Extensions of barrier sets to nonzero roots of the matching polynomial

Cheng Yeaw $\mathrm{Ku}^{\text {a,* }}$, Kok Bin Wong ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, National University of Singapore, Singapore 117543, Singapore
${ }^{\mathrm{b}}$ Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

A R T I C L E I N F O

Article history:

Received 18 June 2009
Received in revised form 30 August 2010
Accepted 1 September 2010
Available online 22 September 2010

Keywords:

Matching polynomial
Gallai-Edmonds decomposition
Barrier sets
Extreme sets

Abstract

In matching theory, barrier sets (also known as Tutte sets) have been studied extensively due to their connection to maximum matchings in a graph. For a root θ of the matching polynomial, we define θ-barrier and θ-extreme sets. We prove a generalized Berge-Tutte formula and give a characterization for the set of all θ-special vertices in a graph.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

All the graphs in this paper are simple and finite.
Definition 1.1. An r-matching in a graph G is a set of r edges, no two of which have a vertex in common. The number of r-matchings in G will be denoted by $p(G, r)$. Set $p(G, 0)=1$. The matching polynomial of G is defined by

$$
\mu(G, x)=\sum_{r=0}^{\lfloor n / 2\rfloor}(-1)^{r} p(G, r) x^{n-2 r} .
$$

In [1], Chen and Ku developed a Gallai-Edmonds decomposition associated to a root θ of the matching polynomial, generalizing the usual one which is the special case where $\theta=0$. Note that 0 is a root of the matching polynomial if and only if the graph has no perfect matching. In this paper, we extend the notions of barrier and extreme sets to θ-barrier and θ-extreme sets and show connections with the Gallai-Edmonds decomposition for general θ.

We shall denote the multiplicity of θ as a root of $\mu(G, x)$ by mult $\theta, G)$. In particular, mult $(\theta, G)=0$ if and only if θ is not a root of $\mu(G, x)$.

The following are properties of $\mu(G, x)$.
Theorem 1.2 (Theorem 1.1 on $p .2$ of [2]).
(a) $\mu(G \cup H, x)=\mu(G, x) \mu(H, x)$ when G and H are disjoint graphs,
(b) $\mu(G, x)=\mu(G-e, x)-\mu(G \backslash u v, x)$ if $e=\{u, v\}$ is an edge of G,
(c) $\mu(G, x)=x \mu(G \backslash u, x)-\sum_{i \sim u} \mu(G \backslash u i, x)$, where $i \sim u$ means i is adjacent to u,
(d) $\frac{\mathrm{d}}{\mathrm{d} x} \mu(G, x)=\sum_{i \in V(G)} \mu(G \backslash i, x)$, where $V(G)$ is the vertex set of G.

[^0]It is well known that all roots of $\mu(G, x)$ are real (see [5] and in particular [2, Corollary 1.2]). By Theorem 5.3 on p. 29 and Theorem 1.1 on p. 96 of [2], one can easily deduce the following lemma (see also [4]).

Lemma 1.3. If G is a graph and $u \in V(G)$, then

$$
\operatorname{mult}(\theta, G)-1 \leq \operatorname{mult}(\theta, G \backslash u) \leq \operatorname{mult}(\theta, G)+1
$$

As a consequence of Lemma 1.3, we can classify the vertices in a graph with respect to θ as follows.
Definition 1.4 (See [3, Section 3]). For any $u \in V(G)$,
(a) u is θ-essential if $\operatorname{mult}(\theta, G \backslash u)=\operatorname{mult}(\theta, G)-1$,
(b) u is θ-neutral if $\operatorname{mult}(\theta, G \backslash u)=\operatorname{mult}(\theta, G)$,
(c) u is θ-positive if $\operatorname{mult}(\theta, G \backslash u)=\operatorname{mult}(\theta, G)+1$.

Furthermore, when u is not θ-essential but is adjacent to some θ-essential vertex, we say that u is θ-special.
It turns out that θ-special vertices play an important role in the Gallai-Edmonds decomposition of a graph (see [1]). One of the results in this paper is a characterization of the set of these vertices in terms of θ-barriers.

Note that, if $\operatorname{mult}(\theta, G)=0$, then, for any $u \in V(G), u$ is either θ-neutral or θ-positive, and no vertices in G can be θ-special. By Corollary 4.3 of [3], a θ-special vertex is θ-positive. Let $D_{\theta}(G), A_{\theta}(G)$, and $N_{\theta}(G)$, respectively, denote the sets of θ-essential, θ-special, and θ-neutral vertices, and let $P_{\theta}(G)$ denote the set of vertices that are θ-positive but not θ-special. These four sets partition $V(G)$.

Note that there are no 0 -neutral vertices. If there were, then there would be a vertex, say u, with mult $(0, G)=$ mult $(0, G \backslash u)$. There is then a maximum matching that does not cover u, and so $u \in D_{0}(G)$, a contradiction, for $D_{0}(G)$ is the set of all points in G which are not covered by at least one maximum matching of G (see [11, Section 3.2 on p. 93] for the details). Thus $N_{0}(G)=\varnothing$ and $V(G)=D_{0}(G) \cup A_{0}(G) \cup P_{0}(G)$.

Definition 1.5 (See [3, Section 3]). A graph G is said to be θ-critical if all vertices in G are θ-essential and mult $\theta, G)=1$.
The Gallai-Edmonds structure theorem describes a certain canonical decomposition of $V(G)$ with respect to the zero root of $\mu(G, x)$.

