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a b s t r a c t

In matching theory, barrier sets (also known as Tutte sets) have been studied extensively
due to their connection to maximum matchings in a graph. For a root θ of the matching
polynomial, we define θ-barrier and θ-extreme sets. We prove a generalized Berge–Tutte
formula and give a characterization for the set of all θ-special vertices in a graph.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

All the graphs in this paper are simple and finite.

Definition 1.1. An r-matching in a graph G is a set of r edges, no two of which have a vertex in common. The number of
r-matchings in Gwill be denoted by p(G, r). Set p(G, 0) = 1. Thematching polynomial of G is defined by

µ(G, x) =

⌊n/2⌋−
r=0

(−1)rp(G, r)xn−2r .

In [1], Chen and Ku developed a Gallai–Edmonds decomposition associated to a root θ of the matching polynomial,
generalizing the usual one which is the special case where θ = 0. Note that 0 is a root of the matching polynomial if
and only if the graph has no perfect matching. In this paper, we extend the notions of barrier and extreme sets to θ-barrier
and θ-extreme sets and show connections with the Gallai–Edmonds decomposition for general θ .

We shall denote the multiplicity of θ as a root of µ(G, x) by mult(θ,G). In particular, mult(θ,G) = 0 if and only if θ is
not a root of µ(G, x).

The following are properties of µ(G, x).

Theorem 1.2 (Theorem 1.1 on p. 2 of [2]).
(a) µ(G ∪ H, x) = µ(G, x)µ(H, x) when G and H are disjoint graphs,
(b) µ(G, x) = µ(G − e, x) − µ(G \ uv, x) if e = {u, v} is an edge of G,
(c) µ(G, x) = xµ(G \ u, x) −

∑
i∼u µ(G \ ui, x), where i ∼ u means i is adjacent to u,

(d) d
dxµ(G, x) =

∑
i∈V (G) µ(G \ i, x), where V (G) is the vertex set of G.
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It is well known that all roots of µ(G, x) are real (see [5] and in particular [2, Corollary 1.2]). By Theorem 5.3 on p. 29 and
Theorem 1.1 on p. 96 of [2], one can easily deduce the following lemma (see also [4]).

Lemma 1.3. If G is a graph and u ∈ V (G), then

mult(θ,G) − 1 ≤ mult(θ,G \ u) ≤ mult(θ,G) + 1.

As a consequence of Lemma 1.3, we can classify the vertices in a graph with respect to θ as follows.

Definition 1.4 (See [3, Section 3]). For any u ∈ V (G),

(a) u is θ-essential if mult(θ,G \ u) = mult(θ,G) − 1,
(b) u is θ-neutral if mult(θ,G \ u) = mult(θ,G),
(c) u is θ-positive if mult(θ,G \ u) = mult(θ,G) + 1.

Furthermore, when u is not θ-essential but is adjacent to some θ-essential vertex, we say that u is θ-special.

It turns out that θ-special vertices play an important role in the Gallai–Edmonds decomposition of a graph (see [1]). One
of the results in this paper is a characterization of the set of these vertices in terms of θ-barriers.

Note that, if mult(θ,G) = 0, then, for any u ∈ V (G), u is either θ-neutral or θ-positive, and no vertices in G can be
θ-special. By Corollary 4.3 of [3], a θ-special vertex is θ-positive. Let Dθ (G), Aθ (G), and Nθ (G), respectively, denote the sets
of θ-essential, θ-special, and θ-neutral vertices, and let Pθ (G) denote the set of vertices that are θ-positive but not θ-special.
These four sets partition V (G).

Note that there are no 0-neutral vertices. If there were, then there would be a vertex, say u, with mult(0,G) =

mult(0,G \ u). There is then a maximum matching that does not cover u, and so u ∈ D0(G), a contradiction, for D0(G)
is the set of all points in G which are not covered by at least one maximum matching of G (see [11, Section 3.2 on p. 93] for
the details). Thus N0(G) = ∅ and V (G) = D0(G) ∪ A0(G) ∪ P0(G).

Definition 1.5 (See [3, Section 3]). A graph G is said to be θ-critical if all vertices in G are θ-essential and mult(θ,G) = 1.

The Gallai–Edmonds structure theorem describes a certain canonical decomposition of V (G)with respect to the zero root
of µ(G, x).

Theorem 1.6 (Theorem 1.5 of [1]). Let G be a graph with θ a root of µ(G, x). If u ∈ Aθ (G), then

(i) Dθ (G \ u) = Dθ (G),
(ii) Pθ (G \ u) = Pθ (G),
(iii) Nθ (G \ u) = Nθ (G),
(iv) Aθ (G \ u) = Aθ (G) \ {u}.

