Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Extensions of barrier sets to nonzero roots of the matching polynomial

Cheng Yeaw Ku^{a,*}, Kok Bin Wong^b

^a Department of Mathematics, National University of Singapore, Singapore 117543, Singapore ^b Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

ARTICLE INFO

Article history: Received 18 June 2009 Received in revised form 30 August 2010 Accepted 1 September 2010 Available online 22 September 2010

Keywords: Matching polynomial Gallai-Edmonds decomposition Barrier sets Extreme sets

1. Introduction

All the graphs in this paper are simple and finite.

Definition 1.1. An *r*-matching in a graph *G* is a set of *r* edges, no two of which have a vertex in common. The number of r-matchings in G will be denoted by p(G, r). Set p(G, 0) = 1. The matching polynomial of G is defined by

$$\mu(G, x) = \sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r p(G, r) x^{n-2r}.$$

In [1], Chen and Ku developed a Gallai–Edmonds decomposition associated to a root θ of the matching polynomial, generalizing the usual one which is the special case where $\theta = 0$. Note that 0 is a root of the matching polynomial if and only if the graph has no perfect matching. In this paper, we extend the notions of barrier and extreme sets to θ -barrier and θ -extreme sets and show connections with the Gallai–Edmonds decomposition for general θ .

We shall denote the multiplicity of θ as a root of $\mu(G, x)$ by mult (θ, G) . In particular, mult $(\theta, G) = 0$ if and only if θ is not a root of $\mu(G, x)$.

The following are properties of $\mu(G, x)$.

Theorem 1.2 (*Theorem 1.1 on p. 2 of [2]*).

(a) $\mu(G \cup H, x) = \mu(G, x)\mu(H, x)$ when G and H are disjoint graphs, (b) $\mu(G, x) = \mu(G - e, x) - \mu(G \setminus uv, x)$ if $e = \{u, v\}$ is an edge of G, (c) $\mu(G, x) = x\mu(G \setminus u, x) - \sum_{i \sim u} \mu(G \setminus ui, x)$, where $i \sim u$ means i is adjacent to u,

(d) $\frac{d}{dx}\mu(G, x) = \sum_{i \in V(G)} \mu(G \setminus i, x)$, where V(G) is the vertex set of G.

Corresponding author. E-mail addresses: matkcy@nus.edu.sg, cyk@caltech.edu (C.Y. Ku), kbwong@um.edu.my (K.B. Wong).

ABSTRACT

In matching theory, barrier sets (also known as Tutte sets) have been studied extensively due to their connection to maximum matchings in a graph. For a root θ of the matching polynomial, we define θ -barrier and θ -extreme sets. We prove a generalized Berge–Tutte formula and give a characterization for the set of all θ -special vertices in a graph.

© 2010 Elsevier B.V. All rights reserved.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.09.002

It is well known that all roots of $\mu(G, x)$ are real (see [5] and in particular [2, Corollary 1.2]). By Theorem 5.3 on p. 29 and Theorem 1.1 on p. 96 of [2], one can easily deduce the following lemma (see also [4]).

Lemma 1.3. If G is a graph and $u \in V(G)$, then

 $\operatorname{mult}(\theta, G) - 1 \le \operatorname{mult}(\theta, G \setminus u) \le \operatorname{mult}(\theta, G) + 1.$

As a consequence of Lemma 1.3, we can classify the vertices in a graph with respect to θ as follows.

Definition 1.4 (See [3, Section 3]). For any $u \in V(G)$,

(a) u is θ -essential if mult $(\theta, G \setminus u) =$ mult $(\theta, G) - 1$,

(b) u is θ -neutral if mult $(\theta, G \setminus u) =$ mult (θ, G) ,

(c) u is θ -positive if mult(θ , $G \setminus u$) = mult(θ , G) + 1.

Furthermore, when u is not θ -essential but is adjacent to some θ -essential vertex, we say that u is θ -special.

It turns out that θ -special vertices play an important role in the Gallai–Edmonds decomposition of a graph (see [1]). One of the results in this paper is a characterization of the set of these vertices in terms of θ -barriers.

Note that, if $\operatorname{mult}(\theta, G) = 0$, then, for any $u \in V(G)$, u is either θ -neutral or θ -positive, and no vertices in G can be θ -special. By Corollary 4.3 of [3], a θ -special vertex is θ -positive. Let $D_{\theta}(G)$, $A_{\theta}(G)$, and $N_{\theta}(G)$, respectively, denote the sets of θ -essential, θ -special, and θ -neutral vertices, and let $P_{\theta}(G)$ denote the set of vertices that are θ -positive but not θ -special. These four sets partition V(G).

Note that there are no 0-neutral vertices. If there were, then there would be a vertex, say u, with mult $(0, G) = mult(0, G \setminus u)$. There is then a maximum matching that does not cover u, and so $u \in D_0(G)$, a contradiction, for $D_0(G)$ is the set of all points in G which are not covered by at least one maximum matching of G (see [11, Section 3.2 on p. 93] for the details). Thus $N_0(G) = \emptyset$ and $V(G) = D_0(G) \cup A_0(G) \cup P_0(G)$.

Definition 1.5 (See [3, Section 3]). A graph G is said to be θ -critical if all vertices in G are θ -essential and mult(θ , G) = 1.

