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Abstract 

Complexity of the graph isomorphism algorithms mainly depends on matching time which is directly related to 
efficiency of their partition methods. This paper proposed a partition method by sorted sequences of length-L path 
numbers, and divided cells of partition into 3 categories: not similar; completely similar; similar but not completely. 
The method was tested on several types of graphs with different order, each type with the same order 100 graphs. The 
results indicate that not similar cells can be refined by adding path length to other types or trivial cells if the vertex is 
not similar with all other vertices. For almost all asymmetric graphs, the path length is a small value, e.g., for 
6-regular graphs with 100~1000 vertices the average path length is 4 to get all cells to trivial ones.  
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1. Introduction 

Graph-based methodologies have been proposed as a powerful tool for pattern recognition and 
computer vision starting from the late 1970s [1,2]. All of these approaches are related to problems called 
as graph-matching [3]. 
 Graph-matching problems can be divided into two categories: exact and inexact. The graph 
isomorphism (GI) is the simplest form of exact graph matching, which is still an open question whether it 
is a NP-complete problem or not [4], while other problems such as subgraph isomorphism problem are 
proved to be NP-complete. 
 GI problems can be solved by a type of brute-force backtrack search, while it yield O(n!) time for an 
n-vertex graph in the worst case[5]. This naive approach can be approved by classifying the vertices of 
the graph into more than one class, i.e., a partition of vertex set. Let =( 1,… r) is such a partition, there 

need only 

r

i
i

1

||
 time to match.  
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 The elements of a partition, i(1 i r), are usually called its cells. If | |=1, there is a trivial partition, 
means that  has only one cell, which complexity yield O(n!) time. And if | |=n(the number of vertices), 
i.e., every cell of  has only one vertex, there need only one time to match, while  is called as a discrete 
partition. 
 The complexity of a GI algorithm mainly depends on the efficiency of its partition method, which is 
lower while the values of cells are smaller. The famous Nauty algorithm [6] took a partition method 
according to the number of neighbors in each cells (so-called color-class), which known as the one- 
dimensional Weisfeiler-Lehman method [7], also known as the naive vertex-classification algorithm. 
Miyazaki extended the naive classification algorithm by defining di  as being the number of nodes in the 
ith color class whose distance to v is [5]. Mateus extended Miyazaki’s refinement procedure to a 
generalized function[8]. Zou et al proposed a refinement method by path-numbers used Mateus’ 
function[9]. 
 In this paper, we proposed a partition method according to the value of path-numbers to all other 
vertices like in [9], but didn’t use the Mateus’ function. We give short definitions in section II, and 
describe the partition method in section III, then discuss the results in section IV, finally we make a 
conclusion.  

2. Definitions 

Here, we consider only undirected graphs without parallel edges and loops, i.e., undirected simple 
graph, as showed in Fig.1. Definitions are mainly referenced from graph theory [4] and practical graph 
isomorphism [6].  
 Definition 1: a graph G is an ordered pair (V (G),E(G)) consisting of a set V (G) of vertices and a set 
E(G), together with an incidence function G that associates with each edge of G an unordered pair of 
vertices of G. 
 Definition 2: two graphs G and H are isomorphism, if there is a bijection : V (G) V (H) which 
preserves adjacency (that is, the vertices u and v are adjacent in G if and only if their images (u) and (v) 
are adjacent in H), written G H, else written G! H. 
 Clearly, in Fig.1 there is G! H, but those in Fig.2 are not so easy to estimate. 
 Definition 3: an automorphism of a graph is an isomorphism of the graph to itself. 
 Clearly, there is an automorphism of H in Fig.2 (v1v2v3v4v5v6 v2v3v4v5v6 v1). 
 Definition 4: a partition of graph G is a set of disjoint non-empty subsets of V(G). 
 There is a partition by degree of graph G in Fig.1: ((u1,u6),(u2,u4),(u3,u5)). Cell with only one vertex 
are called as a trivial cell. 
 Definition 5: vertices u and v of a graph G are similar, if there is an automorphism which maps u to 
v, written u v.  