Theorem 1.7 (Theorem 1.7 of [1]). If G is connected and every vertex of G is θ-essential, thenmult(θ,G) = 1.

By Theorems 1.6 and 1.7, it is not hard to deduce the following, whose proof is omitted.

Corollary 1.8.

(i) Aθ (G \ Aθ (G)) = ∅,Dθ (G \ Aθ (G)) = Dθ (G), Pθ (G \ Aθ (G)) = Pθ (G), and Nθ (G \ Aθ (G)) = Nθ (G).
(ii) G \ Aθ (G) has exactly |Aθ (G)| + mult (θ,G)θ-critical components.
(iii) If H is a component of G \ Aθ (G), then either H is θ-critical or mult(θ,H) = 0.
(iv) The subgraph induced by Dθ (G) consists of all the θ-critical components in G \ Aθ (G).

Consider the Gallai–Edmonds decomposition of the graph G in Fig. 1 for θ = 0 and θ = 1. For θ = 0, it is the usual
Gallai–Edmonds decomposition (see [11, Section 3.2 on p. 93]). First note that mult(1,G) = 1 = mult(0,G).

For θ = 1, we have A1(G) = {u1},D1(G) = {u2, u3, u4, u5}, P1(G) = {u7, u10}, and N1(G) = {u6, u8, u9, u11, u12, u13}.
NowC1, C2, C3, C4 are the only components inG\A1(G). Note thatC1 andC2 are 1-critical, andmult(1, C3) = 0 = mult(1, C4).

For θ = 0, we have A0(G) = {u2, u4, u7, u8, u10},D0(G) = {u1, u3, u5, u6, u9, u12}, and P0(G) = {u11, u13}. Now all
components in G \ A0(G) consist of a single vertex except H (see Fig. 2). The single vertex is 0-critical, and mult(0,H) = 0.

Let G be a graph. The deficiency of G, denoted by def(G), is defined to be the number of points left uncovered by any
maximummatching. Let the number of odd components in G be denoted by o(G). Then def(G) = maxX⊆V (G) o(G \ X) − |X |

(see [11, Theorem 3.1.14 on p. 90]), and this is called the Berge–Tutte formula. Note that the multiplicity of 0 as a root of
µ(G, x) is |V (G)|minus the largest r for which there is amatching of size r . Thereforemult(0,G) = def(G), and the following
theorem follows.

Theorem 1.9. mult(0,G) = maxX⊆V (G) o(G \ X) − |X |.
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Fig. 1.

Fig. 2.

Definition 1.10. Motivated by the Berge–Tutte formula, a barrier set is defined to be a set X ⊆ V (G) for whichmult(0,G) =

o(G \ X) − |X |. An extreme set is defined to be a set for which mult(0,G \ X) = mult(0,G) + |X |.

It should be noted that the standard terminology for a barrier set is a Tutte set in the classical matching theory.
Properties of extreme and barrier sets can be found in [11, Section 3.3]. In fact a barrier set is an extreme set. An extreme

set is not necessarily a barrier set, but it can be shown that an extreme set is contained in some barrier set. In general,
the union or intersection of two barrier sets is not a barrier set. However, it can be shown that the intersection of two
(inclusionwise) maximal barrier sets is a barrier set. The A0(G) is both a barrier set and an extreme set. It can be shown that
A0(G) is in fact the intersection of all the maximal barrier sets in G. We shall extend this fact to Aθ (G) (see Theorem 3.6).

In the next section, we prove a version of the Berge–Tutte formula extended to general θ . Let the number of θ-critical
components in G be denoted by cθ (G).

Theorem 2.1 (Generalized Berge–Tutte Formula).

mult(θ,G) = max
X⊆V (G)

cθ (G \ X) − |X |.

Definition 1.11. Motivated by the generalized Berge–Tutte formula, we define a θ-barrier set to be a set X ⊆ V (G) for which
mult(θ,G) = cθ (G \ X) − |X |.

We define a θ-extreme set to be a set X ⊆ V (G) for which mult(θ,G \ X) = mult(θ,G) + |X |.

The main theorem of this paper, which is proved in Section 3, is the following.

Theorem 3.6. If Nθ (G) = ∅, then Aθ (G) is the intersection of all maximal θ-barrier sets in G.

We emphasize that this paper is built up by generalizing some of the statements given in Chapter 3 of Lovász and
Plummer’s book [11] to the roots of the matching polynomial. Almost all proofs here have a resemblance to those found
in [11]. The novelty of this paper is to merge the tools developed by Godsil [3] with the Lovász–Plummer investigations.
This paper also fits into a series of papers [6–10] by the authors about the generalization of the results of classical matching
theory with respect to the roots of the matching polynomial.