The Gallai–Edmonds structure theorem describes a certain canonical decomposition of V(G) with respect to the zero root of $\mu(G, x)$.

Theorem 1.6 (*Theorem 1.5 of* [1]). Let G be a graph with θ a root of $\mu(G, x)$. If $u \in A_{\theta}(G)$, then

(i) $D_{\theta}(G \setminus u) = D_{\theta}(G)$, (ii) $P_{\theta}(G \setminus u) = P_{\theta}(G)$, (iii) $N_{\theta}(G \setminus u) = N_{\theta}(G)$, (iv) $A_{\theta}(G \setminus u) = A_{\theta}(G) \setminus \{u\}$.

Theorem 1.7 (Theorem 1.7 of [1]). If G is connected and every vertex of G is θ -essential, then mult(θ , G) = 1.

By Theorems 1.6 and 1.7, it is not hard to deduce the following, whose proof is omitted.

Corollary 1.8.

(i) $A_{\theta}(G \setminus A_{\theta}(G)) = \emptyset$, $D_{\theta}(G \setminus A_{\theta}(G)) = D_{\theta}(G)$, $P_{\theta}(G \setminus A_{\theta}(G)) = P_{\theta}(G)$, and $N_{\theta}(G \setminus A_{\theta}(G)) = N_{\theta}(G)$.

(ii) $G \setminus A_{\theta}(G)$ has exactly $|A_{\theta}(G)| + \text{mult } (\theta, G)\theta$ -critical components.

(iii) If *H* is a component of $G \setminus A_{\theta}(G)$, then either *H* is θ -critical or mult(θ , *H*) = 0.

(iv) The subgraph induced by $D_{\theta}(G)$ consists of all the θ -critical components in $G \setminus A_{\theta}(G)$.

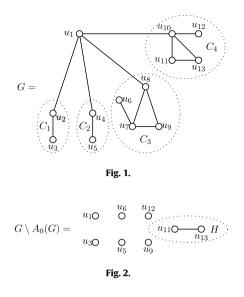
Consider the Gallai–Edmonds decomposition of the graph *G* in Fig. 1 for $\theta = 0$ and $\theta = 1$. For $\theta = 0$, it is the usual Gallai–Edmonds decomposition (see [11, Section 3.2 on p. 93]). First note that mult(1, *G*) = 1 = mult(0, *G*).

For $\theta = 1$, we have $A_1(G) = \{u_1\}, D_1(G) = \{u_2, u_3, u_4, u_5\}, P_1(G) = \{u_7, u_{10}\}, \text{ and } N_1(G) = \{u_6, u_8, u_9, u_{11}, u_{12}, u_{13}\}.$ Now C_1, C_2, C_3, C_4 are the only components in $G \setminus A_1(G)$. Note that C_1 and C_2 are 1-critical, and mult $(1, C_3) = 0 = \text{mult}(1, C_4)$.

For $\theta = 0$, we have $A_0(G) = \{u_2, u_4, u_7, u_8, u_{10}\}, D_0(G) = \{u_1, u_3, u_5, u_6, u_9, u_{12}\}, \text{ and } P_0(G) = \{u_{11}, u_{13}\}.$ Now all components in $G \setminus A_0(G)$ consist of a single vertex except H (see Fig. 2). The single vertex is 0-critical, and mult(0, H) = 0.

Let *G* be a graph. The *deficiency* of *G*, denoted by def(*G*), is defined to be the number of points left uncovered by any maximum matching. Let the number of odd components in *G* be denoted by o(G). Then def(*G*) = max_{X \subseteq V(G)} $o(G \setminus X) - |X|$ (see [11, Theorem 3.1.14 on p. 90]), and this is called the Berge–Tutte formula. Note that the multiplicity of 0 as a root of $\mu(G, x)$ is |V(G)| minus the largest *r* for which there is a matching of size *r*. Therefore mult(0, *G*) = def(*G*), and the following theorem follows.

Theorem 1.9. mult(0, *G*) = $\max_{X \subseteq V(G)} o(G \setminus X) - |X|$.



Definition 1.10. Motivated by the Berge–Tutte formula, a *barrier set* is defined to be a set $X \subseteq V(G)$ for which mult $(0, G) = o(G \setminus X) - |X|$. An *extreme* set is defined to be a set for which mult $(0, G \setminus X) = mult(0, G) + |X|$.

It should be noted that the standard terminology for a barrier set is a Tutte set in the classical matching theory.

Properties of extreme and barrier sets can be found in [11, Section 3.3]. In fact a barrier set is an extreme set. An extreme set is not necessarily a barrier set, but it can be shown that an extreme set is contained in some barrier set. In general, the union or intersection of two barrier sets is not a barrier set. However, it can be shown that the intersection of two (inclusionwise) maximal barrier sets is a barrier set. The $A_0(G)$ is both a barrier set and an extreme set. It can be shown that $A_0(G)$ is in fact the intersection of all the maximal barrier sets in *G*. We shall extend this fact to $A_{\theta}(G)$ (see Theorem 3.6).

In the next section, we prove a version of the Berge–Tutte formula extended to general θ . Let the number of θ -critical components in *G* be denoted by $c_{\theta}(G)$.

