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Abstract

In this paper, we prove that cyclic hamiltonian cycle systems of the complete graph minus a 1-factor, Kn − I , exist if and only if
n ≡ 2, 4 (mod 8) and n �= 2p� with p an odd prime and ��1.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout this paper, Kn will denote the complete graph on n vertices, Kn − I will denote the complete graph
on n vertices with a 1-factor I removed (a 1-factor is a 1-regular spanning subgraph), and Cm will denote the m-cycle
(v1, v2, . . . , vm). An m-cycle system of a graph G is a set C of m-cycles in G whose edges partition the edge set of G.
An m-cycle system is called hamiltonian if m = |V (G)|, where V (G) denotes the vertex set of G.

Several obvious necessary conditions for an m-cycle system C of a graph G to exist are immediate: 3�m� |V (G)|,
the degrees of the vertices of G must be even, and m must divide the number of edges in G. A survey on cycle systems
is given in [13] and necessary and sufficient conditions for the existence of an m-cycle system of Kn and Kn − I were
given in [1,16] where it was shown that a m-cycle system of Kn or Kn − I exists if and only if n�m, every vertex of
Kn or Kn − I has even degree, and m divides the number of edges in Kn or Kn − I, respectively.

Throughout this paper, � will denote the permutation (0 1 . . . n − 1), so 〈�〉 = Zn, the additive group of integers
modulo n. An m-cycle system C of a graph G with vertex set Zn is cyclic if, for every m-cycle C = (v1, v2, . . . , vm) in
C, the m-cycle �(C) = (�(v1), �(v2), . . . , �(vm)) is also in C. An n-cycle system C of a graph G with vertex set Zn

is called a cyclic hamiltonian cycle system. Finding necessary and sufficient conditions for cyclic m-cycle systems of
Kn is an interesting problem and has attracted much attention (see, for example, [2,3,5,6,8,9,11,14,15]). The obvious
necessary conditions for a cyclic m-cycle system of Kn are the same as for an m-cycle system of Kn; that is, n�m�3,
n is odd (so that the degree of every vertex is even), and m must divide the number of edges in Kn. However, these
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conditions are not sufficient. For example, it is not difficult to see that there is no cyclic decomposition of K15 into
15-cycles. Also, if p is an odd prime and ��2, then Kp� cannot be decomposed cyclically into p�-cycles [6].

The existence question for cyclic m-cycle systems of Kn has been completely settled in a few small cases, namely
m = 3 [12], 5 and 7 [15]. For even m and n ≡ 1 (mod 2m), cyclic m-cycle systems of Kn are constructed for m ≡
0 (mod 4) in [11] and for m ≡ 2 (mod 4) in [14]. Both of these cases are handled simultaneously in [8]. For odd m and
n ≡ 1 (mod 2m), cyclic m-cycle systems of Kn are found using different methods in [2,5,9]. In [3], as a consequence
of a more general result, cyclic m-cycle systems of Kn for all positive integers m and n ≡ 1 (mod 2m) with n�m�3
are given. Recently, it has been shown [6] that a cyclic hamiltonian cycle system of Kn exists if and only if n �= 15
and n /∈ {p�|p is an odd prime and ��2}. Thus, as a consequence of a result in [5], cyclic m-cycle systems of K2mk+m

exist for all m �= 15 and m /∈ {p�|p is an odd prime and ��2}. In [17], the last remaining cases for cyclic m-cycle
systems of K2mk+m are settled, i.e., it is shown that, fork�1, cyclic m-cycle systems of K2km+m exist if m = 15 or
m ∈ {p�|p is an odd prime and ��2}. In [19], necessary and sufficient conditions for the existence of cyclic 2q-cycle
and m-cycle systems of the complete graph are given when q is an odd prime power and 3�m�32. In [4], cycle
systems with a sharply vertex-transitive automorphism group that is not necessarily cyclic are investigated. As a result,
it is shown in [4] that no cyclic k-cycle system of Kv exist if k < v < 2k with v odd and gcd(k, v) a prime power.

These questions can be extended to the case when n is even by considering the graph Kn − I . In [3], it is shown that
for all integers m�3 and k�1, there exists a cyclic m-cycle system of K2mk+2 − I if and only if mk ≡ 0, 3 (mod 4).
In this paper, we are interested in cyclic hamiltonian cycle systems of Kn − I where n is necessarily even. The main
result of this paper is the following.