2. Properties of θ-barrier sets

An immediate consequence of part (a) of Theorems 1.2 and 1.7 is the following inequality, which we use frequently.

mult(θ,G) ≥ cθ (G) for any graph G. (1)

We prove the following analogue of the Berge–Tutte formula. The proof is similar to that of the generalization of Tutte’s
theorem due to the authors in [7]. For the sake of completeness, we repeat the statement.

Theorem 2.1 (Generalized Berge–Tutte Formula).

mult(θ,G) = max
X⊆V (G)

cθ (G \ X) − |X |.
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Fig. 3.

Proof. We claim that cθ (G \ X) ≤ |X | + mult(θ,G) for all X ⊆ V (G). If not, then cθ (G \ X) > |X | + mult(θ,G) for some
X ⊆ V (G). Recall that mult(θ,G \ X) ≥ cθ (G \ X). Together with Lemma 1.3, we have mult(θ,G) ≥ mult(θ,G \ X) − |X | >
mult(θ,G), a contradiction.

Now it suffices to show that there is a set X ⊆ V (G) for which mult(θ,G) = cθ (G \ X) − |X |. Take X = Aθ (G); by (ii) of
Corollary 1.8 we are done. �

Note that the definitions of 0-extreme set and extreme set coincide, but the definitions of 0-barrier set and barrier set
are different. Our next proposition shows that a 0-barrier set is a barrier set.

Proposition 2.2. A 0-barrier set is a barrier set.

Proof. If X is a 0-barrier set, then c0(G \ X) = mult(0,G) + |X |. Note that c0(G \ X) ≤ o(G \ X). Using Theorem 1.9, we
conclude that o(G \ X) = mult(0,G) + |X |. Hence X is a barrier set. �

The converse of Proposition 2.2 is not true. The graph G in Fig. 3 is well known (see [11, Figure 3.3.1 on p. 105]). Note that
X = {u, v} is a barrier set in G, but it is not a 0-barrier set.

A weak converse of Proposition 2.2 can be easily proved by using part (b) of Exercise 3.3.18 on p. 109 of [11].

Proposition 2.3. A (inclusionwise) maximal barrier set is a maximal 0-barrier set. �

Now we shall study the properties of θ-barrier and θ-extreme sets.

Lemma 2.4. A subset of a θ-extreme set is a θ-extreme set.

Proof. Let X be an θ-extreme set, and consider Y ⊆ X . Nowmult(θ,G\X) = mult(θ,G)+|X |. By Lemma 1.3, mult(θ,G\Y )
≤ mult(θ,G)+|Y |. If Y is not θ-extreme, thenmult(θ,G\Y ) < mult(θ,G)+|Y |, and by Lemma 1.3 again, mult(θ,G\X) ≤

mult(θ,G \ Y ) + |X \ Y | < mult(θ,G) + |X |, a contradiction. Hence a subset of an θ-extreme set is θ-extreme. �

Lemma 2.5. If X is a θ-barrier [θ-extreme] set and Y ⊆ X, then X \ Y is a θ-barrier [θ-extreme] set in G \ Y .

Proof. Note that cθ (G \ X) = |X | + mult(θ,G). By Theorem 2.1 and Lemma 1.3, cθ (G \ X) ≤ |X \ Y | + mult(θ,G \ Y ) ≤

|X \ Y | + mult(θ,G) + |Y | = |X | + mult(θ,G). Hence cθ (G \ X) = |X \ Y | + mult(θ,G \ Y ), and X \ Y is a θ-barrier set in
G \ Y . �

Lemma 2.6. Every θ-extreme set of G lies in a θ-barrier set.

Proof. If X is a θ-extreme set and T = Aθ (G \ X) ∪ X , then

cθ (G \ T ) = cθ (G \ (Aθ (G \ X) ∪ X))

= cθ ((G \ X) \ Aθ (G \ X))

= |Aθ (G \ X)| + mult(θ,G \ X) (by (ii) of Corollary 1.8)
= |Aθ (G \ X)| + mult(θ,G) + |X | (X is θ-extreme)
= |T | + mult(θ,G),

and hence T is a θ-barrier set. �

Lemma 2.7. If X is a θ-barrier set, then X is a θ-extreme set.