Theorem 2.1 (Generalized Berge–Tutte Formula).

$$\operatorname{mult}(\theta, G) = \max_{X \subseteq V(G)} c_{\theta}(G \setminus X) - |X|$$

Definition 1.11. Motivated by the generalized Berge–Tutte formula, we define a θ -barrier set to be a set $X \subseteq V(G)$ for which mult(θ , G) = $c_{\theta}(G \setminus X) - |X|$.

We define a θ -extreme set to be a set $X \subseteq V(G)$ for which $mult(\theta, G \setminus X) = mult(\theta, G) + |X|$.

The main theorem of this paper, which is proved in Section 3, is the following.

Theorem 3.6. If $N_{\theta}(G) = \emptyset$, then $A_{\theta}(G)$ is the intersection of all maximal θ -barrier sets in G.

We emphasize that this paper is built up by generalizing some of the statements given in Chapter 3 of Lovász and Plummer's book [11] to the roots of the matching polynomial. Almost all proofs here have a resemblance to those found in [11]. The novelty of this paper is to merge the tools developed by Godsil [3] with the Lovász–Plummer investigations. This paper also fits into a series of papers [6–10] by the authors about the generalization of the results of classical matching theory with respect to the roots of the matching polynomial.

2. Properties of θ -barrier sets

An immediate consequence of part (a) of Theorems 1.2 and 1.7 is the following inequality, which we use frequently.

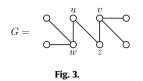
 $\operatorname{mult}(\theta, G) \ge c_{\theta}(G)$ for any graph *G*.

We prove the following analogue of the Berge–Tutte formula. The proof is similar to that of the generalization of Tutte's theorem due to the authors in [7]. For the sake of completeness, we repeat the statement.

Theorem 2.1 (Generalized Berge–Tutte Formula).

$$\operatorname{mult}(\theta, G) = \max_{X \subseteq V(G)} c_{\theta}(G \setminus X) - |X|.$$

(1)



Proof. We claim that $c_{\theta}(G \setminus X) \leq |X| + \text{mult}(\theta, G)$ for all $X \subseteq V(G)$. If not, then $c_{\theta}(G \setminus X) > |X| + \text{mult}(\theta, G)$ for some $X \subseteq V(G)$. Recall that $\text{mult}(\theta, G \setminus X) \geq c_{\theta}(G \setminus X)$. Together with Lemma 1.3, we have $\text{mult}(\theta, G) \geq \text{mult}(\theta, G \setminus X) - |X| > \text{mult}(\theta, G)$, a contradiction.

Now it suffices to show that there is a set $X \subseteq V(G)$ for which $mult(\theta, G) = c_{\theta}(G \setminus X) - |X|$. Take $X = A_{\theta}(G)$; by (ii) of Corollary 1.8 we are done. \Box

Note that the definitions of 0-extreme set and extreme set coincide, but the definitions of 0-barrier set and barrier set are different. Our next proposition shows that a 0-barrier set is a barrier set.

Proposition 2.2. A 0-barrier set is a barrier set.

Proof. If *X* is a 0-barrier set, then $c_0(G \setminus X) = \text{mult}(0, G) + |X|$. Note that $c_0(G \setminus X) \le o(G \setminus X)$. Using Theorem 1.9, we conclude that $o(G \setminus X) = \text{mult}(0, G) + |X|$. Hence *X* is a barrier set. \Box

The converse of Proposition 2.2 is not true. The graph *G* in Fig. 3 is well known (see [11, Figure 3.3.1 on p. 105]). Note that $X = \{u, v\}$ is a barrier set in *G*, but it is not a 0-barrier set.

A weak converse of Proposition 2.2 can be easily proved by using part (b) of Exercise 3.3.18 on p. 109 of [11].

Proposition 2.3. A (inclusionwise) maximal barrier set is a maximal 0-barrier set.

Now we shall study the properties of θ -barrier and θ -extreme sets.

Lemma 2.4. A subset of a θ -extreme set is a θ -extreme set.

Proof. Let *X* be an θ -extreme set, and consider $Y \subseteq X$. Now mult $(\theta, G \setminus X) =$ mult $(\theta, G) + |X|$. By Lemma 1.3, mult $(\theta, G \setminus Y) \leq$ mult $(\theta, G) + |Y|$. If *Y* is not θ -extreme, then mult $(\theta, G \setminus Y) <$ mult $(\theta, G) + |Y|$, and by Lemma 1.3 again, mult $(\theta, G \setminus X) \leq$ mult $(\theta, G \setminus Y) + |X \setminus Y| <$ mult $(\theta, G) + |X|$, a contradiction. Hence a subset of an θ -extreme set is θ -extreme. \Box

Lemma 2.5. If X is a θ -barrier [θ -extreme] set and $Y \subseteq X$, then $X \setminus Y$ is a θ -barrier [θ -extreme] set in $G \setminus Y$.

Proof. Note that $c_{\theta}(G \setminus X) = |X| + \text{mult}(\theta, G)$. By Theorem 2.1 and Lemma 1.3, $c_{\theta}(G \setminus X) \leq |X \setminus Y| + \text{mult}(\theta, G \setminus Y) \leq |X \setminus Y| + \text{mult}(\theta, G) + |Y| = |X| + \text{mult}(\theta, G)$. Hence $c_{\theta}(G \setminus X) = |X \setminus Y| + \text{mult}(\theta, G \setminus Y)$, and $X \setminus Y$ is a θ -barrier set in $G \setminus Y$. \Box

Lemma 2.6. Every θ -extreme set of *G* lies in a θ -barrier set.