Theorem 1.1. For an even integer n�4, there exists a cyclic hamiltonian cycle system of Kn − I if and only if
n ≡ 2, 4 (mod 8) and n �= 2p� where p is an odd prime and ��1.

It is interesting to note that for n even, every cyclic hamiltonian cycle system of Kn − I determines a cyclic 1-
factorization of Kn. In [10], it is shown that Kn has a cyclic 1-factorization if and only if n is even and n �= 2t for
t �3.

Our methods involve circulant graphs and difference constructions. In Section 2, we give some basic definitions
and lemmas while the proof of Theorem 1.1 is given in Section 3. In Lemma 3.1, we show that if there is a cyclic
hamiltonian cycle system of Kn − I , then n ≡ 2, 4 (mod 8) and n �= 2p� where p is an odd prime and ��1. Lemmas
3.2 and 3.3 handle each of these congruence classes modulo 8. Our main theorem then follows. For graph theoretic
terms not defined in this paper see [18].

2. Preliminaries

The proof of Theorem 1.1 uses circulant graphs, which we now define. Let S be a subset of Zn satisfying

(1) 0 /∈ S, and
(2) S = −S; that is, s ∈ S implies that −s ∈ S.

The circulant graph Circ(n; S) is defined to be that graph whose vertices are the elements of Zn, with an edge between
vertices g and h if and only if h = g + s for some s ∈ S. Thus, in this paper, circulant graphs are simple and finite.
We call S the connection set, and we will often write −s for n − s when n is understood. Notice that the edge from
g to g + s in this graph is generated by both s and −s, since g = (g + s) + (−s) and −s ∈ S. Therefore, whenever
S = S′ ∪ −S′, where S′ ∩ −S′ = {s ∈ S|s = −s}, every edge of Circ(n; S) comes from a unique element of the set S′.
Hence we make the following definition. In a circulant graph Circ(n; S), a set S′ with the property that S = S′ ∪ −S′
and S′ ∩ −S′ = {s ∈ S|s = −s} is called a set of edge lengths for Circ(n; S).

Notice that in order for a graph G to admit a cyclic m-cycle decomposition, G must be a circulant graph, so circulant
graphs provide a natural setting in which to construct cyclic m-cycle decompositions.

The graph Kn is a circulant graph, since Kn = Circ(n; {1, 2, . . . , n − 1}). For n even, Kn − I is also a circulant
graph, since Kn − I = Circ(n; {1, 2, . . . , n − 1}\{n/2}) (so the edges of the 1-factor I are of the form {i, i + n/2}
for i = 0, 1, . . . , (n − 2)/2). In fact, if n = a′b and gcd(a′, b) = 1, then we can view Zn as Za′ × Zb, using the
group isomorphism � : Zn → Za′ × Zb defined by �(k) = (k (mod a)′, k (mod b)). We can therefore relabel both the
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vertices and the edge lengths of the circulant graphs, using ordered pairs from Za′ × Zb, rather than elements of Zn,
by identifying elements of Zn with their images under �. This will prove a very useful tool in our results. Throughout
Section 3, as n is even, we will use the isomorphism � with a′ = 2a for some a, and b odd.

Let H be a subgraph of a circulant graph Circ(n; S). For a fixed set of edge lengths S′, the notation �(H) will denote
the set of edge lengths belonging to H, that is,

�(H) = {s ∈ S′|{g, g + s} ∈ E(H) for some g ∈ Zn}.

Many properties of �(H) are independent of the choice of S′; in particular, neither of the two lemmas in this section
depends on the choice of S′.

Let C be an m-cycle in a cyclic decomposition C of Circ(n; S), and recall that the permutation �, which generates
Zn, has the property that �(C) ∈ C whenever C ∈ C. We can therefore consider the action of Zn as a permutation
group acting on the elements of C. Viewing matters this way, the length of the orbit of C (under the action of Zn) can
be defined as the least positive integer k such that �k(C) = C. Observe that such a k exists since � has finite order;
furthermore, the well-known orbit-stabilizer theorem (see, for example [7, Theorem 1.4A(iii)]) tells us that k divides
n. Thus, if G is a graph with a cyclic m-cycle system C with C ∈ C in an orbit of length k, then it must be that k divides
n = |V (G)| and that �(C), �2(C), . . . , �k−1(C) are distinct m-cycles in C, where � = (0 1 · · · n − 1).