Proof. Recall from (1) that mult(θ,G \ X) ≥ cθ (G \ X). Since cθ (G \ X) = |X | + mult(θ,G), by Lemma 1.3, we have

mult(θ,G) ≥ mult(θ,G \ X) − |X | ≥ cθ (G \ X) − |X | = mult(θ,G).

Hence mult(θ,G \ X) = mult(θ,G) + |X |, and X is a θ-extreme set. �

Note that in general a θ-extreme set is not a θ-barrier set. In Fig. 3, X1 = {u} is a 0-extreme set but is not a 0-barrier set.
Furthermore, in Fig. 1, X2 = {u1, u10} is a 1-extreme set but is not a 1-barrier set.

Lemma 2.8. If X is a θ-barrier set and H is a component of G \ X, then either H is θ-critical or mult(θ,H) = 0.
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Proof. Note that cθ (G\X) = |X |+mult(θ,G). By Lemma 2.7, X is a θ-extreme set. Thereforemult(θ,G\X) = mult(θ,G)+
|X | = cθ (G \ X). Now, if H is not θ-critical and mult(θ,H) > 0, then, by part (a) of Theorem 1.2, mult(θ,G \ X) > cθ (G \ X),
a contradiction. Hence either H is θ-critical or mult(θ,H) = 0. �

Lemma 2.9. Let X be a maximal θ-barrier set. If H is a component of G \ X and mult(θ,H) = 0, then, for all u ∈ V (H), u is
θ-neutral in H. Furthermore, if Y ⊆ V (H) and Y ≠ ∅, then cθ (H \ Y ) ≤ |Y | − 1.

Proof. If H has a θ-positive vertex, say u, then mult(θ,H \ u) = 1. By (ii) of Corollary 1.8, cθ ((H \ u) \ Aθ (H \ u)) =

|Aθ (H \ u)| + mult(θ,H \ u) = |Aθ (H \ u)| + 1. Now

cθ (G \ (X ∪ {u} ∪ Aθ (H \ u))) = cθ (G \ X) + cθ ((H \ u) \ Aθ (H \ u))
= |X | + mult(θ,G) + |Aθ (H \ u)| + 1
= |X ∪ {u} ∪ Aθ (H \ u)| + mult(θ,G),

and so X ∪ {u} ∪ Aθ (H \ u) is a θ-barrier in G, a contradiction to the maximality of X . Hence, for all u ∈ V (H), u is θ-neutral
in H .

Since Y ≠ ∅, we may choose y ∈ Y . Let Y ′
= Y \ y and H ′

= H \ y. Note that mult(θ,H \ y) = 0 since y is θ-neutral in
H . By Theorem 2.1, cθ (H ′

\ Y ′) ≤ |Y ′
|. Since H \ Y = H ′

\ Y ′, we have cθ (H \ Y ) ≤ |Y | − 1. �

Lemma 2.10. If G is θ-critical, then, for all Y ⊆ V (G) and Y ≠ ∅, cθ (G \ Y ) ≤ |Y | − 1.

Proof. Since Y ≠ ∅, we may choose y ∈ Y . Let Y ′
= Y \ y and G′

= G \ y. Note that mult(θ,G \ y) = 0 since y is θ-essential
in G. By Theorem 2.1, cθ (G′

\ Y ′) ≤ |Y ′
|. Since G \ Y = G′

\ Y ′, we have cθ (G \ Y ) ≤ |Y | − 1. �

In general, the union of two θ-barrier sets is not necessarily a θ-barrier set. In Fig. 3, X3 = {u, v, w} and X4 = {v, w, z}
are two 0-barrier sets, but X3 ∪ X4 is not a 0-barrier set. In Fig. 1, X5 = {u1, u7} and X6 = {u1, u10} are 1-barrier sets and
X5 ∪ X6 is a 1-barrier set. Let C3 be a cycle with three vertices. Every set containing a single vertex of C3 is a 1-barrier set, but
the union of two such sets is not 1-barrier set.

However, the intersection of two θ-barrier sets is a θ-barrier set. We shall prove this fact in Theorem 3.10. At present, let
us use the results in this section to prove a weaker version.

Theorem 2.11. The intersection of two maximal θ-barrier sets is a θ-barrier set.

Proof. LetX and Y be twomaximal θ-barrier sets. LetG1,G2, . . . ,Gk be the θ-critical components ofG\X andH1,H2, . . . ,Hm
be the components of G\Y . Note that k = |X |+mult(θ,G). Let Xi = X ∩V (Hi), Yi = Y ∩V (Gi), and Z = X ∩Y . By relabelling
if necessary, we may assume that X1, . . . , Xm1 ≠ ∅ and Y1, . . . , Yk1 ≠ ∅, but Xm1+1 = · · · = Xm = Yk1+1 = · · · = Yk = ∅,
and also that k1 ≤ m1. Note that Gk1+1, . . . ,Gk are θ-critical components in (G \X) \ Y , so each is contained in a component
of G \ Y .