Proof. If *X* is a θ -extreme set and $T = A_{\theta}(G \setminus X) \cup X$, then

 $c_{\theta}(G \setminus T) = c_{\theta}(G \setminus (A_{\theta}(G \setminus X) \cup X))$ = $c_{\theta}((G \setminus X) \setminus A_{\theta}(G \setminus X))$ = $|A_{\theta}(G \setminus X)| + \text{mult}(\theta, G \setminus X)$ (by (ii) of Corollary 1.8) = $|A_{\theta}(G \setminus X)| + \text{mult}(\theta, G) + |X|$ (X is θ -extreme) = $|T| + \text{mult}(\theta, G)$,

and hence *T* is a θ -barrier set. \Box

Lemma 2.7. If X is a θ -barrier set, then X is a θ -extreme set.

Proof. Recall from (1) that $\operatorname{mult}(\theta, G \setminus X) \ge c_{\theta}(G \setminus X)$. Since $c_{\theta}(G \setminus X) = |X| + \operatorname{mult}(\theta, G)$, by Lemma 1.3, we have

 $\operatorname{mult}(\theta, G) \ge \operatorname{mult}(\theta, G \setminus X) - |X| \ge c_{\theta}(G \setminus X) - |X| = \operatorname{mult}(\theta, G).$

Hence $\operatorname{mult}(\theta, G \setminus X) = \operatorname{mult}(\theta, G) + |X|$, and X is a θ -extreme set. \Box

Note that in general a θ -extreme set is not a θ -barrier set. In Fig. 3, $X_1 = \{u\}$ is a 0-extreme set but is not a 0-barrier set. Furthermore, in Fig. 1, $X_2 = \{u_1, u_{10}\}$ is a 1-extreme set but is not a 1-barrier set.

Lemma 2.8. If X is a θ -barrier set and H is a component of $G \setminus X$, then either H is θ -critical or mult $(\theta, H) = 0$.

Proof. Note that $c_{\theta}(G \setminus X) = |X| + \text{mult}(\theta, G)$. By Lemma 2.7, X is a θ -extreme set. Therefore $\text{mult}(\theta, G \setminus X) = \text{mult}(\theta, G) + |X| = c_{\theta}(G \setminus X)$. Now, if H is not θ -critical and $\text{mult}(\theta, H) > 0$, then, by part (a) of Theorem 1.2, $\text{mult}(\theta, G \setminus X) > c_{\theta}(G \setminus X)$, a contradiction. Hence either H is θ -critical or $\text{mult}(\theta, H) = 0$. \Box

Lemma 2.9. Let X be a maximal θ -barrier set. If H is a component of $G \setminus X$ and $\text{mult}(\theta, H) = 0$, then, for all $u \in V(H)$, u is θ -neutral in H. Furthermore, if $Y \subseteq V(H)$ and $Y \neq \emptyset$, then $c_{\theta}(H \setminus Y) \leq |Y| - 1$.

Proof. If *H* has a θ -positive vertex, say *u*, then mult(θ , $H \setminus u$) = 1. By (ii) of Corollary 1.8, $c_{\theta}((H \setminus u) \setminus A_{\theta}(H \setminus u)) = |A_{\theta}(H \setminus u)| + \text{mult}(\theta, H \setminus u) = |A_{\theta}(H \setminus u)| + 1$. Now

$$c_{\theta}(G \setminus (X \cup \{u\} \cup A_{\theta}(H \setminus u))) = c_{\theta}(G \setminus X) + c_{\theta}((H \setminus u) \setminus A_{\theta}(H \setminus u))$$

= |X| + mult(\theta, G) + |A_{\theta}(H \setminus u)| + 1
= |X \cup \{u\} \cup A_{\theta}(H \setminus u)| + mult(\theta, G),

and so $X \cup \{u\} \cup A_{\theta}(H \setminus u)$ is a θ -barrier in G, a contradiction to the maximality of X. Hence, for all $u \in V(H)$, u is θ -neutral in H.

Since $Y \neq \emptyset$, we may choose $y \in Y$. Let $Y' = Y \setminus y$ and $H' = H \setminus y$. Note that $mult(\theta, H \setminus y) = 0$ since y is θ -neutral in H. By Theorem 2.1, $c_{\theta}(H' \setminus Y') \leq |Y'|$. Since $H \setminus Y = H' \setminus Y'$, we have $c_{\theta}(H \setminus Y) \leq |Y| - 1$. \Box

Lemma 2.10. If G is θ -critical, then, for all $Y \subseteq V(G)$ and $Y \neq \emptyset$, $c_{\theta}(G \setminus Y) \leq |Y| - 1$.