Theorem 1.6 (Theorem 1.5 of [1]). Let G be a graph with θ a root of $\mu(G, x)$. If $u \in A_{\theta}(G)$, then
(i) $D_{\theta}(G \backslash u)=D_{\theta}(G)$,
(ii) $P_{\theta}(G \backslash u)=P_{\theta}(G)$,
(iii) $N_{\theta}(G \backslash u)=N_{\theta}(G)$,
(iv) $A_{\theta}(G \backslash u)=A_{\theta}(G) \backslash\{u\}$.

Theorem 1.7 (Theorem 1.7 of [1]). If G is connected and every vertex of G is θ-essential, then $\operatorname{mult}(\theta, G)=1$.
By Theorems 1.6 and 1.7, it is not hard to deduce the following, whose proof is omitted.

Corollary 1.8.

(i) $A_{\theta}\left(G \backslash A_{\theta}(G)\right)=\varnothing, D_{\theta}\left(G \backslash A_{\theta}(G)\right)=D_{\theta}(G), P_{\theta}\left(G \backslash A_{\theta}(G)\right)=P_{\theta}(G)$, and $N_{\theta}\left(G \backslash A_{\theta}(G)\right)=N_{\theta}(G)$.
(ii) $G \backslash A_{\theta}(G)$ has exactly $\left|A_{\theta}(G)\right|+$ mult $(\theta, G) \theta$-critical components.
(iii) If H is a component of $G \backslash A_{\theta}(G)$, then either H is θ-critical or mult $(\theta, H)=0$.
(iv) The subgraph induced by $D_{\theta}(G)$ consists of all the θ-critical components in $G \backslash A_{\theta}(G)$.

Consider the Gallai-Edmonds decomposition of the graph G in Fig. 1 for $\theta=0$ and $\theta=1$. For $\theta=0$, it is the usual Gallai-Edmonds decomposition (see [11, Section 3.2 on p. 93]). First note that mult $(1, G)=1=\operatorname{mult}(0, G)$.

For $\theta=1$, we have $A_{1}(G)=\left\{u_{1}\right\}, D_{1}(G)=\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}, P_{1}(G)=\left\{u_{7}, u_{10}\right\}$, and $N_{1}(G)=\left\{u_{6}, u_{8}, u_{9}, u_{11}, u_{12}, u_{13}\right\}$. Now $C_{1}, C_{2}, C_{3}, C_{4}$ are the only components in $G \backslash A_{1}(G)$. Note that C_{1} and C_{2} are 1-critical, and mult $\left(1, C_{3}\right)=0=\operatorname{mult}\left(1, C_{4}\right)$.

For $\theta=0$, we have $A_{0}(G)=\left\{u_{2}, u_{4}, u_{7}, u_{8}, u_{10}\right\}, D_{0}(G)=\left\{u_{1}, u_{3}, u_{5}, u_{6}, u_{9}, u_{12}\right\}$, and $P_{0}(G)=\left\{u_{11}, u_{13}\right\}$. Now all components in $G \backslash A_{0}(G)$ consist of a single vertex except H (see Fig. 2). The single vertex is 0 -critical, and mult $(0, H)=0$.

Let G be a graph. The deficiency of G, denoted by $\operatorname{def}(G)$, is defined to be the number of points left uncovered by any maximum matching. Let the number of odd components in G be denoted by $o(G)$. Then $\operatorname{def}(G)=\max _{X \subseteq V(G)} o(G \backslash X)-|X|$ (see [11, Theorem 3.1.14 on p. 90]), and this is called the Berge-Tutte formula. Note that the multiplicity of 0 as a root of $\mu(G, x)$ is $|V(G)|$ minus the largest r for which there is a matching of size r. Therefore mult $(0, G)=\operatorname{def}(G)$, and the following theorem follows.

Theorem 1.9. $\operatorname{mult}(0, G)=\max _{X \subseteq V(G)} o(G \backslash X)-|X|$.

Fig. 1.

Fig. 2.
Definition 1.10. Motivated by the Berge-Tutte formula, a barrier set is defined to be a set $X \subseteq V(G)$ for which mult $(0, G)=$ $o(G \backslash X)-|X|$. An extreme set is defined to be a set for which $\operatorname{mult}(0, G \backslash X)=\operatorname{mult}(0, G)+|X|$.

It should be noted that the standard terminology for a barrier set is a Tutte set in the classical matching theory.
Properties of extreme and barrier sets can be found in [11, Section 3.3]. In fact a barrier set is an extreme set. An extreme set is not necessarily a barrier set, but it can be shown that an extreme set is contained in some barrier set. In general, the union or intersection of two barrier sets is not a barrier set. However, it can be shown that the intersection of two (inclusionwise) maximal barrier sets is a barrier set. The $A_{0}(G)$ is both a barrier set and an extreme set. It can be shown that $A_{0}(G)$ is in fact the intersection of all the maximal barrier sets in G. We shall extend this fact to $A_{\theta}(G)$ (see Theorem 3.6).

In the next section, we prove a version of the Berge-Tutte formula extended to general θ. Let the number of θ-critical components in G be denoted by $c_{\theta}(G)$.

Theorem 2.1 (Generalized Berge-Tutte Formula).

$$
\operatorname{mult}(\theta, G)=\max _{X \subseteq V(G)} c_{\theta}(G \backslash X)-|X| .
$$

Definition 1.11. Motivated by the generalized Berge-Tutte formula, we define a θ-barrier set to be a set $X \subseteq V(G)$ for which $\operatorname{mult}(\theta, G)=c_{\theta}(G \backslash X)-|X|$.

