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Melittin is the main component in the venom of the honey bee (Apis mellifera). It has multiple effects including
antibacterial, antiviral, and anti-inflammatory activities in various cell types. However, the anti-inflammatory
mechanisms of melittin have not been elucidated in Propionibactierium acnes (P. acnes)–induced keratinocyte or
inflammatory skin disease animal models. In this study, we examined the effects of melittin on the production of
inflammatory cytokines in heat-killed P. acnes–induced HaCaT cells. Heat-killed P. acnes–treated keratinocytes
increased the expression of pro-inflammatory cytokines and Toll-like receptor 2. However, melittin treatment
significantly suppressed the expression of these cytokines through regulation of the NF-kB and MAPK signaling
pathways. Subsequently, the living P. acnes (1� 107 CFU) were intradermally injected into the ear of mice. Living
P. acnes–injected ears showed cutaneous erythema, swelling, and granulomatous response at 24 hours after
injection. However, melittin-treated ears showed markedly reduced swelling and granulomatous responses
compared with ears injected with only living P. acnes. These results demonstrate the feasibility of applying
melittin for the prevention of inflammatory skin diseases induced by P. acnes.
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INTRODUCTION
Acne is an inflammatory disease of the sebaceous glands, and
is a common skin disease that induces inflammation on the
skin surface of the face, neck, chest, and back. Acne develops
mostly in young people because of several factors: hormonal
imbalance, bacterial infection, stress, food, and cosmetic
application (Marples, 1974). In particular, Propionibacterium
acnes (P. acnes) is a Gram-positive anaerobic bacterium
residing in pilosebaceous follicles as a member of resident
bacterial flora in the skin (Leyden, 2001). Once it overgrows
and colonizes sebaceous hair follicles, P. acnes is pertinent to
the development of inflammatory acne vulgaris, the most
common skin disease afflicting up to 80% of individuals
throughout their lives (Bojar and Holland, 2004). P. acnes
acts as an immunostimulator and produces a variety of

enzymes as well as biologically active molecules that are
involved in the development of inflammatory skin diseases.
The main components of the pilosebaceous unit of the skin,
such as keratinocytes, can be activated by P. acnes and lead to
the production of pro-inflammatory cytokines (Leeming et al.,
1985; Vowels et al., 1995). It has been reported that a secreted
peptidoglycan of P. acnes can stimulate the production of pro-
inflammatory cytokines or chemokines, such as interleukin
(IL)-1, IL-8, and TNF-a, by monocytic cell lines; thereby trigg-
ering granulomatous reactions of inflammatory skin disease
(Chen et al., 2002; Jain and Basal, 2003). Furthermore, P. acnes
stimulates the production of pro-inflammatory cytokines via
Toll-like receptor (TLR)2 and TLR4 (Webster, 2002; Heymann,
2006). During inflammatory reactions, TLR activation results
in the activation of the MAPK and the transcription factor
NF-kB signaling pathways. These pathways then modulate
inflammatory gene expression, which is crucial in shaping the
innate immune response within the inflammatory skin disease
(Grange et al., 2009).

Antibiotics are typical therapeutic agents for P. acnes–
induced inflammatory skin diseases; they are administered to
inhibit inflammation or kill the bacteria. For example, triclo-
san, benzolyl peroxide, azelaic acid, retinoid, tetracycline,
erythromycin, macrolide, and clindamycin are among such
antibiotics. However, these antibiotics have been known to
induce side effects. Therefore, many researchers have tried to
develop therapeutic agents for acne that have no side effects,
but high antibacterial activity (Iwasaki and Medzhitov, 2004).
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Melittin is a cationic, hemolytic peptide that is the main
toxic component in the venom of honey bee (Apis mellifera). It
has multiple effects, including antibacterial, antiviral, and anti-
inflammatory activities, in various cell types (Raghuraman
and Chattopadhyay, 2007). Recent studies have shown that
melittin can induce cell cycle arrest, growth inhibition, and
apoptosis in various tumor cells (Chu et al., 2007; Zhang et al.,
2007). We previously demonstrated that melittin efficiently
suppresses the expression of specific genes in the animal
model of liver cirrhosis and atherosclerosis (Kim et al., 2011;
Park et al., 2012). These studies are informative, but they are
not enough to demonstrate that melittin can prevent the
development of inflammatory molecular mechanisms of skin
diseases in in vitro and in vivo models. Therefore, in this
study, we investigated the potential therapeutic effects of
melittin as an alternative agent for inflammatory skin
diseases. We examined the effects of melittin on the
production of inflammatory cytokines in heat-killed P. acnes–
induced HaCaT cells in vitro. Furthermore, the molecular
pathogenesis of anti-inflammatory effects of melittin was

investigated in living P. acnes–induced inflammatory skin
disease animal models.