Proof. Since $Y \neq \emptyset$, we may choose $y \in Y$. Let $Y' = Y \setminus y$ and $G' = G \setminus y$. Note that $mult(\theta, G \setminus y) = 0$ since y is θ -essential in G. By Theorem 2.1, $c_{\theta}(G' \setminus Y') \leq |Y'|$. Since $G \setminus Y = G' \setminus Y'$, we have $c_{\theta}(G \setminus Y) \leq |Y| - 1$. \Box

In general, the union of two θ -barrier sets is not necessarily a θ -barrier set. In Fig. 3, $X_3 = \{u, v, w\}$ and $X_4 = \{v, w, z\}$ are two 0-barrier sets, but $X_3 \cup X_4$ is not a 0-barrier set. In Fig. 1, $X_5 = \{u_1, u_7\}$ and $X_6 = \{u_1, u_{10}\}$ are 1-barrier sets and $X_5 \cup X_6$ is a 1-barrier set. Let C_3 be a cycle with three vertices. Every set containing a single vertex of C_3 is a 1-barrier set, but the union of two such sets is not 1-barrier set.

However, the intersection of two θ -barrier sets is a θ -barrier set. We shall prove this fact in Theorem 3.10. At present, let us use the results in this section to prove a weaker version.

Theorem 2.11. The intersection of two maximal θ -barrier sets is a θ -barrier set.

Proof. Let *X* and *Y* be two maximal θ -barrier sets. Let G_1, G_2, \ldots, G_k be the θ -critical components of $G \setminus X$ and H_1, H_2, \ldots, H_m be the components of $G \setminus Y$. Note that $k = |X| + \text{mult}(\theta, G)$. Let $X_i = X \cap V(H_i)$, $Y_i = Y \cap V(G_i)$, and $Z = X \cap Y$. By relabelling if necessary, we may assume that $X_1, \ldots, X_{m_1} \neq \emptyset$ and $Y_1, \ldots, Y_{k_1} \neq \emptyset$, but $X_{m_1+1} = \cdots = X_m = Y_{k_1+1} = \cdots = Y_k = \emptyset$, and also that $k_1 \leq m_1$. Note that G_{k_1+1}, \ldots, G_k are θ -critical components in $(G \setminus X) \setminus Y$, so each is contained in a component of $G \setminus Y$.

Next we count the indices *i* with $k_1 + 1 \le i \le k$ such that G_i is contained in some H_j . If $m_1 + 1 \le j \le m$, then H_j is a component in $(G \setminus X) \setminus Y$. So, if $G_i \subseteq H_j$, then $G_i = H_j$. Furthermore, G_i is a component of $G \setminus Z$. By Theorem 2.1, the number of such G_i 's is at most $c_{\theta}(G \setminus Z) \le |Z| + \text{mult}(\theta, G)$.

Suppose that $1 \le j \le m_1$. If G_{i_1}, \ldots, G_{i_t} are contained in H_j , then they are θ -critical components in $H_j \setminus X_j$. By Lemma 2.8, either H_j is θ -critical or mult(θ, H) = 0. If mult(θ, H) = 0, then, by Lemma 2.9, $c_{\theta}(H_j \setminus X_j) \le |X_j| - 1$. If H_i is θ -critical, then, by Lemma 2.10, $c_{\theta}(H_j \setminus X_j) \le |X_j| - 1$. Therefore, in either case, $t \le |X_j| - 1$.

The number of G_i 's where $k_1 + 1 \le i \le k$ that are disjoint from Y is at most

$$c_{\theta}(G \setminus Z) + \sum_{j=1}^{m_1} (|X_j| - 1) \leq |Z| + \operatorname{mult}(\theta, G) + |X \setminus Z| - m_1$$

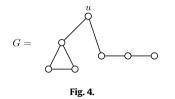
= |X| + mult(\theta, G) - m_1
= k - m_1
\le k - k_1.

Since this number is exactly $k - k_1$, we infer that equality must hold throughout. Hence $c_{\theta}(G \setminus Z) = |Z| + \text{mult}(\theta, G)$, and Z is a θ -barrier set. \Box

3. Characterizations of $A_{\theta}(G)$

A characterization of $A_{\theta}(G)$ is that it is the unique inclusion-minimal θ -barrier set (see Theorem 3.5). If $N_{\theta}(G) = \emptyset$, then another characterization of $A_{\theta}(G)$ is that it is the intersection of all maximal θ -barrier sets in G (see Theorem 3.6).

Lemma 3.1. If X is a θ -barrier set or a θ -extreme set, then $X \subseteq A_{\theta}(G) \cup P_{\theta}(G)$.



Proof. By Lemma 2.7, we may assume that *X* is θ -extreme. Let $x \in X$. By Lemma 2.4, {*x*} is a θ -extreme set. Therefore $\operatorname{mult}(\theta, G \setminus x) = \operatorname{mult}(\theta, G) + 1$, and *x* is θ -positive. Hence $x \in A_{\theta}(G) \cup P_{\theta}(G)$, and $X \subseteq A_{\theta}(G) \cup P_{\theta}(G)$. \Box

Lemma 3.2. Let X be a θ -barrier set. If $X \subseteq A_{\theta}(G)$, then $X = A_{\theta}(G)$.

Proof. Note that $c_{\theta}(G \setminus X) = \text{mult}(\theta, G) + |X|$. By Lemma 2.8, we conclude that $A_{\theta}(G \setminus X) = \emptyset$. By Theorem 1.6, $A_{\theta}(G \setminus X) = A_{\theta}(G) \setminus X$. Hence $X = A_{\theta}(G)$. \Box

We shall need the following result of Godsil [3].