 
Fig.1 Undirected simple graphs 
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Fig.2 Isomorphism and automorphism 

 Vertices of graph G in Fig.1 all are not similar, and of H, there are three subnets of similar 
vertices(called as similar cells): (v5, v6),(v1,v2,v9,v10),(v3,v4,v7,v8). All vertices of graph G (or H) in Fig.2 
are similar. 
 Here, we introduce a new concept which called as completely similar. 
 Definition 6: vertices u and v of a graph G are completely similar, if there is an automorphism which 
maps u to v, and all the other vertices map to themselves, written u v. 
 Vertices of completely similar are definitely similar, but those of similar are not always completely.  

3. Length-L PATH-numbers partition method 

3.1 Original sequences 

To describe our method, we take the form of adjacency matrix for graphs by a random way, i.e., 
label the vertices randomly. Consider two matrixes A and B in (1), which is the one of H in Fig.1? 

0111000000
1011000000
1100100000
1100100000
0011010000
0000101100
0000010011
0000010011
0000001101
0000001110     

0000001110
0000010011
0000110001
0000001110
0010010001
0110100000
1001000100
1001001000
1101000000
0110100000                    

(1)

 

A1            B1 

 Obviously, A1 is the matrix of H, but in fact, B1 is also a matrix of H (labelled vertices in another 
sequence: 6,8,5,1,9, 2,10,7,4,3 replaced v1,v2,…,v9,v10).  
 Compare two matrix, there are two rows (or columns) such as 3,4 and 7,8 are equal to each other 
respectively in A1, while there are two groups of rows are equal (1,5 and 7,10) in B1, though the labels 
are different. Except for those are completely equal, there are rows such as 1,2 and 9,10 in A1 (their 
counterpart are 3,4 and 6,8) are equal to each other which omit themselves. 
 These properties show that there are vertices equal to each other independent of labelling sequence, 
which means those vertices don’t need to be partitioned. 
 It’s easy to validate those vertices are completely similar. A cell i of a partition is completely similar 
if u v for any two vertices u, v i . 
 Graph H in Fig.1, there are four completely similar cells: (v1,v2), (v3,v4), (v7,v8) and (v9,v10). There 
are two cells of G in Fig.2: (u1,u2,u3), (u4,u5,u6).   
 Theorem 1: a completely similar cell doesn’t need to be partitioned. 
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3.2 Sorted sequences 

Those vertices are not completely similar are not equal no matter how to label. Are they all not 
similar? Of course not, vertices 1,9 or 5,6 in A1 are not equal by the original sequence, and their 
counterparts 4,6 or 2,9 in B1 are also not equal, but there is maps vertex 1 to 9 (such as: v1v2v3v4v5 
v6v7v8v9v10 v9v10v8v7v6v5v4v3v1v2) , so vertex 1 and 9 are similar, though they are not completely 
similar. 
 Because the original sequences cannot distinguish vertices are similar or not, we sorted them to 
compare.  
 The sort method in this paper is such a procedure: firstly, every element in each column is sorted in 
descending orders respectively, and then the columns are sorted in ascending orders.  Vertices of not 
completely similar can be partitioned by the sorted sequence of each column. It is to ensure the method 
independent of labelling by sorting the columns. If we didn’t sort the columns, the result would dependent 
on how to label. Though in (2), SA1 and SB1 are equal without sorting the column, C and D in (3) are not 
equal by adding length to 2. 
 Observe matrixes SA1 and SB1 in (2), which are sorted from A and B by elements of columns 
respectively.   

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
1111111111
1111111111
1111111111

    0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
1111111111
1111111111
1111111111

 

                   (2)

 
SA1            SB1 

 It seems that every column is equal to all other columns in SA1 or SB1. We call these vertices 
length-1 similar which are equal by the sorted sequence of length-1 matrix, i.e., the adjacency matrix of 
the graph itself. Clearly, all vertices with same degree are length-1 similar. 
 Length-1 similar vertices don’t mean that they are similar, such as v1 and v5 of H, they are Length-1 
similar but there are no isomorphism maps between them. 
 Because length-1 is not enough for partition, we add length to sort. Observe matrixes C and D in (3), 
which are sorted (by elements without columns) from length-2 matrixes of A and B, i.e., A1(2) and B1(2). 