RESULTS
Heat-killed P. acnes is capable of inducing inflammatory
responses in HaCaT cells

We first examined whether heat-killed P. acnes was capable
of inducing secreted inflammatory cytokines. HaCaT cells
were treated with various stimulations to determine the
inflammatory effects of these stimulants. TNF-a, IL-1b, IL-8,
and IFN-g secretions were increased by lipopolysaccharide
(LPS), culture supernatant of P. acnes (Sup), and heat-killed P.
acnes in the HaCaT cell culture medium. However, the
expression levels were lower in LPS- and Sup-treated cells
than those in heat-killed P. acnes (1.0� 107 CFU ml�1)–
treated cells (Figure 1a). In particular, 1.0�107 CFU ml�1 of
heat-killed P. acnes significantly increased TNF-a and mature
IL-1b (17 kDa) expression levels compared with other stimula-
tions (Figure 1b). We investigated the effects of LPS, Sup,
and heat-killed P. acnes (1.0�105-7 CFU ml�1) on cell
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Figure 1. Various stimulants induced pro-inflammatory cytokines in keratinocytes. HaCaT cells were treated with heat-killed Propionibactierium acnes

(1.0� 105-7 CFU ml� 1), LPS (100 ng ml�1), or Sup (50ml ml� 1). (a) ELISA results with culture medium show that TNF-a, IL-1b, IL-8, and IFN-g were increased by

heat-killed P. acnes, LPS, and Sup treatment. (b) Western blot analysis demonstrates that TNF-a and IL-1b (17kDa) were increased by heat-killed P. acnes, LPS, and

Sup treatment. (c) Western blot analysis demonstrates that TLR2 and 4 were increased by heat-killed P. acnes, LPS, and Sup treatment. Results are expressed as

mean±SE of three independent determinations. *Po0.05 compared with the normal control (NC). GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PA,

living P. acnes–injected group; Sup, culture supernatant of P. acnes; TLR, Toll-like receptor.
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cytotoxicity by measurement of LDH release. The LDH assay
signifies membrane integrity and direct measurement of cell
death. Our results show that LPS, Sup, and heat-killed P. acnes
(1.0�105-7 CFU ml� 1) did not influence LDH release in
HaCaT cell culture medium (Supplementary Figure S1
online). Recent papers have reported that P. acnes may induce
inflammation through activation of TLRs, especially TLR2 and
4, which are expressed in keratinocytes (Lyte et al., 2009).
Figure 1c shows increased expression of TLR2 and 4 by heat-
killed P. acnes. In addition, the expression levels of TLR2 were
higher in heat-killed P. acnes–treated cells compared with
those in LPS- or Sup-treated cells. These results suggest that
TLR2 responded to P. acnes and that heat-killed P. acnes can
initiate inflammation in keratinocytes.

Effects of melittin on pro-inflammatory cytokines and TLR
expressions in heat-killed P. acnes–treated HaCaT cells

We determined the cytotoxicity of melittin at different doses
and times by the CCK-8 assay. HaCaT cells were treated with
different concentrations of melittin (0.1, 0.5, and 1mg ml�1)
and at different time points (8, 12, and 24 hours). After
treatment with melittin, the viability of HaCaT cells was
decreased at 12 and 24 hours. However, an 8-hour treatment
with melittin did not affect the cell viability of HaCaT cells.
Thus, the effects of melittin on HaCaT cells were minimal at

