Ωbh2)1.81
. (33)

2. Compute the comoving sound horizon size rs(z∗), with the
specific form of Hubble parameter H(z) in this model:

rs(z) = c√
3

1/(1+z)∫
0

da

a2 H(a)
√

1 + (3Ωb/4Ωγ )a
. (34)

3. Obtain the expression of angular diameter dA(z) in this model.
Calculate lA and R respectively with Eqs. (31) and (32).

4. Form a vector in the order of xi = (lA, R, z∗). The observed
data vector is written as:

di = (
lA

WMAP, RWMAP, z∗WMAP)
= (302.40,1.7246,1090.88), (35)

where we choose the values with maximum likelihood. Com-
pute the likelihood L, which is given by:

χ2
WMAP ≡ −2L = (xi − di)

T (
C−1)

i j(x j − d j). (36)

Here the inverse covariance matrix [1] is formed as Table 1.
For any given set of parameters (Ωbh2,Ωch2,h), we can cal-

culate the age of the universe in �CDM and LTB-�CDM models
respectively, and get the likelihood of the set of parameters. The
set of parameters that gives the largest likelihood will be chosen
to compute the best-fit value of cosmic age.

It should be stressed that since the LTB-�CDM model is re-
constructed by reproducing the observable features on the light
cone. The angular diameter distance dA(z) is exactly that in �CDM
by reconstruction assumption. The longitude expansion rate H‖(z)
equals the Hubble parameter H(z) in �CDM model is guaranteed
by the input requirements used to construct the model, which
leads to the same form to calculate rs(z∗). Therefore, when esti-
mating the acoustic scale lA , the shift parameter R and the redshift
of the decouple epoch z∗ , we can just obtain the derived values
from the calculation of the �CDM model, there is no need to im-
pose other special constraints on that.

We generate Monte Carlo Markov Chain by using the calcu-
lated likelihood to simulate the data. In this paper, we employ the
Metropolis–Hastings algorithm specifically.

1. Choose a candidate set of parameters s∗ at random from a pro-
posal distribution.

2. Accept the candidate set of parameters with the probability
A(s, s∗); otherwise, reject it. For Gaussian distributed observ-
ables (we assume these observables to be so), the acceptance
function is:

A(s, s∗) = min
{

1,exp
[−χ2(s∗) + χ2(s)

]}
. (37)
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Fig. 1. Constraint on the parameters: Ωmh2 and h. The contours show the 1σ , 2σ and 3σ CL respectively from inside to outside.

Fig. 2. Constraints on the cosmic age at different redshifts. The horizontal and the vertical axis represent the cosmic age at z = 1.55 and at z = 0 respectively. The blue
region plots the distribution of cosmic age for �CDM model, with the red region for LTB-�CDM model. The contours show the 1σ , 2σ and 3σ CL respectively from inside
to outside. The horizontal solid line shows the age of metal-deficient star [8], with the dashed lines showing the upper and lower limit of the stellar age in 1σ CL; the solid
line in the vertical direction is the age of old galaxy at z = 1.55 [13]. Those lines provide a lower limit of the cosmic age at different redshifts.
4. Discussion

4.1. Bringing tighter constraints on the parameters of the parameters

WMAP 9 [1] provides the best-fit values of Ωm and H0 together
with their 1σ confidence region. However directly using WMAP
results will overestimate the uncertainty, for these two parame-
ters are not orthogonal, in other words, their uncertainties are
correlated. Computing the likelihood of any given set of parame-
ters with Distance Prior method and generate Monte Carlo Markov
Chain, we bring better constraints on the parameters. The result of
Monte Carlo Markov Chain in parameter space is shown in Fig. 1.

The corresponding Monte Carlo Markov Chain of cosmic age re-
sults yields to be:

t�CDM = 13.76 ± 0.09 Gyr,

tLTB-�CDM = 11.38 ± 0.15 Gyr. (38)

A similar previous work [14] should be mentioned here. They
reconstruct LTB model by reproducing the luminosity distance
d̂L(z) and matter density ρ̂(z) on the light cone, and compute the
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cosmic age in this model. [14] expand R(r, t) near r = 0, take this
form to derive the approximation form of M(r) and E(r), and inte-
grate Eq. (5) to obtain the expression of local cosmic age. Directly
using the data given by 7-year WMAP [15], their results turn out
to be:

t�CDM = 13.8 ± 0.5 Gyr,

tLTB-�CDM = 11.4 ± 0.3 Gyr, (39)

with the degeneracy of Ωm and H0 ignored. Although the models
we use are based on reproducing different physical quantities lim-
ited on the light cone, the formulae that is used to calculate the
age of the universe is quite the same, due to the same characters
in the local universe. In comparison, the parameters we use yield
more accurate results and less uncertainties.