We define a θ-extreme set to be a set $X \subseteq V(G)$ for which $\operatorname{mult}(\theta, G \backslash X)=\operatorname{mult}(\theta, G)+|X|$.
The main theorem of this paper, which is proved in Section 3, is the following.
Theorem 3.6. If $N_{\theta}(G)=\varnothing$, then $A_{\theta}(G)$ is the intersection of all maximal θ-barrier sets in G.
We emphasize that this paper is built up by generalizing some of the statements given in Chapter 3 of Lovász and Plummer's book [11] to the roots of the matching polynomial. Almost all proofs here have a resemblance to those found in [11]. The novelty of this paper is to merge the tools developed by Godsil [3] with the Lovász-Plummer investigations. This paper also fits into a series of papers [6-10] by the authors about the generalization of the results of classical matching theory with respect to the roots of the matching polynomial.

2. Properties of $\boldsymbol{\theta}$-barrier sets

An immediate consequence of part (a) of Theorems 1.2 and 1.7 is the following inequality, which we use frequently.

$$
\begin{equation*}
\operatorname{mult}(\theta, G) \geq c_{\theta}(G) \quad \text { for any graph } G . \tag{1}
\end{equation*}
$$

We prove the following analogue of the Berge-Tutte formula. The proof is similar to that of the generalization of Tutte's theorem due to the authors in [7]. For the sake of completeness, we repeat the statement.

Theorem 2.1 (Generalized Berge-Tutte Formula).

$$
\operatorname{mult}(\theta, G)=\max _{X \subseteq V(G)} c_{\theta}(G \backslash X)-|X| .
$$

Fig. 3.
Proof. We claim that $c_{\theta}(G \backslash X) \leq|X|+\operatorname{mult}(\theta, G)$ for all $X \subseteq V(G)$. If not, then $c_{\theta}(G \backslash X)>|X|+\operatorname{mult}(\theta, G)$ for some $X \subseteq V(G)$. Recall that mult $(\theta, G \backslash X) \geq c_{\theta}(G \backslash X)$. Together with Lemma 1.3, we have mult $(\theta, G) \geq \operatorname{mult}(\theta, G \backslash X)-|X|>$ $\operatorname{mult}(\theta, G)$, a contradiction.

Now it suffices to show that there is a set $X \subseteq V(G)$ for which mult $(\theta, G)=c_{\theta}(G \backslash X)-|X|$. Take $X=A_{\theta}$ (G); by (ii) of Corollary 1.8 we are done.

Note that the definitions of 0-extreme set and extreme set coincide, but the definitions of 0-barrier set and barrier set are different. Our next proposition shows that a 0 -barrier set is a barrier set.

Proposition 2.2. A 0-barrier set is a barrier set.
Proof. If X is a 0 -barrier set, then $c_{0}(G \backslash X)=\operatorname{mult}(0, G)+|X|$. Note that $c_{0}(G \backslash X) \leq o(G \backslash X)$. Using Theorem 1.9, we conclude that $o(G \backslash X)=\operatorname{mult}(0, G)+|X|$. Hence X is a barrier set.

The converse of Proposition 2.2 is not true. The graph G in Fig. 3 is well known (see [11, Figure 3.3 .1 on p. 105]). Note that $X=\{u, v\}$ is a barrier set in G, but it is not a 0 -barrier set.

A weak converse of Proposition 2.2 can be easily proved by using part (b) of Exercise 3.3.18 on p. 109 of [11].
Proposition 2.3. A (inclusionwise) maximal barrier set is a maximal 0-barrier set.
Now we shall study the properties of θ-barrier and θ-extreme sets.
Lemma 2.4. A subset of a θ-extreme set is $a \theta$-extreme set.
Proof. Let X be an θ-extreme set, and consider $Y \subseteq X$. Now mult $(\theta, G \backslash X)=\operatorname{mult}(\theta, G)+|X|$. By Lemma 1.3, mult $(\theta, G \backslash Y)$ $\leq \operatorname{mult}(\theta, G)+|Y|$. If Y is not θ-extreme, then $\operatorname{mult}(\theta, G \backslash Y)<\operatorname{mult}(\theta, G)+|Y|$, and by Lemma 1.3 again, mult $(\theta, G \backslash X) \leq$ $\operatorname{mult}(\theta, G \backslash Y)+|X \backslash Y|<\operatorname{mult}(\theta, G)+|X|$, a contradiction. Hence a subset of an θ-extreme set is θ-extreme.

Lemma 2.5. If X is a θ-barrier [θ-extreme] set and $Y \subseteq X$, then $X \backslash Y$ is a θ-barrier [θ-extreme] set in $G \backslash Y$.
Proof. Note that $c_{\theta}(G \backslash X)=|X|+\operatorname{mult}(\theta, G)$. By Theorem 2.1 and Lemma 1.3, $c_{\theta}(G \backslash X) \leq|X \backslash Y|+\operatorname{mult}(\theta, G \backslash Y) \leq$ $|X \backslash Y|+\operatorname{mult}(\theta, G)+|Y|=|X|+\operatorname{mult}(\theta, G)$. Hence $c_{\theta}(G \backslash X)=|X \backslash Y|+\operatorname{mult}(\theta, G \backslash Y)$, and $X \backslash Y$ is a θ-barrier set in $G \backslash Y$.