Theorem 3.3 (Theorem 4.2 of [3]). If θ is a root of $\mu(G, x)$ with non-zero multiplicity k and we let u be a θ -positive vertex in G, then

(a) if v is θ -essential in G, then it is θ -essential in G \ u;

(b) if v is θ -positive in G, then it is θ -essential or θ -positive in $G \setminus u$;

(c) if u is θ -neutral in G, then it is θ -essential or θ -neutral in G \ u.

Lemma 3.4. If $u \in P_{\theta}(G)$, then $A_{\theta}(G) \subseteq A_{\theta}(G \setminus u)$.

Proof. If $A_{\theta}(G) = \emptyset$, then we are done. Suppose that $A_{\theta}(G) \neq \emptyset$. If $v \in A_{\theta}(G)$, then v is adjacent to a θ -essential vertex w. By Theorem 3.3, w is θ -essential in $G \setminus u$, and v is either θ -positive or θ -essential in $G \setminus u$. If v is θ -essential in $G \setminus u$, then mult $(\theta, G \setminus uv) = \text{mult}(\theta, G)$. By Theorem 1.6, $u \in P_{\theta}(G) = P_{\theta}(G \setminus v)$. Since v is θ -special in G, v is θ -positive in G (see Corollary 4.3 of [3]). Hence mult $(\theta, G \setminus uv) = \text{mult}(\theta, G) + 2$, a contradiction. Therefore v is θ -positive in $G \setminus u$. Since v is adjacent to w, we must have $v \in A_{\theta}(G \setminus u)$. Hence $A_{\theta}(G) \subseteq A_{\theta}(G \setminus u)$. \Box

Theorem 3.5. If X is a θ -barrier set in G, then $A_{\theta}(G) \subseteq X$. In particular, $A_{\theta}(G)$ is the unique minimal θ -barrier set.

Proof. By Lemma 3.1, $X \subseteq A_{\theta}(G) \cup P_{\theta}(G)$. We shall prove the result by induction on $|X \cap P_{\theta}(G)|$. If $|X \cap P_{\theta}(G)| = 0$, then $X \subseteq A_{\theta}(G)$, and, by Lemma 3.2, $X = A_{\theta}(G)$. Suppose that $|X \cap P_{\theta}(G)| \ge 1$. We may assume that, if X' is a θ -barrier set in G' with $|X' \cap P_{\theta}(G')| < |X \cap P_{\theta}(G)|$, then $A_{\theta}(G') \subseteq X'$.

Let $x \in X \cap P_{\theta}(G)$. By Lemma 2.5, $X' = X \setminus x$ is a θ -barrier set in $G' = G \setminus x$. By Lemmas 3.1 and 3.4, we have $X' \subseteq A_{\theta}(G') \cup P_{\theta}(G')$ and $A_{\theta}(G) \subseteq A_{\theta}(G')$. Therefore $|X' \cap P_{\theta}(G')| < |X \cap P_{\theta}(G)|$. By the induction hypothesis, $A_{\theta}(G') \subseteq X'$. Hence $A_{\theta}(G) \subseteq X$. \Box

In general, $A_{\theta}(G)$ is not the intersection of all maximal θ -barrier sets in *G*. For instance, in Fig. 4, mult($\sqrt{3}, G$) = 0 and $A_{\sqrt{3}}(G) = \emptyset$. Now {*u*} is the only maximal $\sqrt{3}$ -barrier set, but $A_{\sqrt{3}}(G) \neq \{u\}$. However, we can show that $A_{\theta}(G)$ is the intersection of all maximal θ -barrier sets in *G* if $N_{\theta}(G) = \emptyset$.

Theorem 3.6. If $N_{\theta}(G) = \emptyset$, then $A_{\theta}(G)$ is the intersection of all maximal θ -barrier sets in *G*.

Proof. By Theorem 3.5, $A_{\theta}(G)$ is contained in the intersection of all maximal θ -barriers in *G*. It is sufficient to show that for each $x \in V(G) \setminus A_{\theta}(G)$ there is a maximal barrier that does not contain x. If $x \in D_{\theta}(G)$, then, by Lemma 3.1, x is not contained in any θ -barriers and thus any maximal θ -barriers. If $x \in P_{\theta}(G)$, then x is contained in a component H in $G \setminus A_{\theta}(G)$ with mult $(\theta, H) = 0$. Note that $|V(H)| \ge 2$ for $x \in P_{\theta}(G) = P(G \setminus A_{\theta}(G))$, and mult $(\theta, H \setminus x) = 1$ (see Theorem 1.6). By (c) of Theorem 1.2 and the fact that mult $(\theta, H) = 0$, we deduce that there is a vertex $y \in V(H \setminus x)$ for which mult $(\theta, H \setminus xy) = 0$. Now $y \in P_{\theta}(G)$ for $N_{\theta}(G) = \emptyset$. Furthermore, x is θ -essential in $H \setminus y$. Therefore $x \notin A_{\theta}(H \setminus y)$ and, by (ii) of Corollary 1.8, $c_{\theta}((H \setminus y) \setminus A_{\theta}(H \setminus y)) = |A_{\theta}(H \setminus y)| + 1$. Hence

$$c_{\theta}(G \setminus (A_{\theta}(G) \cup \{y\} \cup A_{\theta}(H \setminus y))) = c_{\theta}(G \setminus A_{\theta}(G)) + c_{\theta}((H \setminus y) \setminus A_{\theta}(H \setminus y))$$