Next we count the indices i with k1 + 1 ≤ i ≤ k such that Gi is contained in some Hj. If m1 + 1 ≤ j ≤ m, then Hj is a
component in (G \ X) \ Y . So, if Gi ⊆ Hj, then Gi = Hj. Furthermore, Gi is a component of G \ Z . By Theorem 2.1, the number
of such Gi’s is at most cθ (G \ Z) ≤ |Z | + mult(θ,G).

Suppose that 1 ≤ j ≤ m1. If Gi1 , . . . ,Git are contained in Hj, then they are θ-critical components in Hj \Xj. By Lemma 2.8,
either Hj is θ-critical or mult(θ,H) = 0. If mult(θ,H) = 0, then, by Lemma 2.9, cθ (Hj \Xj) ≤ |Xj|− 1. If Hi is θ-critical, then,
by Lemma 2.10, cθ (Hj \ Xj) ≤ |Xj| − 1. Therefore, in either case, t ≤ |Xj| − 1.

The number of Gi’s where k1 + 1 ≤ i ≤ k that are disjoint from Y is at most

cθ (G \ Z) +

m1−
j=1

(|Xj| − 1) ≤ |Z | + mult(θ,G) + |X \ Z | − m1

= |X | + mult(θ,G) − m1

= k − m1

≤ k − k1.

Since this number is exactly k − k1, we infer that equality must hold throughout. Hence cθ (G \ Z) = |Z | + mult(θ,G), and
Z is a θ-barrier set. �

3. Characterizations of Aθ(G)

A characterization of Aθ (G) is that it is the unique inclusion-minimal θ-barrier set (see Theorem 3.5). If Nθ (G) = ∅, then
another characterization of Aθ (G) is that it is the intersection of all maximal θ-barrier sets in G (see Theorem 3.6).

Lemma 3.1. If X is a θ-barrier set or a θ-extreme set, then X ⊆ Aθ (G) ∪ Pθ (G).
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Fig. 4.

Proof. By Lemma 2.7, we may assume that X is θ-extreme. Let x ∈ X . By Lemma 2.4, {x} is a θ-extreme set. Therefore
mult(θ,G \ x) = mult(θ,G) + 1, and x is θ-positive. Hence x ∈ Aθ (G) ∪ Pθ (G), and X ⊆ Aθ (G) ∪ Pθ (G). �

Lemma 3.2. Let X be a θ-barrier set. If X ⊆ Aθ (G), then X = Aθ (G).

Proof. Note that cθ (G \ X) = mult(θ,G) + |X |. By Lemma 2.8, we conclude that Aθ (G \ X) = ∅. By Theorem 1.6, Aθ (G \ X)
= Aθ (G) \ X . Hence X = Aθ (G). �

We shall need the following result of Godsil [3].

Theorem 3.3 (Theorem 4.2 of [3]). If θ is a root of µ(G, x) with non-zero multiplicity k and we let u be a θ-positive vertex in G,
then

(a) if v is θ-essential in G, then it is θ-essential in G \ u;
(b) if v is θ-positive in G, then it is θ-essential or θ-positive in G \ u;
(c) if u is θ-neutral in G, then it is θ-essential or θ-neutral in G \ u.

Lemma 3.4. If u ∈ Pθ (G), then Aθ (G) ⊆ Aθ (G \ u).

Proof. If Aθ (G) = ∅, then we are done. Suppose that Aθ (G) ≠ ∅. If v ∈ Aθ (G), then v is adjacent to a θ-essential vertex w.
By Theorem 3.3, w is θ-essential in G \ u, and v is either θ-positive or θ-essential in G \ u. If v is θ-essential in G \ u, then
mult(θ,G \ uv) = mult(θ,G). By Theorem 1.6, u ∈ Pθ (G) = Pθ (G \ v). Since v is θ-special in G, v is θ-positive in G (see
Corollary 4.3 of [3]). Hence mult(θ,G \ uv) = mult(θ,G) + 2, a contradiction. Therefore v is θ-positive in G \ u. Since v is
adjacent to w, we must have v ∈ Aθ (G \ u). Hence Aθ (G) ⊆ Aθ (G \ u). �

Theorem 3.5. If X is a θ-barrier set in G, then Aθ (G) ⊆ X. In particular, Aθ (G) is the unique minimal θ-barrier set.