Lemma 2.6. Every θ-extreme set of G lies in $a \theta$-barrier set.
Proof. If X is a θ-extreme set and $T=A_{\theta}(G \backslash X) \cup X$, then

$$
\begin{aligned}
c_{\theta}(G \backslash T) & =c_{\theta}\left(G \backslash\left(A_{\theta}(G \backslash X) \cup X\right)\right) \\
& =c_{\theta}\left((G \backslash X) \backslash A_{\theta}(G \backslash X)\right) \\
& =\left|A_{\theta}(G \backslash X)\right|+\operatorname{mult}(\theta, G \backslash X) \quad \text { (by (ii) of Corollary 1.8) } \\
& =\left|A_{\theta}(G \backslash X)\right|+\operatorname{mult}(\theta, G)+|X| \quad(X \text { is } \theta \text {-extreme) } \\
& =|T|+\operatorname{mult}(\theta, G),
\end{aligned}
$$

and hence T is a θ-barrier set.
Lemma 2.7. If X is a θ-barrier set, then X is a θ-extreme set.
Proof. Recall from (1) that $\operatorname{mult}(\theta, G \backslash X) \geq c_{\theta}(G \backslash X)$. Since $c_{\theta}(G \backslash X)=|X|+\operatorname{mult}(\theta, G)$, by Lemma 1.3, we have $\operatorname{mult}(\theta, G) \geq \operatorname{mult}(\theta, G \backslash X)-|X| \geq c_{\theta}(G \backslash X)-|X|=\operatorname{mult}(\theta, G)$.

Hence $\operatorname{mult}(\theta, G \backslash X)=\operatorname{mult}(\theta, G)+|X|$, and X is a θ-extreme set.
Note that in general a θ-extreme set is not a θ-barrier set. In Fig. $3, X_{1}=\{u\}$ is a 0 -extreme set but is not a 0 -barrier set. Furthermore, in Fig. 1, $X_{2}=\left\{u_{1}, u_{10}\right\}$ is a 1-extreme set but is not a 1-barrier set.

Lemma 2.8. If X is a θ-barrier set and H is a component of $G \backslash X$, then either H is θ-critical or mult $(\theta, H)=0$.

Proof. Note that $c_{\theta}(G \backslash X)=|X|+\operatorname{mult}(\theta, G)$. By Lemma 2.7, X is a θ-extreme set. Therefore mult $(\theta, G \backslash X)=\operatorname{mult}(\theta, G)+$ $|X|=c_{\theta}(G \backslash X)$. Now, if H is not θ-critical and $\operatorname{mult}(\theta, H)>0$, then, by part (a) of Theorem 1.2, mult $(\theta, G \backslash X)>c_{\theta}(G \backslash X)$, a contradiction. Hence either H is θ-critical or $\operatorname{mult}(\theta, H)=0$.

Lemma 2.9. Let X be a maximal θ-barrier set. If H is a component of $G \backslash X$ and mult $(\theta, H)=0$, then, for all $u \in V(H)$, u is θ-neutral in H. Furthermore, if $Y \subseteq V(H)$ and $Y \neq \varnothing$, then $c_{\theta}(H \backslash Y) \leq|Y|-1$.

Proof. If H has a θ-positive vertex, say u, then $\operatorname{mult}(\theta, H \backslash u)=1$. By (ii) of Corollary 1.8, $c_{\theta}\left((H \backslash u) \backslash A_{\theta}(H \backslash u)\right)=$ $\left|A_{\theta}(H \backslash u)\right|+\operatorname{mult}(\theta, H \backslash u)=\left|A_{\theta}(H \backslash u)\right|+1$. Now

$$
\begin{aligned}
c_{\theta}\left(G \backslash\left(X \cup\{u\} \cup A_{\theta}(H \backslash u)\right)\right) & =c_{\theta}(G \backslash X)+c_{\theta}\left((H \backslash u) \backslash A_{\theta}(H \backslash u)\right) \\
& =|X|+\operatorname{mult}(\theta, G)+\left|A_{\theta}(H \backslash u)\right|+1 \\
& =\left|X \cup\{u\} \cup A_{\theta}(H \backslash u)\right|+\operatorname{mult}(\theta, G),
\end{aligned}
$$

and so $X \cup\{u\} \cup A_{\theta}(H \backslash u)$ is a θ-barrier in G, a contradiction to the maximality of X. Hence, for all $u \in V(H)$, u is θ-neutral in H.

Since $Y \neq \varnothing$, we may choose $y \in Y$. Let $Y^{\prime}=Y \backslash y$ and $H^{\prime}=H \backslash y$. Note that mult $(\theta, H \backslash y)=0$ since y is θ-neutral in H. By Theorem 2.1, $c_{\theta}\left(H^{\prime} \backslash Y^{\prime}\right) \leq\left|Y^{\prime}\right|$. Since $H \backslash Y=H^{\prime} \backslash Y^{\prime}$, we have $c_{\theta}(H \backslash Y) \leq|Y|-1$.

Lemma 2.10. If G is θ-critical, then, for all $Y \subseteq V(G)$ and $Y \neq \varnothing, c_{\theta}(G \backslash Y) \leq|Y|-1$.
Proof. Since $Y \neq \varnothing$, we may choose $y \in Y$. Let $Y^{\prime}=Y \backslash y$ and $G^{\prime}=G \backslash y$. Note that mult $(\theta, G \backslash y)=0$ since y is θ-essential in G. By Theorem 2.1, $c_{\theta}\left(G^{\prime} \backslash Y^{\prime}\right) \leq\left|Y^{\prime}\right|$. Since $G \backslash Y=G^{\prime} \backslash Y^{\prime}$, we have $c_{\theta}(G \backslash Y) \leq|Y|-1$.

In general, the union of two θ-barrier sets is not necessarily a θ-barrier set. In Fig. 3, $X_{3}=\{u, v, w\}$ and $X_{4}=\{v, w, z\}$ are two 0-barrier sets, but $X_{3} \cup X_{4}$ is not a 0-barrier set. In Fig. $1, X_{5}=\left\{u_{1}, u_{7}\right\}$ and $X_{6}=\left\{u_{1}, u_{10}\right\}$ are 1-barrier sets and $X_{5} \cup X_{6}$ is a 1-barrier set. Let C_{3} be a cycle with three vertices. Every set containing a single vertex of C_{3} is a 1-barrier set, but the union of two such sets is not 1-barrier set.