= $|A_{\theta}(G)| + \text{mult}(\theta, G) + |A_{\theta}(H \setminus y)| + 1$
= $|A_{\theta}(G) \cup \{y\} \cup A_{\theta}(H \setminus y)| + \text{mult}(\theta, G),$

and so $A_{\theta}(G) \cup \{y\} \cup A_{\theta}(H \setminus y)$ is a θ -barrier set not containing x. Let Z be a maximal θ -barrier set containing $Y = A_{\theta}(G) \cup \{y\} \cup A_{\theta}(H \setminus y)$. By Lemma 2.5, $Z \setminus Y$ is a θ -barrier set in $G \setminus Y$. Using Theorem 1.6 and the fact that x is θ -essential in $H \setminus y$, we can deduce that $x \in D_{\theta}(G \setminus Y)$. By Lemma 3.1, we conclude that $x \notin Z \setminus Y$, and hence $x \notin Z$. The proof of the theorem is completed. \Box

Since $N_0(G) = \emptyset$, by Theorem 3.6 and Proposition 2.3, we deduce the following classical result.

Corollary 3.7 (Theorem 3.3.15 of [11]). $A_0(G)$ is the intersection of all maximal barrier sets in G.

Finally, we prove that the intersection of two θ -barrier sets is a θ -barrier set. We shall need the following two lemmas.

Lemma 3.8. A set $X \subseteq V(G)$ is a θ -barrier set in G if and only if $X \cap H$ is a θ -barrier set in H for each component H of G.

Proof. Let H_1, \ldots, H_m be the components of *G*. Note that $c_{\theta}(G \setminus X) = \sum_{i=1}^m c_{\theta}(H_i \setminus X)$. By part (a) of Theorem 1.2, mult(θ, G) $= \sum_{i=1}^{m} \text{mult}(\theta, H_i) \text{ and } \text{mult}(\theta, G \setminus X) = \sum_{i=1}^{m} \text{mult}(\theta, H_i \setminus X).$ (\Leftarrow) If $X \cap H_i$ is a θ -barrier set in H_i for all i, then $\text{mult}(\theta, H_i) = c_{\theta}(H_i \setminus X) - |H_i \cap X|$. Therefore $\text{mult}(\theta, G) = \sum_{i=1}^{m} \frac{1}{2} \sum_{i=1}^{$

 $(c_{\theta}(H_i \setminus X) - |H_i \cap X|) = c_{\theta}(G \setminus X) - |X|$, and X is a θ -barrier set in G. (\Rightarrow) If X is a θ -barrier set in G, then mult $(\theta, G) = c_{\theta}(G \setminus X) - |X|$. So $\sum_{i=1}^{m} \text{mult}(\theta, H_i) = \sum_{i=1}^{m} (c_{\theta}(H_i \setminus X) - |H_i \cap X|)$ and $\sum_{i=1}^{m} (\text{mult}(\theta, H_i) - (c_{\theta}(H_i \setminus X) - |H_i \cap X|)) = 0.$ By Theorem 2.1, each summand on the left in the last equation must be non-negative. We thus conclude that $\operatorname{mult}(\theta, H_i) = c_{\theta}(H_i \setminus X) - |H_i \cap X|$, and $X \cap H_i$ is a θ -barrier set in H_i for all *i*.

Lemma 3.9. If B is a θ -barrier set in G with $X = B \cup T$ for some $T \subseteq V(G \setminus B)$, then X is a θ -barrier set in G if and only if T is a θ -barrier set in $G \setminus B$.

Proof. First note that, by Lemma 2.7, $mult(\theta, G \setminus B) = mult(\theta, G) + |B|$.

 (\Leftarrow) If *T* is a θ -barrier set in $G \setminus B$, then mult $(\theta, G \setminus B) = c_{\theta}(G \setminus (B \cup T)) - |T|$, and so mult $(\theta, G) = c_{\theta}(G \setminus (B \cup T)) - |B \cup T|$. Hence *X* is a θ -barrier set in *G*.

 (\Rightarrow) If X is a θ -barrier set in G, then mult $(\theta, G) = c_{\theta}(G \setminus (B \cup T)) - |B \cup T|$, and therefore mult $(\theta, G \setminus B) = c_{\theta}(G \setminus (B \cup T)) - |T|$. Hence *T* is a θ -barrier set in $G \setminus B$.

Theorem 3.10. The intersection of two θ -barrier sets is a θ -barrier set.

Proof. Let B_1 and B_2 be two θ -barrier sets. By Theorem 3.5, $B_1 = A_{\theta}(G) \cup T_1$ for some $T_1 \subseteq V(G \setminus A_{\theta}(G))$. By Lemma 3.9, T_1 is a θ -barrier set in $G \setminus A_{\theta}(G)$. Similarly, $B_2 = A_{\theta}(G) \cup T_2$ for some θ -barrier set T_2 in $G \setminus A_{\theta}(G)$. Now $B_1 \cap B_2 = A_{\theta}(G) \cup (T_1 \cap T_2)$. By Lemma 3.9, it suffices to show that $T_1 \cap T_2$ is a θ -barrier set in $G \setminus A_{\theta}(G)$.