8 hours. On the basis of these results, an optimal treatment
time of 8 hours for melittin was used for subsequent experi-
ments in HaCaT cells (Supplementary Figures S2 and S3
online). Subsequently, we examined the effects of melittin
on the production of inflammatory cytokines and chemokines
in heat-killed P. acnes–induced HaCaT cells. Cells were
treated with different concentrations of melittin in the presence
of heat-killed P. acnes. Melittin treatment significantly
suppressed the secretion of TNF-a, IL-1b, IL-8, and IFN-g in
1.0�107 CFU ml�1 of heat-killed P. acnes–treated cells. Thus,
these observations suggest that melittin effectively inhibits the
secretion of TNF-a, IL-1b, IL-8, and IFN-g in HaCaT cells
(Figure 2a). Also, we assessed the effects of melittin on heat-
killed P. acnes–induced pro-inflammatory cytokine expression
in HaCaT cells. Cells expressed TNF-a and IL-1b (17 kDa) after
exposure to heat-killed P. acnes. On the other hand, melittin
treatment markedly suppressed the expression of TNF-a and
IL-1b (17 kDa) in a concentration-dependent manner
(Figure 2b). In addition, melittin-treated HaCaT cells displayed
a significantly decreased expression of TLR2 and 4, especially
with the administration of 1mg ml�1 of melittin (Figure 2c).
Several papers have reported that the activity of TLR2 results in
IL-8 secretion of keratinocytes (Kim et al., 2002). Thus, this
study examined the expression of TLR2 and IL-8 in HaCaT
cells by immunofluorescence labeling (Figure 2d). The
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Figure 2. Melittin effectively inhibits pro-inflammatory cytokines and TLRs in HaCaT cells. (a) ELISA results demonstrate that melittin suppressed the secretion of

TNF-a, IL-1b, IL-8, and IFN-g in culture medium with HaCaT cells. (b, c) Western blot analysis shows that melittin inhibited the expression of TNF-a and

IL-1b (17 kDa), and the regulation of TLR2 and 4. (d) Melittin treatment reduced IL-8 and TLR2 in heat-killed P. acnes–treated HaCaT cells. Immune

complexes were detected by anti-mouse FITC (green), anti-rabbit Texas red (red), and nuclei were stained with Hoechst 33342 (blue). Magnification �400,

bar ¼ 100mm. Results are expressed as mean±SE of three independent determinations. *Po0.05 compared with the normal control (NC). wPo0.05 compared

with the only heat-killed P. acnes–treated cells. GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PA, living P. acnes–injected group; TLR, Toll-like receptor.

W-R Lee et al.
Effects of Melittin on P. acnes–Induced Models

1924 Journal of Investigative Dermatology (2014), Volume 134



distribution of TLR2 (FITC, green) and IL-8 (Texas red, red) in
normal HaCaT cells displayed little TLR2 and IL-8 expression
in the cytoplasm and plasma membrane. In contrast, heat-
killed P. acnes–treated cells showed a strong labeling
intensity of TLR2 and IL-8 in the cytoplasm of HaCaT cells.
Staining with TLR2 revealed that colonies of heat-killed
P. acnes were present on the surface area of the cytoplasm.
In particular, the expression of TLR2 was clearly increased in
heat-killed P. acnes–treated cells. However, treatment with
1mg ml� 1 of melittin exhibited decreased expression of TLR2.
These data suggest that heat-killed P. acnes induced activation
of TLR2 and resulted in IL-8 expression, and that melittin
reduced the expression of TLR2 and IL-8. These results

demonstrate that melittin seems to be capable of reducing
pro-inflammatory cytokine secretion or expression and
related TLR2 expression in heat-killed P. acnes–induced
keratinocytes.

Effects of melittin on the NF-jB and MAPK signaling pathways in
heat-killed P. acnes–treated HaCaT cells