However, the intersection of two θ-barrier sets is a θ-barrier set. We shall prove this fact in Theorem 3.10. At present, let us use the results in this section to prove a weaker version.

Theorem 2.11. The intersection of two maximal θ-barrier sets is a θ-barrier set.
Proof. Let X and Y be two maximal θ-barrier sets. Let $G_{1}, G_{2}, \ldots, G_{k}$ be the θ-critical components of $G \backslash X$ and $H_{1}, H_{2}, \ldots, H_{m}$ be the components of $G \backslash Y$. Note that $k=|X|+\operatorname{mult}(\theta, G)$. Let $X_{i}=X \cap V\left(H_{i}\right), Y_{i}=Y \cap V\left(G_{i}\right)$, and $Z=X \cap Y$. By relabelling if necessary, we may assume that $X_{1}, \ldots, X_{m_{1}} \neq \varnothing$ and $Y_{1}, \ldots, Y_{k_{1}} \neq \varnothing$, but $X_{m_{1}+1}=\cdots=X_{m}=Y_{k_{1}+1}=\cdots=Y_{k}=\varnothing$, and also that $k_{1} \leq m_{1}$. Note that $G_{k_{1}+1}, \ldots, G_{k}$ are θ-critical components in $(G \backslash X) \backslash Y$, so each is contained in a component of $G \backslash Y$.

Next we count the indices i with $k_{1}+1 \leq i \leq k$ such that G_{i} is contained in some H_{j}. If $m_{1}+1 \leq j \leq m$, then H_{j} is a component in $(G \backslash X) \backslash Y$. So, if $G_{i} \subseteq H_{j}$, then $G_{i}=H_{j}$. Furthermore, G_{i} is a component of $G \backslash Z$. By Theorem 2.1, the number of such G_{i} 's is at most $c_{\theta}(G \backslash Z) \leq|Z|+\operatorname{mult}(\theta, G)$.

Suppose that $1 \leq j \leq m_{1}$. If $G_{i_{1}}, \ldots, G_{i_{t}}$ are contained in H_{j}, then they are θ-critical components in $H_{j} \backslash X_{j}$. By Lemma 2.8, either H_{j} is θ-critical or $\operatorname{mult}(\theta, H)=0$. If $\operatorname{mult}(\theta, H)=0$, then, by Lemma 2.9, $c_{\theta}\left(H_{j} \backslash X_{j}\right) \leq\left|X_{j}\right|-1$. If H_{i} is θ-critical, then, by Lemma 2.10, $c_{\theta}\left(H_{j} \backslash X_{j}\right) \leq\left|X_{j}\right|-1$. Therefore, in either case, $t \leq\left|X_{j}\right|-1$.

The number of G_{i}^{\prime} s where $k_{1}+1 \leq i \leq k$ that are disjoint from Y is at most

$$
\begin{aligned}
c_{\theta}(G \backslash Z)+\sum_{j=1}^{m_{1}}\left(\left|X_{j}\right|-1\right) & \leq|Z|+\operatorname{mult}(\theta, G)+|X \backslash Z|-m_{1} \\
& =|X|+\operatorname{mult}(\theta, G)-m_{1} \\
& =k-m_{1} \\
& \leq k-k_{1} .
\end{aligned}
$$

Since this number is exactly $k-k_{1}$, we infer that equality must hold throughout. Hence $c_{\theta}(G \backslash Z)=|Z|+\operatorname{mult}(\theta, G)$, and Z is a θ-barrier set.

3. Characterizations of $\boldsymbol{A}_{\boldsymbol{\theta}}(\boldsymbol{G})$

A characterization of $A_{\theta}(G)$ is that it is the unique inclusion-minimal θ-barrier set (see Theorem 3.5). If $N_{\theta}(G)=\varnothing$, then another characterization of $A_{\theta}(G)$ is that it is the intersection of all maximal θ-barrier sets in G (see Theorem 3.6).

Lemma 3.1. If X is a θ-barrier set or a θ-extreme set, then $X \subseteq A_{\theta}(G) \cup P_{\theta}(G)$.

Fig. 4.
Proof. By Lemma 2.7, we may assume that X is θ-extreme. Let $x \in X$. By Lemma $2.4,\{x\}$ is a θ-extreme set. Therefore $\operatorname{mult}(\theta, G \backslash x)=\operatorname{mult}(\theta, G)+1$, and x is θ-positive. Hence $x \in A_{\theta}(G) \cup P_{\theta}(G)$, and $X \subseteq A_{\theta}(G) \cup P_{\theta}(G)$.

Lemma 3.2. Let X be a θ-barrier set. If $X \subseteq A_{\theta}(G)$, then $X=A_{\theta}(G)$.
Proof. Note that $c_{\theta}(G \backslash X)=\operatorname{mult}(\theta, G)+|X|$. By Lemma 2.8, we conclude that $A_{\theta}(G \backslash X)=\varnothing$. By Theorem 1.6, $A_{\theta}(G \backslash X)$ $=A_{\theta}(G) \backslash X$. Hence $X=A_{\theta}(G)$.

We shall need the following result of Godsil [3].
Theorem 3.3 (Theorem 4.2 of [3]). If θ is a root of $\mu(G, x)$ with non-zero multiplicity k and we let u be a θ-positive vertex in G, then
(a) if v is θ-essential in G, then it is θ-essential in $G \backslash u$;
(b) if v is θ-positive in G, then it is θ-essential or θ-positive in $G \backslash u$;
(c) if u is θ-neutral in G, then it is θ-essential or θ-neutral in $G \backslash u$.