0000000000
0000000000
0000000000
0000000000
0000000000
1111111111
1111111111
2211221122
2233223322
3333333333      

0000000000
0000000000
0000000000
0000000000
0000000000
1111111111
1111111111
1221212221
3223232223
3333333333

                     (3)

 

C                     D 

 In (3), we can see that if we sort the elements of each column but don’t sort the columns, the matrix 
C are not equal to D, which means the results dependent on labeling order by this way. But if we sort 
them by the columns, we get a same sorted matrix from A1(2) and B1(2), SA2, as showed in (4). 
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0000000000
0000000000
0000000000
0000000000
0000000000
1111111111
1111111111
1111222222
3333222222
3333333333      

0000000000
0000000000
0000000000
1111000022
1111222222
2222222222
2222444422
7777555555
7777777777
7777777777  

                    (4)

 

SA2              SA3 

 Because the matrix of sorted sequence is independent of labeling order, we need only one matrix for 
any given length-L. We use SAL to denote the sorted matrix of length-L according to A, i.e., the sorted 
matrix of A(L).  
 Compare SA2 and SA3, there are two types of columns in SA2 (3,2,2,1,1,0,0,0,0,0 and 
3,3,1,1,1,0,0,0,0,0), and three types of columns in SA3 (7,7,5,2,2,2,2,0,0,0; 7,7,5,4,2,2, 0,0,0,0 and 
7,7,7,2,2,1,1,0,0,0). That’s mean those vertices cannot be partitioned by length-L, which is called as 
length-L similar, may be partitioned by length-(L+1). So we can add the length to refine the partition. 
 Theorem 2: not similar cells can be refined to trivial or similar cells by adding path length. 
 In fact, for lots of graphs, it is easy to partition by a small path length. As in (5), we can detect that 
partition graph G of Fig.1 into a discrete partition only used length-2, let F be the matrix of G.  

010000
101000
010110
001010
001101
000010
       

000000
101000
111000
111110
111111
332211
 

                        (5)

 

F               SF2 

 Are any graphs can be partition to discrete ones by adding path length? The answer is no. For those 
similar vertices, the columns are equal to each other. Compare SA10 in (6) and SA3 in (4), we can find 
that they have the same categories (the first two columns, the middle four columns and the last four 
columns are equal). 

2184218421842184203220322032203233283328
2184218421842184203220322032203234483488
3184318431843184318431843184318434483488
3184318431843184318431843184318456695669
5669566956695669348834883488348856695669
5936593659365936842184218421842159365936
8421842184218421842184218421842159365936
8421842184218421845884588458845884588458
9933993399339933991499149914991484588458
9933993399339933991599159915991586198619

                    (6)

 

SA10 

Theorem 3: Vertex u v if and only if they have same sorted sequence of path number for any 
length to all other vertices. 
 Proof: By definition, if u v, they must have same sorted sequence which is independent of labeling 
order. If u and v have same sorted sequence of path number to all other vertices. By way of contradiction, 
suppose that u and v are not similar, map u to v by , then there must be vertices such as i and j: (i, 
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j)!=( (i), (j)) . Let x be the number of all paths from u to other vertices through (i,j), let y be the number 
of all paths from u to other vertices through ( (i), (j)), clearly, x!=y, then u and v have difference path 
number because maps u to v. It’s contradiction with the premise, so theorem 3 is true.  
 Corollary 1: similar vertices cannot be partitioned by adding path length. 