Proof. By Lemma 3.1, X ⊆ Aθ (G) ∪ Pθ (G). We shall prove the result by induction on |X ∩ Pθ (G)|. If |X ∩ Pθ (G)| = 0, then
X ⊆ Aθ (G), and, by Lemma 3.2, X = Aθ (G). Suppose that |X ∩ Pθ (G)| ≥ 1. We may assume that, if X ′ is a θ-barrier set in G′

with |X ′
∩ Pθ (G′)| < |X ∩ Pθ (G)|, then Aθ (G′) ⊆ X ′.

Let x ∈ X ∩ Pθ (G). By Lemma 2.5, X ′
= X \ x is a θ-barrier set in G′

= G \ x. By Lemmas 3.1 and 3.4, we have
X ′

⊆ Aθ (G′) ∪ Pθ (G′) and Aθ (G) ⊆ Aθ (G′). Therefore |X ′
∩ Pθ (G′)| < |X ∩ Pθ (G)|. By the induction hypothesis, Aθ (G′) ⊆ X ′.

Hence Aθ (G) ⊆ X . �

In general, Aθ (G) is not the intersection of all maximal θ-barrier sets in G. For instance, in Fig. 4, mult(
√
3,G) = 0 and

A√
3(G) = ∅. Now {u} is the only maximal

√
3-barrier set, but A√

3(G) ≠ {u}. However, we can show that Aθ (G) is the
intersection of all maximal θ-barrier sets in G if Nθ (G) = ∅.

Theorem 3.6. If Nθ (G) = ∅, then Aθ (G) is the intersection of all maximal θ-barrier sets in G.

Proof. By Theorem 3.5, Aθ (G) is contained in the intersection of all maximal θ-barriers in G. It is sufficient to show that for
each x ∈ V (G)\Aθ (G) there is a maximal barrier that does not contain x. If x ∈ Dθ (G), then, by Lemma 3.1, x is not contained
in any θ-barriers and thus any maximal θ-barriers. If x ∈ Pθ (G), then x is contained in a component H in G \ Aθ (G) with
mult(θ,H) = 0. Note that |V (H)| ≥ 2 for x ∈ Pθ (G) = P(G \ Aθ (G)), and mult(θ,H \ x) = 1 (see Theorem 1.6). By (c) of
Theorem 1.2 and the fact that mult(θ,H) = 0, we deduce that there is a vertex y ∈ V (H \ x) for which mult(θ,H \ xy) = 0.
Now y ∈ Pθ (G) for Nθ (G) = ∅. Furthermore, x is θ-essential in H \ y. Therefore x ∉ Aθ (H \ y) and, by (ii) of Corollary 1.8,
cθ ((H \ y) \ Aθ (H \ y)) = |Aθ (H \ y)| + 1. Hence

cθ (G \ (Aθ (G) ∪ {y} ∪ Aθ (H \ y))) = cθ (G \ Aθ (G)) + cθ ((H \ y) \ Aθ (H \ y))
= |Aθ (G)| + mult(θ,G) + |Aθ (H \ y)| + 1
= |Aθ (G) ∪ {y} ∪ Aθ (H \ y)| + mult(θ,G),

and so Aθ (G) ∪ {y} ∪ Aθ (H \ y) is a θ-barrier set not containing x. Let Z be a maximal θ-barrier set containing Y =

Aθ (G) ∪ {y} ∪ Aθ (H \ y). By Lemma 2.5, Z \ Y is a θ-barrier set in G \ Y . Using Theorem 1.6 and the fact that x is θ-essential
in H \ y, we can deduce that x ∈ Dθ (G \ Y ). By Lemma 3.1, we conclude that x ∉ Z \ Y , and hence x ∉ Z . The proof of the
theorem is completed. �
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Since N0(G) = ∅, by Theorem 3.6 and Proposition 2.3, we deduce the following classical result.

Corollary 3.7 (Theorem 3.3.15 of [11]). A0(G) is the intersection of all maximal barrier sets in G.

Finally, we prove that the intersection of two θ-barrier sets is a θ-barrier set. We shall need the following two lemmas.