Lemma 3.4. If $u \in P_{\theta}(G)$, then $A_{\theta}(G) \subseteq A_{\theta}(G \backslash u)$.
Proof. If $A_{\theta}(G)=\varnothing$, then we are done. Suppose that $A_{\theta}(G) \neq \varnothing$. If $v \in A_{\theta}(G)$, then v is adjacent to a θ-essential vertex w. By Theorem 3.3, w is θ-essential in $G \backslash u$, and v is either θ-positive or θ-essential in $G \backslash u$. If v is θ-essential in $G \backslash u$, then $\operatorname{mult}(\theta, G \backslash u v)=\operatorname{mult}(\theta, G)$. By Theorem 1.6, $u \in P_{\theta}(G)=P_{\theta}(G \backslash v$). Since v is θ-special in G, v is θ-positive in G (see Corollary 4.3 of [3]). Hence $\operatorname{mult}(\theta, G \backslash u v)=\operatorname{mult}(\theta, G)+2$, a contradiction. Therefore v is θ-positive in $G \backslash u$. Since v is adjacent to w, we must have $v \in A_{\theta}(G \backslash u)$. Hence $A_{\theta}(G) \subseteq A_{\theta}(G \backslash u)$.

Theorem 3.5. If X is a θ-barrier set in G, then $A_{\theta}(G) \subseteq X$. In particular, $A_{\theta}(G)$ is the unique minimal θ-barrier set.
Proof. By Lemma 3.1, $X \subseteq A_{\theta}(G) \cup P_{\theta}(G)$. We shall prove the result by induction on $\left|X \cap P_{\theta}(G)\right|$. If $\left|X \cap P_{\theta}(G)\right|=0$, then $X \subseteq A_{\theta}(G)$, and, by Lemma 3.2, $X=A_{\theta}(G)$. Suppose that $\left|X \cap P_{\theta}(G)\right| \geq 1$. We may assume that, if X^{\prime} is a θ-barrier set in G^{\prime} with $\left|X^{\prime} \cap P_{\theta}\left(G^{\prime}\right)\right|<\left|X \cap P_{\theta}(G)\right|$, then $A_{\theta}\left(G^{\prime}\right) \subseteq X^{\prime}$.

Let $x \in X \cap P_{\theta}(G)$. By Lemma 2.5, $X^{\prime}=X \backslash x$ is a θ-barrier set in $G^{\prime}=G \backslash x$. By Lemmas 3.1 and 3.4, we have $X^{\prime} \subseteq A_{\theta}\left(G^{\prime}\right) \cup P_{\theta}\left(G^{\prime}\right)$ and $A_{\theta}(G) \subseteq A_{\theta}\left(G^{\prime}\right)$. Therefore $\left|X^{\prime} \cap P_{\theta}\left(G^{\prime}\right)\right|<\left|X \cap P_{\theta}(G)\right|$. By the induction hypothesis, $A_{\theta}\left(G^{\prime}\right) \subseteq X^{\prime}$. Hence $A_{\theta}(G) \subseteq X$.

In general, $A_{\theta}(G)$ is not the intersection of all maximal θ-barrier sets in G. For instance, in Fig. 4 , mult $(\sqrt{3}, G)=0$ and $A_{\sqrt{3}}(G)=\varnothing$. Now $\{u\}$ is the only maximal $\sqrt{3}$-barrier set, but $A_{\sqrt{3}}(G) \neq\{u\}$. However, we can show that $A_{\theta}(G)$ is the intersection of all maximal θ-barrier sets in G if $N_{\theta}(G)=\varnothing$.

Theorem 3.6. If $N_{\theta}(G)=\varnothing$, then $A_{\theta}(G)$ is the intersection of all maximal θ-barrier sets in G.
Proof. By Theorem 3.5, $A_{\theta}(G)$ is contained in the intersection of all maximal θ-barriers in G. It is sufficient to show that for each $x \in V(G) \backslash A_{\theta}(G)$ there is a maximal barrier that does not contain x. If $x \in D_{\theta}(G)$, then, by Lemma 3.1, x is not contained in any θ-barriers and thus any maximal θ-barriers. If $x \in P_{\theta}(G)$, then x is contained in a component H in $G \backslash A_{\theta}(G)$ with $\operatorname{mult}(\theta, H)=0$. Note that $|V(H)| \geq 2$ for $x \in P_{\theta}(G)=P\left(G \backslash A_{\theta}(G)\right.$), and $\operatorname{mult}(\theta, H \backslash x)=1$ (see Theorem 1.6). By (c) of Theorem 1.2 and the fact that $\operatorname{mult}(\theta, H)=0$, we deduce that there is a vertex $y \in V(H \backslash x)$ for which mult $(\theta, H \backslash x y)=0$. Now $y \in P_{\theta}(G)$ for $N_{\theta}(G)=\varnothing$. Furthermore, x is θ-essential in $H \backslash y$. Therefore $x \notin A_{\theta}(H \backslash y$) and, by (ii) of Corollary 1.8, $c_{\theta}\left((H \backslash y) \backslash A_{\theta}(H \backslash y)\right)=\left|A_{\theta}(H \backslash y)\right|+1$. Hence

$$
\begin{aligned}
c_{\theta}\left(G \backslash\left(A_{\theta}(G) \cup\{y\} \cup A_{\theta}(H \backslash y)\right)\right) & =c_{\theta}\left(G \backslash A_{\theta}(G)\right)+c_{\theta}\left((H \backslash y) \backslash A_{\theta}(H \backslash y)\right) \\
& =\left|A_{\theta}(G)\right|+\operatorname{mult}(\theta, G)+\left|A_{\theta}(H \backslash y)\right|+1 \\
& =\left|A_{\theta}(G) \cup\{y\} \cup A_{\theta}(H \backslash y)\right|+\operatorname{mult}(\theta, G),
\end{aligned}
$$

and so $A_{\theta}(G) \cup\{y\} \cup A_{\theta}(H \backslash y)$ is a θ-barrier set not containing x. Let Z be a maximal θ-barrier set containing $Y=$ $A_{\theta}(G) \cup\{y\} \cup A_{\theta}(H \backslash y)$. By Lemma $2.5, Z \backslash Y$ is a θ-barrier set in $G \backslash Y$. Using Theorem 1.6 and the fact that x is θ-essential in $H \backslash y$, we can deduce that $x \in D_{\theta}(G \backslash Y)$. By Lemma 3.1, we conclude that $x \notin Z \backslash Y$, and hence $x \notin Z$. The proof of the theorem is completed.