To determine the involvement of the NF-kB signaling path-
ways in the anti-inflammatory properties of melittin, the
activation of these proteins was examined by western blots
(Figure 3a). Following the administration of heat-killed
P. acnes, increased expressions of cytosolic phosphory-
lated IKK, IkB, and nuclear NF-kB were found in the
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heat-killed P. acnes treatment of HaCaT cells. (c) Expression levels of TNF-a and IL-1b suppressed by melittin and SB203580 treatment in HaCaT cells.
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heat-killed P. acnes–treated cells. However, addition of melit-
tin significantly reduced IKK and IkB phosphorylation in the
heat-killed P. acnes–treated cells. In the nuclear fraction,
phosphorylated NF-kB was also decreased at 1mg ml�1 of
melittin. These results indicate that treatment with melittin
abrogated the effect of P. acnes on altering the expression
levels of genes, which are relevant to skin inflammation
through NF-kB signaling. Activation of MAPK is significant
in the regulation of inflammation to control the activation of
NF-kB and IKKs (Kim et al., 2006). In the present study, we
investigated whether melittin modulates MAPK signals in heat-
killed P. acnes–treated HaCaT cells. Figure 3b shows that
phosphorylated p38 was markedly increased after treatment
with heat-killed P. acnes. However, phosphorylated p38 was
decreased after treatment with melittin. More specifically,
treatment with 1mg ml�1 of melittin almost completely
blocked the phosphorylation of p38 after treatment with
heat-killed P. acnes in HaCaT cells. However, ERK1/2 and
JNK phosphorylated forms were not changed after treatment
with heat-killed P. acnes or melittin. Subsequently, we con-
firmed the p38 MAPK-dependent TNF-a and IL-1b upregula-
tion in HaCaT cells that were pretreated with MAPK inhibitors
or p38 siRNA. Pretreatment with PD98059 and SP600125
increased the expression levels of TNF-a and IL-1b (17 kDa) in
heat-killed P. acnes–treated HaCaT cells. However, SB203580
or 1mg ml�1 of melittin specifically inhibited the expression of
TNF-a and IL-1b (17 kDa), respectively, in heat-killed
P. acnes–treated cells (Figure 3c and Supplementary Figure
S4 online). After transfection with p38 siRNA for 48 hours, the
expression of p38 showed a decline in heat-killed P. acnes–
treated HaCaT cells. However, transfection with control
siRNA did not have any effect on p38 accumulation
(Figure 3d). Next, we examined the effects of melittin on
TNF-a and IL-1b (17 kDa) expression in heat-killed P. acnes–
treated HaCaT cells. Figure 3e shows that pretreatment with
p38 siRNA inhibited the expression of TNF-a and IL-1b.
Furthermore, melittin suppressed the expression of
TNF-a and IL-1b in heat-killed P. acnes–treated HaCaT cells.
These results support the explanation that melittin inhibits
TNF-a and IL-1b expression by suppression of p38 MAPK
phosphorylation in heat-killed P. acnes–treated HaCaT cells.

Effects of melittin on P. acnes–treated inflammatory
animal model

To investigate the effects of living P. acnes on the develop-
ment of inflammatory skin diseases, ear tissues were harvested
to observe their histological changes (Supplementary Figure S5
online). Living P. acnes–injected ears showed cutaneous
erythema, swelling, and granulomatous response at 24 hours
after injection. Supplementary Figure S5b online shows that
the left ear was significantly thickened compared with the
PBS-injected right ear. These results demonstrate that living
P. acnes is suitable to induce inflammation in the skin in vivo.
Subsequently, we attempted to determine the protective
effects of melittin against P. acnes–induced inflammatory
skin tissues. To do this, different concentrations of melittin
mixed with vaseline were applied to the right ears of
mice. Histological observation revealed that P. acnes induced

a considerable increase in the number of infiltrated inflam-
matory cells (Figure 4a–c). However, melittin-treated ears
showed markedly reduced swelling and granulomatous
response compared with ears injected with only living
P. acnes. In particular, 100mg of melittin resulted in a 1.3-
fold reduction of ear thickness compared with ears injected
with only living P. acnes (Figure 4f).

Effects of melittin on the gene expression of TNF-a and IL-1b in
the inflammatory animal model
Bacterial infection stimulates the production of pro-inflamma-
tory cytokines, including TNF-a and IL-1b (Kim, 2005). As
shown in Figure 5a and b, the expression levels of TNF-a and
IL-1b were barely detected in normal skin tissue from the NC
group. However, more significant upregulation of these
expression levels was observed in the PA and Vas groups,
whereas treatment with melittin led to the evident down-
regulation of TNF-a and IL-1b expression. Concomitant with
western blot and RT–PCR, the results show that the expression
levels of TNF-a and IL-1b were significantly increased in the
PA and Vas groups. Also, TNF-a, IL-1b, IL-8, and IFN-g mRNA
levels were increased in the PA and Vas groups. However,
these expression levels were decreased in the PA/Mel100
group (Figure 5c-e). These results show that melittin resulted in
suppression of pro-inflammatory cytokines in the P. acnes–
treated inflammatory animal model.