Lemma 3.8. A set X ⊆ V (G) is a θ-barrier set in G if and only if X ∩ H is a θ-barrier set in H for each component H of G.
Proof. LetH1, . . . ,Hm be the components of G. Note that cθ (G\X) =

∑m
i=1 cθ (Hi \X). By part (a) of Theorem 1.2, mult(θ,G)

=
∑m

i=1 mult(θ,Hi) and mult(θ,G \ X) =
∑m

i=1 mult(θ,Hi \ X).
(⇐) If X ∩ Hi is a θ-barrier set in Hi for all i, then mult(θ,Hi) = cθ (Hi \ X) − |Hi ∩ X |. Therefore mult(θ,G) =

∑m
i=1

(cθ (Hi \ X) − |Hi ∩ X |) = cθ (G \ X) − |X |, and X is a θ-barrier set in G.
(⇒) If X is a θ-barrier set in G, then mult(θ,G) = cθ (G \ X) − |X |. So

∑m
i=1 mult(θ,Hi) =

∑m
i=1 (cθ (Hi \ X) − |Hi ∩ X |) and∑m

i=1 (mult(θ,Hi) − (cθ (Hi \ X) − |Hi ∩ X |)) = 0. By Theorem 2.1, each summand on the left in the last equation must be
non-negative. We thus conclude that mult(θ,Hi) = cθ (Hi \ X) − |Hi ∩ X |, and X ∩ Hi is a θ-barrier set in Hi for all i. �

Lemma 3.9. If B is a θ-barrier set in G with X = B ∪ T for some T ⊆ V (G \ B), then X is a θ-barrier set in G if and only if T is a
θ-barrier set in G \ B.
Proof. First note that, by Lemma 2.7, mult(θ,G \ B) = mult(θ,G) + |B|.
(⇐) If T is a θ-barrier set in G \ B, then mult(θ,G \ B) = cθ (G \ (B∪ T ))− |T |, and so mult(θ,G) = cθ (G \ (B∪ T ))− |B∪ T |.
Hence X is a θ-barrier set in G.
(⇒) If X is a θ-barrier set in G, thenmult(θ,G) = cθ (G\(B∪T ))−|B∪T |, and thereforemult(θ,G\B) = cθ (G\(B∪T ))−|T |.
Hence T is a θ-barrier set in G \ B. �

Theorem 3.10. The intersection of two θ-barrier sets is a θ-barrier set.
Proof. Let B1 and B2 be two θ-barrier sets. By Theorem 3.5, B1 = Aθ (G)∪ T1 for some T1 ⊆ V (G\Aθ (G)). By Lemma 3.9, T1 is
a θ-barrier set in G\Aθ (G). Similarly, B2 = Aθ (G)∪T2 for some θ-barrier set T2 in G\Aθ (G). Now B1 ∩B2 = Aθ (G)∪ (T1 ∩T2).
By Lemma 3.9, it suffices to show that T1 ∩ T2 is a θ-barrier set in G \ Aθ (G).

If |T1 ∩ T2| = 0, then T1 ∩ T2 = ∅ and we are done (for an empty set is a θ-barrier set). Suppose |T1 ∩ T2| ≥ 1. Assume
that, if T3 and T4 are θ-barrier sets in G \ Aθ (G) and |T3 ∩ T4| < |T1 ∩ T2|, then T3 ∩ T4 is a θ-barrier set in G \ Aθ (G).

Let x ∈ T1 ∩ T2. Since T1 is a θ-barrier set in G \ Aθ (G), by part (iii) of Corollary 1.8 and Lemma 3.1, we deduce that
x ∈ H , where H is a component of G \ Aθ (G) with mult(θ,H) = 0. Furthermore, mult(θ,H \ x) = 1, and we deduce that
cθ ((H \ x) \ Aθ (H \ x)) = 1 + |Aθ (H \ x)| = |{x} ∪ Aθ (H \ x)| (by Corollary 1.8 and part (a) of Theorem 1.2). Therefore
{x} ∪ Aθ (H \ x) is a θ-barrier set in H .

On the other hand, T1 ∩ H is a θ-barrier set in H by Lemma 3.8. By Lemma 2.5, (T1 ∩ H) \ x is a θ-barrier set in H \ x,
which yields Aθ (H \ x) ⊆ (T1 ∩ H) \ x (Theorem 3.5). Therefore, we may let T1 ∩ H = T3 ∪ ({x} ∪ Aθ (H \ x)) for some
T3 ⊆ V (H \ ({x} ∪ Aθ (H \ x))). Moreover, since T1 ∩ H is a θ-barrier set in H , T3 is a θ-barrier set in H (Lemma 3.9).
In fact, it is not hard to see that T3 is a θ-barrier set in G \ Aθ (G) (because H is a component of G \ Aθ (G)). Similarly,
T2∩H = T4∪({x}∪Aθ (H\x)) for some θ-barrier set T4 inH that is also a θ-barrier set inG\Aθ (G). Clearly |T3∩T4| < |T1∩T2|.
By the induction hypothesis, we conclude that T3 ∩ T4 is a θ-barrier set in G \ Aθ (G), and thus is also a θ-barrier set in H .
Since T1 ∩ T2 ∩ H = (T3 ∩ T4) ∪ ({x} ∪ Aθ (H \ x)), we deduce from Lemma 3.9 that T1 ∩ T2 ∩ H is a θ-barrier set in H .