Since $N_{0}(G)=\varnothing$, by Theorem 3.6 and Proposition 2.3, we deduce the following classical result.

Corollary 3.7 (Theorem 3.3 .15 of [11]). $A_{0}(G)$ is the intersection of all maximal barrier sets in G.

Finally, we prove that the intersection of two θ-barrier sets is a θ-barrier set. We shall need the following two lemmas.
Lemma 3.8. A set $X \subseteq V(G)$ is a θ-barrier set in G if and only if $X \cap H$ is a θ-barrier set in H for each component H of G.
Proof. Let H_{1}, \ldots, H_{m} be the components of G. Note that $c_{\theta}(G \backslash X)=\sum_{i=1}^{m} c_{\theta}\left(H_{i} \backslash X\right)$. By part (a) of Theorem 1.2, mult (θ, G) $=\sum_{i=1}^{m} \operatorname{mult}\left(\theta, H_{i}\right)$ and $\operatorname{mult}(\theta, G \backslash X)=\sum_{i=1}^{m} \operatorname{mult}\left(\theta, H_{i} \backslash X\right)$.
(\Leftarrow) If $X \cap H_{i}$ is a θ-barrier set in H_{i} for all i, then $\operatorname{mult}\left(\theta, H_{i}\right)=c_{\theta}\left(H_{i} \backslash X\right)-\left|H_{i} \cap X\right|$. Therefore mult $(\theta, G)=\sum_{i=1}^{m}$ $\left(c_{\theta}\left(H_{i} \backslash X\right)-\left|H_{i} \cap X\right|\right)=c_{\theta}(G \backslash X)-|X|$, and X is a θ-barrier set in G.
(\Rightarrow) If X is a θ-barrier set in G, then mult $(\theta, G)=c_{\theta}(G \backslash X)-|X|$. So $\sum_{i=1}^{m} \operatorname{mult}\left(\theta, H_{i}\right)=\sum_{i=1}^{m}\left(c_{\theta}\left(H_{i} \backslash X\right)-\left|H_{i} \cap X\right|\right)$ and $\sum_{i=1}^{m}\left(\operatorname{mult}\left(\theta, H_{i}\right)-\left(c_{\theta}\left(H_{i} \backslash X\right)-\left|H_{i} \cap X\right|\right)\right)=0$. By Theorem 2.1, each summand on the left in the last equation must be non-negative. We thus conclude that mult $\left.\theta, H_{i}\right)=c_{\theta}\left(H_{i} \backslash X\right)-\left|H_{i} \cap X\right|$, and $X \cap H_{i}$ is a θ-barrier set in H_{i} for all i.

Lemma 3.9. If B is a θ-barrier set in G with $X=B \cup T$ for some $T \subseteq V(G \backslash B)$, then X is $a \theta$-barrier set in G if and only if T is a θ-barrier set in $G \backslash B$.
Proof. First note that, by Lemma 2.7, $\operatorname{mult}(\theta, G \backslash B)=\operatorname{mult}(\theta, G)+|B|$.
(\Leftarrow) If T is a θ-barrier set in $G \backslash B$, then $\operatorname{mult}(\theta, G \backslash B)=c_{\theta}(G \backslash(B \cup T))-|T|$, and so mult $(\theta, G)=c_{\theta}(G \backslash(B \cup T))-|B \cup T|$. Hence X is a θ-barrier set in G.
(\Rightarrow) If X is a θ-barrier set in G, then $\operatorname{mult}(\theta, G)=c_{\theta}(G \backslash(B \cup T))-|B \cup T|$, and therefore mult $(\theta, G \backslash B)=c_{\theta}(G \backslash(B \cup T))-|T|$. Hence T is a θ-barrier set in $G \backslash B$.

Theorem 3.10. The intersection of two θ-barrier sets is a θ-barrier set.
Proof. Let B_{1} and B_{2} be two θ-barrier sets. By Theorem 3.5, $B_{1}=A_{\theta}(G) \cup T_{1}$ for some $T_{1} \subseteq V\left(G \backslash A_{\theta}(G)\right)$. By Lemma 3.9, T_{1} is a θ-barrier set in $G \backslash A_{\theta}(G)$. Similarly, $B_{2}=A_{\theta}(G) \cup T_{2}$ for some θ-barrier set T_{2} in $G \backslash A_{\theta}(G)$. Now $B_{1} \cap B_{2}=A_{\theta}(G) \cup\left(T_{1} \cap T_{2}\right)$. By Lemma 3.9, it suffices to show that $T_{1} \cap T_{2}$ is a θ-barrier set in $G \backslash A_{\theta}(G)$.

