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We give a very simple function theoretic proof to a Liouville type theorem for
harmonic functions defined on exterior domains obtained and proved in a convex-
ity theoretic method by F. Cammaroto and A. Chinni. The theorem itself is also
slightly generalized.  © 2001 Academic Press
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We denote by C the complex plane so that points z in C are complex
numbers z = x + iy, where x and y are real numbers. Cammaroto and
Chinni [2] obtained in essence the following result.

THEOREM 1. Let K be a compact set in C such that C\ K is connected
and u be a harmonic function on C\ K bounded from below. Then the
function u is constant on C\ K if and only if the inequality

\Vu(2)||1Vu, (2)| < |Vu, (2)° (D)
holds for every z = x + iy in C\ K.
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Actually K was supposed to be a nonempty compact convex set of C
and the additional hypothesis

lim u(2) =

zZ>® |Z|

0 (2)

was postulated in [2], where o« is the point at infinity of C so that
C == C U {0} is the extended complex plane (i.e., Riemann sphere). Espe-
cially in [2] it is explicitly asked whether (2) can be removed or not. Thus
we claim here that Theorem 1 above is slightly more general than the
original Cammaroto—Chinni main theorem in [2] in the respect that the
convexity of K and the hypothesis (2) are not postulated.

The Cammaroto—Chinni proof, which is very interesting in its own right,
of their main theorem which is more restricted than the above Theorem 1,
relies essentially upon a functional analytic technique, especially on a
result in convexity theory. The purpose of this paper is to give an elemen-
tary, simple, and direct proof of Theorem 1 by using only an introductory
function theory of the undergraduate level.

Proof of Theorem 1. The constancy of u trivially implies (1) and thus we
only have to prove assuming (1) that u is constant on C \ A(0, R) in view
of the uniqueness theorem for harmonic functions, where A(0, R) is
the open disc of radius R > 0 centered at the origin 0 containing K
and A(0, R) is the closure of A(0, R). On replacing u by u — infe xu
if necessary, we may assume without loss of generality that u > 0 on
C\ A(0, R). Hence u is harmonic and nonnegative on C \ A(0, R). Then
u(1/z) is harmonic and nonnegative on A(0,1/R)\ {0} and hence the
Picard principle or the principle of positive singularity or the Bocher
theorem (cf., e.g., [1, p. 50; 3]) assures that there are a nonnegative real
constant ¢ and a harmonic function w on A(0,1/R) such that

u(;) =c10g|—1| +w(2) (3)

for z € A(0,1/R)\ {0}. Observe that v given by v(z) := w(l/z) is har-
monic and automatically bounded on C \ A(0, R) and

u(z) = cloglzl + v(z) (4)
for z in C\ A(0, R). Then we have
X
u(z) =uv.(z) + Cx2—+yz’

(5)

y
Lly(Z) = Uy(Z) + sz—_’_yz.
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The function f given by

f(Z) :ux(z) _iuy(z) (6)
is holomorphic on C \ A(0, R). We also consider the function g given by
8(2) =v.(z) —iv,(2). (7)

Then g is holomorphic on C\ A(0, R). From (5), (6), and (7), it follows
that

1) =g(2) + (8)

for z in C \ A(0, R). In order to conclude that u is constant on C \ A(0, R)
it suffices to prove that ¢ = 0 and g(z) = 0 on C\ A(0, R).

We denote by f' the complex derivative df/dz of f which is identical
with df/dx. Observe that

2 .2 2
Vul® = u; +uj = lu, —w | =|fI,

2 . 2 2
[Vu |” =u? + u2 =(u, - luy)xl =|f'I%,

|Vuxx|2 = Uixx + uxxy |(I/£x - iuy)xx|2 = |f”|2‘
These with (1) imply that

() (D) =1 (2) %)

for every z in C \ A(0, R).

Recall that v is harmonic on € \ A0, R). Consider the function G = v
+iv* with the harmonic conjugate v* to v on €\ A, R), which is
holomorphic and automatically bounded on (E \ A0, R) since C\ A0, R)
is contained in a simply connected domain C \ A(0, R") with 0 < R’ < R
sufficiently close to R so that A(0, R’) contains K and v is harmonic on
C\ A, R). Then G' = v, + ¥ = v, —iv, =g on C\ A(0, R). Let the
Taylor expansion of G(z) about o be

a.
G(z) = -
(2) j§0 z/
for z in C\ A(0, R). Then from g = G’ on C \ A(0, R) it holds that
C.
g(z2)= X (10)
j=2 %

for z in C\ A(0, R) by setting ¢; == —(j — Da;_, (j = 2).
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We now show that ¢ = 0 and g(z) = 0. To begin with we prove that
¢ = 0. For this purpose we use (8) and (10) to deduce the relations

fz) =2+ r 2 7
j=2 z
c Je
f(z) = 52 ]gz [TERR
2c Jj(j + D
"(2) = —5 + Y ———1,
f(2) 3 j§2 Si+2
which with (9) yield that
o 2
j(j + De; c jc
St E D e + X 55 (11)
]>2 j=2 j=2
or, by multiplying |z| |23 = [z2|* to both sides of (11), we have
o . 2
c; + 1)c; C;
Y jil+c Zj(jj—_l)1+2cszjj_jl+c (12)
jz2 % jz2 % j=2 2

for z in C\ A(0, R). On letting z — o in (12) we deduce 2lel* < el?,
which concludes that ¢ = 0.

Finally we wish to show that g(z) = 0. On the contrary assume that
g(z) # 0. Then there is the smallest k > 2 among numbers j > 2 with
¢; # 0. Then

g(z) = Zk— (cp #0, k>2)

for z € C\ A0, R). In view of ¢ = 0, (11) takes the form

j(j+ 1)Cj ’
)

jcj

Zj+1

C.
J
X

j=k %

)»

ik

)»

ik

<

Multiplying |z*]|z%*2| = |F+1)?

inequality, we obtain

to the both sides of the above displayed

](] )

e+ Z—

]>k

k(k+ 1)c, + Y

j>k

Jjc
s‘kck + Y z]’]k

i>k
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for z in C \ A(0, R). On making z — % in the above displayed inequality,
we see that |c,||k(k + Dc,| < Ikckl2 so that k + 1 < k since [c,| # 0, a
contradiction. |1
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