The next lemma gives many useful properties of an m-cycle C in a cyclic m-cycle system C of a graph G with
V (G) = Zn where C is in an orbit of length k. Many of these properties are also given in [6] in the case that m = n.
The proofs of the following statements follow directly from the previous definitions and are therefore omitted.

Lemma 2.1. Let C = (v0, v1, . . . , vm−1) be an m-cycle in a cyclic m-cycle system C of a graph G of order n. Let C be
in an orbit of length k. Then

(1) |�(C)| = mk/n,
(2) if � ∈ �(C), then C has n/k edges of length �, and
(3) (n/k)| gcd(m, n).

When m = n, let P : v0 = 0, v1, . . . vk be a subpath of C of length k. Then

(4) for each � ∈ �(C), k��,
(5) vk = kx for some integer x with gcd(x, n/k) = 1,
(6) v1, v2, . . . , vk are distinct modulo k,
(7) �(P ) = �(C), and
(8) P, �k(P ), �2k(P ), . . . , �n−k(P ) are pairwise edge-disjoint subpaths of C.

A set X of m-cycles in a graph G with vertex set Zn such that C = {�i (C)|C ∈ X, i = 0, 1, . . . , n − 1} is an
m-cycle system of G with the property that C ∈ X implies �i (C) /∈ X for 1� i�n − 1 is called a complete system
of representatives for C. Note that if X is a complete system of representatives for a cyclic m-cycle system C of the
graph Circ(n; S) and S′ is a set of edge lengths, then it must be that the collection of sets {�(C)|C ∈ X} forms a
partition of S′.

3. Proof of the main theorem

In this section, we will prove Theorem 1.1. We begin by determining the admissible values of n in Lemma 3.1.
Next, for those admissible values of n, we construct cyclic hamiltonian cycle systems of Kn − I in Lemmas 3.2 and
3.3. The strategy we will adopt is as follows. For n even, we will choose integers a and b so that n = 2ab with b odd
and gcd(a, b) = 1. We will then view Kn − I as a circulant graph labelled by the elements of Z2a × Zb. Recall that
� : Zn → Za′ × Zb, is defined by �(k) = (k (mod a)′, k (mod b)), where here a′ = 2a. Let

S′ = {(0, j), (a, j)|1�j �(b − 1)/2} ∪ {(i, k)|1� i�a − 1, 0�k�b − 1},
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and observe that |S′| = (b − 1) + (a − 1)b = ab − 1 = (n − 2)/2. Now S′ ∩ −S′ = ∅, so that Circ(n; �−1(S′ ∪ −S′)) is
an (n − 2)-regular graph so indeed Circ(n; �−1(S′ ∪ −S′)) = Kn − I, and �−1(S′) is a set of edge lengths of Kn − I ,
which becomes the set S′ under relabelling.

Let �̂ = ���−1 and note that

�̂ = ((0, 0) (1, 1) (2, 2) · · · (2a − 1, b − 1))

generates Z2a × Zb, that is, 〈�̂〉 = Z2a × Zb. Let C be an m-cycle system of Kn − I where the vertices have been
labelled by the elements of Z2a × Zb such that C ∈ C implies �̂(C) ∈ C. Then, clearly {�−1(C)|C ∈ C} is a cyclic
m-cycle system of Kn − I with vertex set Zn.

Next observe that if (e, f ) ∈ S′ has gcd(e, 2a) = 1 and gcd(f, b) = 1, then Circ(n; {±�−1((e, f ))}), the graph with
vertex set Zn consisting of the edges of length ±�−1 ((e, f )), forms an n-cycle C with the property that �(C)=C. Let

T = {(i, j) ∈ S′| gcd(i, 2a) > 1 or gcd(j, b) > 1}.
To find a cyclic hamiltonian cycle system of Kn − I , it suffices to find a set X of n-cycles such that {�(C)|C ∈ X} is a
partition of T. Then the collection

C = {�−1(C), �(�−1(C)), . . . , �n−1(�−1(C))|C ∈ X} ∪ {Circ(n; {±�−1((e, f ))})|(e, f ) ∈ S′\T }
is a cyclic hamiltonian cycle system of Kn − I.