If $\left|T_{1} \cap T_{2}\right|=0$, then $T_{1} \cap T_{2}=\varnothing$ and we are done (for an empty set is a θ-barrier set). Suppose $\left|T_{1} \cap T_{2}\right| \geq 1$. Assume that, if T_{3} and T_{4} are θ-barrier sets in $G \backslash A_{\theta}(G)$ and $\left|T_{3} \cap T_{4}\right|<\left|T_{1} \cap T_{2}\right|$, then $T_{3} \cap T_{4}$ is a θ-barrier set in $G \backslash A_{\theta}(G)$.

Let $x \in T_{1} \cap T_{2}$. Since T_{1} is a θ-barrier set in $G \backslash A_{\theta}(G)$, by part (iii) of Corollary 1.8 and Lemma 3.1, we deduce that $x \in H$, where H is a component of $G \backslash A_{\theta}(G)$ with $\operatorname{mult}(\theta, H)=0$. Furthermore, mult $(\theta, H \backslash x)=1$, and we deduce that $c_{\theta}\left((H \backslash x) \backslash A_{\theta}(H \backslash x)\right)=1+\left|A_{\theta}(H \backslash x)\right|=\left|\{x\} \cup A_{\theta}(H \backslash x)\right|$ (by Corollary 1.8 and part (a) of Theorem 1.2). Therefore $\{x\} \cup A_{\theta}(H \backslash x)$ is a θ-barrier set in H.

On the other hand, $T_{1} \cap H$ is a θ-barrier set in H by Lemma 3.8. By Lemma 2.5, $\left(T_{1} \cap H\right) \backslash x$ is a θ-barrier set in $H \backslash x$, which yields $A_{\theta}(H \backslash x) \subseteq\left(T_{1} \cap H\right) \backslash x$ (Theorem 3.5). Therefore, we may let $T_{1} \cap H=T_{3} \cup\left(\{x\} \cup A_{\theta}(H \backslash x)\right.$) for some $T_{3} \subseteq V\left(H \backslash\left(\{x\} \cup A_{\theta}(H \backslash x)\right)\right)$. Moreover, since $T_{1} \cap H$ is a θ-barrier set in H, T_{3} is a θ-barrier set in H (Lemma 3.9). In fact, it is not hard to see that T_{3} is a θ-barrier set in $G \backslash A_{\theta}(G)$ (because H is a component of $G \backslash A_{\theta}(G)$). Similarly, $T_{2} \cap H=T_{4} \cup\left(\{x\} \cup A_{\theta}(H \backslash x)\right)$ for some θ-barrier set T_{4} in H that is also a θ-barrier set in $G \backslash A_{\theta}(G)$. Clearly $\left|T_{3} \cap T_{4}\right|<\left|T_{1} \cap T_{2}\right|$. By the induction hypothesis, we conclude that $T_{3} \cap T_{4}$ is a θ-barrier set in $G \backslash A_{\theta}(G)$, and thus is also a θ-barrier set in H. Since $T_{1} \cap T_{2} \cap H=\left(T_{3} \cap T_{4}\right) \cup\left(\{x\} \cup A_{\theta}(H \backslash x)\right.$), we deduce from Lemma 3.9 that $T_{1} \cap T_{2} \cap H$ is a θ-barrier set in H.

Now if H^{\prime} is a θ-critical component of $G \backslash A_{\theta}(G)$, then $T_{1} \cap T_{2} \cap H^{\prime}=\varnothing$, and so $T_{1} \cap T_{2} \cap H^{\prime}$ is a θ-barrier set in H^{\prime}. Thus $T_{1} \cap T_{2} \cap H^{\prime \prime}$ is θ-barrier set in $H^{\prime \prime}$ for any component $H^{\prime \prime}$ of $G \backslash A_{\theta}(G)$, and so $T_{1} \cap T_{2}$ is a θ-barrier set in $G \backslash A_{\theta}(G)$ (Lemma 3.8).

Acknowledgements

We would like to thank the anonymous referees for their comments, which helped us make several improvements to this paper.

References

[1] W. Chen, C.Y. Ku, An analogue of the Gallai-Edmonds structure theorem for nonzero roots of the matching polynomial, J. Combin. Theory Ser. B 100 (2010) 119-127.
[2] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
[3] C.D. Godsil, Algebraic matching theory, Electron. J. Combin. 2 (1995) \#R8.
[4] C.D. Godsil, I. Gutman, Topological resonance energy is real, Z. Naturforsch. A 34 (1979) 776-777.
[5] C.D. Godsil, I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981) 137-144.
[6] C.Y. Ku, K.B. Wong, Generalized D-graphs for nonzero roots of the matching polynomial, Preprint. Available at: http://front.math.ucdavis.edu/0909. 5266.
[7] C.Y. Ku, K.B. Wong, Generalizing Tutte’s theorem and saturated non-factorizable graphs, Preprint. Available at: http://www.math.nus.edu.sg/ \sim matkcy/ saturated.pdf.
[8] C.Y. Ku, K.B. Wong, Maximum multiplicity of a root of the matching polynomial of a tree and minimum path cover, Electron. J. Combin. 16 (1) (2009) \#R81.
[9] C.Y. Ku, K.B. Wong, Maximum multiplicity of matching polynomial roots and minimum path cover in general graph, Preprint. Available at: http:// www.math.nus.edu.sg/ \sim matkcy/MaxMin2Final.pdf.
[10] C.Y. Ku, K.B. Wong, Properties of θ-super positive graphs, Preprint. Available at: http://front.math.ucdavis.edu/0912.4100.
[11] L. Lovász, M.D. Plummer, Matching Theory, Elsevier Science Publishers, Budapest, 1986.

[^0]: * Corresponding author.

 E-mail addresses: matkcy@nus.edu.sg, cyk@caltech.edu (C.Y. Ku), kbwong@um.edu.my (K.B. Wong).
 0012-365X/\$ - see front matter © 2010 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2010.09.002