If $|T_1 \cap T_2| = 0$, then $T_1 \cap T_2 = \emptyset$ and we are done (for an empty set is a θ -barrier set). Suppose $|T_1 \cap T_2| \ge 1$. Assume that, if T_3 and T_4 are θ -barrier sets in $G \setminus A_{\theta}(G)$ and $|T_3 \cap T_4| < |T_1 \cap T_2|$, then $T_3 \cap T_4$ is a θ -barrier set in $G \setminus A_{\theta}(G)$.

Let $x \in T_1 \cap T_2$. Since T_1 is a θ -barrier set in $G \setminus A_{\theta}(G)$, by part (iii) of Corollary 1.8 and Lemma 3.1, we deduce that $x \in H$, where H is a component of $G \setminus A_{\theta}(G)$ with mult $(\theta, H) = 0$. Furthermore, mult $(\theta, H \setminus x) = 1$, and we deduce that $c_{\theta}((H \setminus x) \setminus A_{\theta}(H \setminus x)) = 1 + |A_{\theta}(H \setminus x)| = |\{x\} \cup A_{\theta}(H \setminus x)|$ (by Corollary 1.8 and part (a) of Theorem 1.2). Therefore $\{x\} \cup A_{\theta}(H \setminus x)$ is a θ -barrier set in H.

On the other hand, $T_1 \cap H$ is a θ -barrier set in H by Lemma 3.8. By Lemma 2.5, $(T_1 \cap H) \setminus x$ is a θ -barrier set in $H \setminus x$, which yields $A_{\theta}(H \setminus x) \subseteq (T_1 \cap H) \setminus x$ (Theorem 3.5). Therefore, we may let $T_1 \cap H = T_3 \cup (\{x\} \cup A_{\theta}(H \setminus x))$ for some $T_3 \subseteq V(H \setminus (\{x\} \cup A_{\theta}(H \setminus x)))$. Moreover, since $T_1 \cap H$ is a θ -barrier set in H, T_3 is a θ -barrier set in H (Lemma 3.9). In fact, it is not hard to see that T_3 is a θ -barrier set in $G \setminus A_{\theta}(G)$ (because H is a component of $G \setminus A_{\theta}(G)$). Similarly, $T_2 \cap H = T_4 \cup (\{x\} \cup A_\theta(H \setminus x))$ for some θ -barrier set T_4 in H that is also a θ -barrier set in $G \setminus A_\theta(G)$. Clearly $|T_3 \cap T_4| < |T_1 \cap T_2|$. By the induction hypothesis, we conclude that $T_3 \cap T_4$ is a θ -barrier set in $G \setminus A_{\theta}(G)$, and thus is also a θ -barrier set in H. Since $T_1 \cap T_2 \cap H = (T_3 \cap T_4) \cup (\{x\} \cup A_{\theta}(H \setminus x))$, we deduce from Lemma 3.9 that $T_1 \cap T_2 \cap H$ is a θ -barrier set in H.

Now if H' is a θ -critical component of $G \setminus A_{\theta}(G)$, then $T_1 \cap T_2 \cap H' = \emptyset$, and so $T_1 \cap T_2 \cap H'$ is a θ -barrier set in H'. Thus $T_1 \cap T_2 \cap H''$ is θ -barrier set in H'' for any component H'' of $G \setminus A_{\theta}(G)$, and so $T_1 \cap T_2$ is a θ -barrier set in $G \setminus A_{\theta}(G)$ (Lemma 3.8).

Acknowledgements

We would like to thank the anonymous referees for their comments, which helped us make several improvements to this paper.

References

- [1] W. Chen, C.Y. Ku, An analogue of the Gallai-Edmonds structure theorem for nonzero roots of the matching polynomial, J. Combin. Theory Ser. B 100 (2010) 119-127.
- C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
- [3] C.D. Godsil, Algebraic matching theory, Electron. J. Combin. 2 (1995) #R8.
 [4] C.D. Godsil, I. Gutman, Topological resonance energy is real, Z. Naturforsch. A 34 (1979) 776–777.
- C.D. Godsil, I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981) 137-144.
- [6] C.Y. Ku, K.B. Wong, Generalized D-graphs for nonzero roots of the matching polynomial, Preprint. Available at: http://front.math.ucdavis.edu/0909. 5266.
- [7] C.Y. Ku, K.B. Wong, Generalizing Tutte's theorem and saturated non-factorizable graphs, Preprint. Available at: http://www.math.nus.edu.sg/~matkcy/ saturated.pdf.
- [8] C.Y. Ku, K.B. Wong, Maximum multiplicity of a root of the matching polynomial of a tree and minimum path cover, Electron. J. Combin. 16 (1) (2009) #R81.
- [9] C.Y. Ku, K.B. Wong, Maximum multiplicity of matching polynomial roots and minimum path cover in general graph, Preprint. Available at: http:// www.math.nus.edu.sg/~matkcy/MaxMin2Final.pdf.
- [10] C.Y. Ku, K.B. Wong, Properties of *θ*-super positive graphs, Preprint. Available at: http://front.math.ucdavis.edu/0912.4100.
 [11] L. Lovász, M.D. Plummer, Matching Theory, Elsevier Science Publishers, Budapest, 1986.