Effects of melittin on the DNA-binding activity of transcription
factors and TLR2 expression in the inflammatory animal model

We evaluated the underlying mechanisms of melittin in skin
inflammation in vivo. The expression levels of cytosolic
phospho-IKK, phospho-IkB, and nuclear NF-kB were deter-
mined. After P. acnes administration, there was an increase
in cytosolic phospho-IKK, phospho-IkB, and nuclear NF-kB
expression in the PA and PA/Vas groups. However, melittin
treatment reduced the phosphorylation of IKK and IkB in the
PA/Mel100 group. Also, treatment with melittin reduced the
amount of the nuclear NF-kB protein (Figure 6a). Subse-
quently, to examine whether melittin effectively blocks the
DNA-binding activity of NF-kB and AP-1, gel mobility shift
assays were performed. As shown in Figure 6b and c, the
binding activity of NF-kB and AP-1 was increased in the PA
and Vas groups. In contrast, this enhancement of binding
activity was markedly withdrawn after treatment with melittin.
These results show that melittin effectively blocked the DNA-
binding activity of NF-kB and AP-1 at the transcriptional level.
Afterwards, we examined the effects of melittin on the
expression of TLR2 and CD14 in inflammatory skin. Merged
images show that the PA and Vas groups predominantly
expressed CD14 in the dermis and TLR2 in the epithelium,
both of which are localized at different parts of the tissue.
These results suggest that an injection of P. acnes induces the
infiltration of macrophages and activation of TLR2 in the
inflammatory skin tissue. However, melittin treatment resulted
in noticeable inhibition of CD14 and TLR2 expression
(Figure 6d). These results suggest that melittin inhibits the
expression of CD14 and IL-8. Moreover, melittin modulates
DNA-binding activity of NF-kB and AP-1 in inflammatory skin.

W-R Lee et al.
Effects of Melittin on P. acnes–Induced Models

1926 Journal of Investigative Dermatology (2014), Volume 134



DISCUSSION
A direct effect of P. acnes on keratinocytes during immune
responses of skin lesions has been implicated in the initiation
of the inflammatory processes. P. acnes has a critical role in
the development of inflammatory skin diseases (Vowels et al.,
1995; Thiboutot, 1997). Several papers have reported that
infection of P. acnes involves an interaction of TLR2 and 4
with keratinocytes (Webster, 2002; Heymann, 2006). Activa-
tion of TLR2 and 4 induces the release of inflammatory
cytokines and chemokines, such as TNF-a, IL-1b, IFN-g, and
IL-8 in skin diseases (Chen et al., 2002; Pivarcsi et al., 2003).
TNF-a is a multifunctional cytokine involved in the regulation
of immunity and inflammation (Jain and Basal, 2003). Recent
studies have indicated that TNF-a, IL-1b, and IL-8 accelerate
skin inflammation in mice. Also, these cytokines or chemo-
kines were shown to modulate inflammatory responses in
keratinocytes and monocytes (Kang et al., 2005; Shibata et al.,
2009). In particular, IL-8 is a CXC chemokine with mitogenic
activity in keratinocytes. It is a chemoattractant involved in the
recruitment of neutrophils, the predominant cell type in
inflammation-related skin lesions (Layton et al., 1998;
Koreck et al., 2003). During inflammatory reactions in the
skin, IFN-g has an essential role in host defense against various
bacteria by activating phagocytes and inflammatory reactions
(Kawa et al., 2010). Recent papers have reported that LPS,

Sup, and P. acnes directly stimulate the production of TNF-a,
IL-8, and IFN-g via TLR expression (Vowels et al., 1995; Basal
et al., 2004). Our results show that LPS, Sup, and P. acnes
induced secretion of TNF-a, IL-8, and IFN-g in HaCaT cells.
Moreover, melittin treatments effectively inhibited the
expression of these cytokines. These results demonstrate that
LPS, Sup, and P. acnes are capable of inducing inflammatory
responses in HaCaT cells. In addition, melittin treatments
effectively inhibited the expression of TNF-a, IL-1b, IFN-g, and
IL-8, and modulated TLR activation.