Note that with the parameters given by PLANCK [19], cosmic
age in the standard model yield to be:

t�CDM = 13.81 ± 0.058 Gyr. (40)

4.2. Checking the validity of cosmic age

To assess the validity of the proposed models, we need to test
the cosmic age in these models with a set of current observational
data. The lower limit of the cosmic age can be directly obtained
from estimating the age of some old objects in our universe, such
as the globular clusters, white dwarfs and metal-deficient stars.
Formed shortly after the Big Bang, metal-deficient star is consid-
ered to be the more accurate lower limits of cosmic age among
these ancient objects in the universe. The latest result of the age
of a metal-deficient star in the solar neighborhood gives an age
of 14.46 ± 0.8 Gyr [7]. Although the cosmic age in �CDM model
is in consistence with its 1σ CL, it has quite large deviation from
the age of the universe obtained from other calculations. Instead,
we compare with a result that was published earlier, still of a
metal-deficient star, giving the age of 13.2 ± 2 Gyr [8], both the
age of the two model are in 1σ consistence with that result.

Another cosmic age validity check is the age of an old galaxy
at z = 1.55 [13], providing lower limit 3.5 Gyr of cosmic age at
different redshifts. In fiducial �CDM model, the age at redshift
z can be calculated with Eq. (26). In LTB-�CDM model, with the
origin conditions, we derive the way to calculate the cosmic age lo-
cally; however, Eq. (30) gives a formal method for age calculation
at z = 1.55, which can be applied for age validity check without
caring about its physical meaning.

4.3. Setting cosmic age method

The method we use in this paper to calculate the age of the
universe can be used as a set scheme for age calculation in differ-
ent LTB models, which is based on the origin conditions of the
spherical universe. WMAP data can provide good constraints of
age calculation. We need methods of validating source evolution
models that do not depend on the assumptions of homogeneity to
establish the age at any given z. Deep cosmological distance mea-
sures that is not influenced by source evolution would help to pin
down the cosmological model better, the observations of CMBR in
particular. For cosmic age calculation in a certain LTB model, the
prescription of this method is to be stated as follows:

1. Obtain the form of the light cone observables d̂A(z) and H(z)
in this model.
2. Compute the age of this specific model using the method in
Section 3.1, and compute the likelihood following the pre-
scription in Section 3.2. Figure out the best-fit value with the
largest likelihood.

3. Generate the Monte Carlo Markov Chain with that likelihood
(see Section 4.1), and make likelihood analysis using the chain.

4. Assess the validity of the age of the universe in this model by
comparing the result with the age of the old objects in the
universe. Here we recommend the age of metal-deficient stars.

5. Conclusion

We derive the method to calculate cosmic age in LTB-�CDM
model with origin conditions of spherical coordinates. To bring
tighter constraints on the parameters, we compute the likelihood
of any given set of parameters in Distance Prior Method and gen-
erate Monte Carlo Markov Chain with that likelihood. The validity
of the cosmic age is assessed by comparing the result with the age
of the metal-deficient stars.

The observed normalization of the near-IR galaxy luminosity
function indicates that a void, if exists, amounts to a few hundred
Mpc [18]. Previous performing parameter estimation on the void
model, the Hubble parameter data favor a void with characteris-
tic radius of 2–3 Gpc. However, the test of such void models may
ultimately lie in the future detection of the discrepancy between
longitudinal and transverse expansion rates, a touchstone of inho-
mogeneous models. Also, as pointed out in [17], one can see that
the Gpc-sized voids, as those favored by the supernovae data, are
incompatible with the BIkSZ measurement, are not favored. How-
ever, as discussed in [5], contrary to what is commonly claimed,
LTB models with a giant void do not reproduce the main features
of the �CDM model. These types of models just fit cosmological
observations, with a priori constraints imposed on the LTB models.

It should be mentioned that in this paper we only consider a
particular LTB model, specifically, the one reproducing the �CDM
features limited on the light cone. Any statement about the uni-
verse off the light cone is unsupported by direct observations,
and hence requires a cosmological model for the evolution of the
universe. In this paper, besides �CDM model, we reconstruct an
inhomogeneous LTB model by reproducing the angular-diameter–
distance–redshift relationship d̂A(z) and Hubble parameter H(z).
However, if one just restricted to the two observables used in this
paper, it is impossible to uniquely determine a cosmological model.
In our case, the fiducial �CDM model and the reconstructed LTB
model result in identical observations for d̂A(z) and H(z). That
result is valid even if one imagines perfect astronomical observa-
tions, since by construction the two cosmological observables are
degenerate in the two models. In principle, whether it is possible
to exclude the possibility just on the basis of light-cone observa-
tions is unclear now. Cosmic age, which is off the light cone, can
be a good choice to distinguish the reconstructed LTB model and
the fiducial �CDM model. The method derived in this paper for
age calculation and analysis can be used to a specific LTB model
and by comparison with the observations to check the validity of
this model.

This paper has developed and discussed issues related to the
interpretation of cosmological observables in constructing cosmo-
logical models and theories. Observations of d̂A(z) and H(z) do not
prove that the so-called ‘dark energy’ actually exists or that the
universe is accelerating in the usual sense; they do so only if one
assumes that the universe is homogeneous and isotropic as well as
the dynamics of the universe are governed by General Relativity.
The cosmic age method sheds light on a new way to distinguish
the inhomogeneous model and �CDM model.
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