Now if H ′ is a θ-critical component of G \ Aθ (G), then T1 ∩ T2 ∩ H ′
= ∅, and so T1 ∩ T2 ∩ H ′ is a θ-barrier set in H ′.

Thus T1 ∩ T2 ∩ H ′′ is θ-barrier set in H ′′ for any component H ′′ of G \ Aθ (G), and so T1 ∩ T2 is a θ-barrier set in G \ Aθ (G)
(Lemma 3.8). �

Acknowledgements

We would like to thank the anonymous referees for their comments, which helped us make several improvements to
this paper.

References

[1] W. Chen, C.Y. Ku, An analogue of the Gallai–Edmonds structure theorem for nonzero roots of the matching polynomial, J. Combin. Theory Ser. B 100
(2010) 119–127.

[2] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
[3] C.D. Godsil, Algebraic matching theory, Electron. J. Combin. 2 (1995) #R8.
[4] C.D. Godsil, I. Gutman, Topological resonance energy is real, Z. Naturforsch. A 34 (1979) 776–777.
[5] C.D. Godsil, I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981) 137–144.
[6] C.Y. Ku, K.B. Wong, Generalized D-graphs for nonzero roots of the matching polynomial, Preprint. Available at: http://front.math.ucdavis.edu/0909.

5266.
[7] C.Y. Ku, K.B.Wong, Generalizing Tutte’s theoremand saturated non-factorizable graphs, Preprint. Available at: http://www.math.nus.edu.sg/∼matkcy/

saturated.pdf.
[8] C.Y. Ku, K.B. Wong, Maximummultiplicity of a root of the matching polynomial of a tree and minimum path cover, Electron. J. Combin. 16 (1) (2009)

#R81.
[9] C.Y. Ku, K.B. Wong, Maximum multiplicity of matching polynomial roots and minimum path cover in general graph, Preprint. Available at: http://

www.math.nus.edu.sg/∼matkcy/MaxMin2Final.pdf.
[10] C.Y. Ku, K.B. Wong, Properties of θ-super positive graphs, Preprint. Available at: http://front.math.ucdavis.edu/0912.4100.
[11] L. Lovász, M.D. Plummer, Matching Theory, Elsevier Science Publishers, Budapest, 1986.

http://front.math.ucdavis.edu/0909.5266
http://front.math.ucdavis.edu/0909.5266
http://front.math.ucdavis.edu/0909.5266
http://front.math.ucdavis.edu/0909.5266
http://front.math.ucdavis.edu/0909.5266
http://front.math.ucdavis.edu/0909.5266
http://front.math.ucdavis.edu/0909.5266
http://www.math.nus.edu.sg/~matkcy/saturated.pdf
http://www.math.nus.edu.sg/~matkcy/saturated.pdf
http://www.math.nus.edu.sg/~matkcy/saturated.pdf
http://www.math.nus.edu.sg/~matkcy/saturated.pdf
http://www.math.nus.edu.sg/~matkcy/saturated.pdf
http://www.math.nus.edu.sg/~matkcy/saturated.pdf
http://www.math.nus.edu.sg/~matkcy/saturated.pdf
http://www.math.nus.edu.sg/~matkcy/saturated.pdf
http://www.math.nus.edu.sg/~matkcy/saturated.pdf
http://www.math.nus.edu.sg/~matkcy/MaxMin2Final.pdf
http://www.math.nus.edu.sg/~matkcy/MaxMin2Final.pdf
http://www.math.nus.edu.sg/~matkcy/MaxMin2Final.pdf
http://www.math.nus.edu.sg/~matkcy/MaxMin2Final.pdf
http://www.math.nus.edu.sg/~matkcy/MaxMin2Final.pdf
http://www.math.nus.edu.sg/~matkcy/MaxMin2Final.pdf
http://www.math.nus.edu.sg/~matkcy/MaxMin2Final.pdf
http://www.math.nus.edu.sg/~matkcy/MaxMin2Final.pdf
http://www.math.nus.edu.sg/~matkcy/MaxMin2Final.pdf
http://front.math.ucdavis.edu/0912.4100

	Extensions of barrier sets to nonzero roots of the matching polynomial
	Introduction
	Properties of  θ-barrier sets
	Characterizations of  Aθ (G) 
	Acknowledgements
	References