The major pathway used by most TLRs leads to the
activation of the NF-kB and MAPK signaling pathways. They
then modulate inflammatory gene expression, which is crucial
for the innate immune response of inflammation (Hari et al.,
2010). NF-kB comprises a family of inducible transcription
factors that serve as important regulators of the host immune
and inflammatory responses (Yaron et al., 1998; Spencer et al.,
1999). Other important signaling pathways of MAPK have
been implicated in multiple cellular events, such as prolife-
ration, survival, differentiation, and inflammation (Duesbery
et al., 1998; Grange et al., 2009). Activation of MAPK leads to
increased production of pro-inflammatory mediators, such as
TNF-a and IL-1b (Kim et al., 2006; Moon et al., 2007). In this
study, melittin suppressed heat-killed P. acnes–inducible IkB
phosphorylation and nuclear NF-kB p65 activation in HaCaT
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cells. Moreover, the heat-killed P. acnes–induced p38 MAPK
signal was specifically inhibited by melittin. These results
demonstrate that melittin mediates anti-inflammatory effect
via NF-kB signaling and that activation of the p38 pathway is
important in the activation of TNF-a and IL-1b during
inflammatory reactions.

On the basis of the in vitro results, we investigated the
effects of melittin on the P. acnes–treated animal model.
Recent studies have reported that an injection of living
P. acnes leads to the development of inflammatory skin diseases
in animal models (Nakatsuji et al., 2008, 2009). However, the
precise mechanism of the anti-inflammatory effects of melittin
has not been elucidated in inflammatory skin diseases. In this
study, intradermal injection of living P. acnes into the mouse
ear induced an increase in ear thickness and in granulomatous
response. Subsequently, we examined the effects of melittin
on the living P. acnes–injected inflammatory animal model.
The major findings of in vivo results are that melittin
attenuates the manifestation of inflammatory skin pathologies
and decreases the expression of pro-inflammatory cytokines.
These inflammatory cytokines are regulated by transcription

factors, such as NF-kB and AP-1, in acne lesions (Iwasaki and
Medzhitov, 2004; Trinchieri and Sher, 2007; Shibata et al.,
2009). The results of this study show that the binding activity
of NF-kB and AP-1 was increased in living P. acnes–induced
inflammatory skin disease. In contrast, melittin markedly
withdrew the responses induced by living P. acnes by
suppression of inflammatory cytokines through modulation
of NF-kB and AP-1 transcription factors. In effect, melittin
inhibits degeneration of skin inflammation.

In conclusion, we demonstrated the protective effects of
melittin on the P. acnes–induced in vitro and in vivo inflam-
matory models. Administration of melittin significantly
decreased the expression of various inflammatory cytokines
in heat-killed P. acnes–treated keratinocytes. In particular,
melittin suppressed the expression of TNF-a and IL-1b through
regulation of the NF-kB and MAPK signaling pathways in
keratinocytes. In addition, melittin exerted anti-inflammatory
effects against the living P. acnes–treated animal model. These
protective effects were mainly because of the suppression of
NF-kB and AP-1, which regulate the production of inflamma-
tory cytokines. These results demonstrate the feasibility of
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applying melittin for the prevention of progression of inflam-
matory skin diseases induced by P. acnes.

MATERIALS AND METHODS
Cell cultures

HaCaT (5.0� 105 cells ml� 1) cells were seeded in complete medium.

After 24 hours, the cells were changed to serum-free medium

containing the indicated concentrations of melittin (0.1, 0.5, and

1mg ml� 1). After 30 minutes, the cells were treated with heat-

killed P. acnes (1.0� 105-7 CFU ml� 1, PA), the culture superna-

tant of P. acnes (50ml ml� 1, Sup), and lipopolysaccharide (LPS,

100 ng ml� 1) and were cocultured for 8 hours. For further informa-

tion, see Supplementary Materials and Methods.

ELISA
Concentrations of cytokines and chemokines were measured with

ELISA kits (R&D Systems, Minneapolis, MN).

Western blotting

Western blotting was performed as previously described (Kim et al.,

2011). For further information, see Supplementary Materials and

Methods online.

Animal model

Eight-week-old ICR mice (n¼ 30) were randomly subdivided into six

groups (five mice per group) and were maintained under various

conditions. All surgical and experimental procedures used in the
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current study were approved by the institutional review board

committee of the Catholic University of Daegu Medical Center. For

further information, see Supplementary Materials and Methods online.

RT–PCR

Primer sequences and other details are reported in Supplementary

Materials and Methods online.

Histological and immunofluorescent staining

Hematoxylin and eosin, immunohistochemical, and immunofluores-

cent staining was performed according to the described procedure

(Kim et al., 2011). For further information, see Supplementary

Materials and Methods online.

Statistical analysis

Data are presented as the means±SE. The Student’s t-test was used to

assess the significance of independent experiments. The criterion

Po0.05 was used to determine statistical significance.
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