4. Results and discussion 

4.1 Results 

We test length-L path-numbers partition method on lots of graphs, mainly including three types: 
specific graphs such as regular ring lattice (a graph with n vertices, each connected to its 2k nearest 
neighbours by undirected edges); k-regular graphs; random graphs. 
 Numbers of some specific graphs for similarity are showed in table I. The column without similar 
means that there are no similar vertices in a graph (for any two vertices u and v are not similar), i.e., all 
cells can be partitioned to trivial ones by adding path length. And column of similar but not completely 
means that there are at least two vertices u and v are similar, but no vertices are completely similar. Then 
completely similar column means that there are at least two vertices are completely similar. 
Table 1 Similar Cell in Specific Graphs 

Graphs Without
similar 

Similar not 
completely

Completely 
similar Name Vertices Edges 

Empty n 0 0 0 All 
Kn n n*(n-1)/2 0 0 All 

Kn,m n+m n*m 0 0 All 
Peterson 10 15 0 1 0 
Frucht 12 18 1 0 0 

Heawood 14 21 0 1 0 
Regular ring 

lattice n n*k/2 0 All 0 

 The results shows that complete graph, complete bipartite or empty graph all have completely similar 
vertices. In fact, all vertices of complete and zero graph are completely similar, some specific graphs 
(such as Kn,m) have large size completely cell, yet others (e.g. regular ring lattice) have zero. But all 
vertices of regular ring lattice are similar. For the specific three graphs, vertices of Peterson and Heawood 
are all similar but not completely, while Frucht don’t have any similar vertices. 
 For random graphs and k-regular graphs, we test which have 10,20,…,90,100 vertices with degree or 
average degree of 3,6,9,12, each type 100 graphs. The graphs are denoted a name with type and vertices: 
such as RG03 means that regular graphs with degree of 3; RD06 means random graphs with average 
degree of 6, i.e., with |V|*6/2 edges totally. 
 As showed in Fig.3, graph numbers with completely similar vertices decreased rapidly according to 
the increasing of degree. For graphs with 9 and 12 degree, they almost don’t have any completely graphs 
except for those with 10 vertices, so they are not included in the figure. Only numbers of random graphs 
with average degree 3 increased with the increasing of vertex number. 
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Vertex Numbers (|V|/10) 

Fig.3 Graphs with Completely Similar Vertices 

 As showed in Fig.4, graph numbers without any similar vertices (so-called asymmetric graphs). The 
number of asymmetric graphs increases with the increasing of vertex number or degree except for random 
graphs with average degree 3. 
 Then, for asymmetric graphs, how long the path length is needed to get a discrete partition? We test 
random graphs and k-regular graphs with 100,200,…1000 vertices. We find that all random graphs are 
easier to partition than those k-regular with the same vertices and degree. All 6-regular graphs with 
100-1000 vertices are asymmetric and with a very small value about 4 times to get a discrete partition. 
The maximal value we find is in 3-regular graphs with 100 vertices, so we test 1000 of this type, and 
6-regular graphs, the results are showed in Fig.5. 

4.2 Discussion 

The partition methods used in [6-9] are all take iterating algorithms. Those in [6-8] take the 
difference metrics, so we don’t compare them here. Ref. [9] uses the path length as metrics too, their 
method is defined a function as in (7): 
Q (v)=( (v),SORT{(i,d,n,c)})           (7) 
 Where is a partition, i is cell i, d is a shortest distance, n is the path-number, and c is the similar 
vertex number according to this condition.  
 So, our method is difference from those in [9], though we use a same metrics.  
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Fig.4 Graphs without Similar Vertices 
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Fig.5 Length-value to discrete partition of 3-regular with 100 vertices 

5. Conclusion 

GI is an unsolved problem which is very important to graph-based pattern recognition and computer 
vision. In this paper, we proposed a length-L path-number partition method to study the similarity of 
graph vertices.  
 Firstly we divided vertices into 3 categories: not similar, completely similar, and similar but not 
completely. Then we illustrated the method in detail. Finally we tested the method on many graphs. 
 The conclusion of our research is that completely similar vertices don’t need to and cannot be 
partitioned. For almost asymmetric graphs, only a small value of path-length is needed to partition a 
graph to discrete ones. 
 For those of similar but not completely, cannot be partitioned by adding path-length, which need a 
dynamic way, and this will be our works in the future. 
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