We now show that if Kn − I has a cyclic hamiltonian cycle system for n even, then n�4 with n ≡ 2, 4 (mod 8) and
n �= 2p� where p is an odd prime and ��1.

Lemma 3.1. For an even integer n�4, if there exists a cyclic hamiltonian cycle system of Kn−I , then n ≡ 2, 4 (mod 8)

and n �= 2p� where p is an odd prime and ��1.

Proof. Let n�4 be an even integer and suppose that Kn − I has a cyclic hamiltonian cycle system C. Let X be a
complete system of representatives for C and let C ∈ X be in an orbit of length k. Let P : 0, v1, v2, . . . , vk = jk be
a subpath of C, starting at vertex 0, of length k. Clearly, if k is even, then jk ≡ k (mod 2). On the other hand, if k is
odd, then n/k is even and since gcd(j, n/k) = 1, it follows that j is odd and hence jk ≡ k (mod 2). Let �0(C) be the
set of even elements in �(C) and let �1(C) be the set of odd elements in �(C). Clearly |�1(C)| ≡ jk (mod 2). Then
|�0(C)| + |�1(C)| = k and |�1(C)| ≡ k (mod 2)implies that |�0(C)| must be even. Thus, if C ∈ X, then �(C) has an
even number of even edge lengths. Since {�(C)|C ∈ X} is a partition of {1, 2, . . . , (n−2)/2}, it follows that there must
be an even number of even integers in the set {1, 2, . . . , (n − 2)/2}. Since n is even, we have that n ≡ 2, 4 (mod 8).

It remains to show that n �= 2p� where p is an odd prime and ��1. Suppose, to the contrary, that n = 2p� for some
odd prime p and ��1. Let X be a complete system of representatives for C and choose C ∈ X with 2p�−1 ∈ �(C)

(replace S′ by −S′ if necessary to ensure that 2p�−1 ∈ S′; since p �= 2, 2p�−1 is not the length of the edges in the
missing 1-factor I). Suppose that C is in an orbit of length k. Then k|2p�, and since Kn − I has 2p�(2p� − 2)/2 edges
and each cycle of C has 2p� edges, we must have |C| = p� − 1. It therefore follows that 1�k < 2p�. Hence, k|2p�−1,
and by Lemma 2.1, we must have k = 1. But if k = 1, then �(C) = {2p�−1} and since Circ(2p�; {±2p�−1}) consists
of 2p�−1 p-cycles, we have a contradiction. Therefore, n �= 2p� where p is an odd prime and ��1. �

We will handle each of the cases n ≡ 2 (mod 8) and n ≡ 4 (mod 8) separately. We begin with the case n ≡ 4 (mod 8)

as this is the easier of the two cases.

Lemma 3.2. For n ≡ 4 (mod 8), the graph Kn − I has a cyclic hamiltonian cycle system.

Proof. Suppose that n ≡ 4 (mod 8), say n= 8q + 4 for some nonnegative integer q. Since K4 − I is a 4-cycle, we may
assume that q �1. Now, Zn�Z4 ×Z2q+1 and thus we will use � to relabel the vertices of Kn −I =Circ(n; {1, . . . , n−
1}\{n/2}) with the elements of Z4 × Z2q+1. The set

S′ = {(0, i), (2, i)|1� i�q} ∪ {(1, j)|0�j �2q}
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has the property that S′ ∩−S′ = ∅ and �−1(S′ ∪−S′)={1, 2, . . . , n− 1}\{n/2}. Thus we can think of the elements of
S′ as the edge lengths of the relabelled graph. If q is even, say q = 2j for some positive integer j, define the walk P by

P : (0, 0), (0, 1), (0, −1), (0, 2), (0, −2), . . . , (0, j), (0, −j),

(2, j + 1), (0, −(j + 1)), (2, j + 2), (0, −(j + 2)), . . . , (2, q), (0, −q), (1, 0).

If q is odd, say q = 2j + 1 for some nonnegative integer j, define the walk P by

P : (0, 0), (0, 1), (0, −1), (0, 2), (0, −2), . . . , (0, j), (0, −j), (0, j + 1),

(2, −(j + 1)), (0, j + 2), (2, −(j + 2)), . . . , (0, q), (2, −q), (3, 0).

In either case, note that the vertices of P, except for the first and the last, are distinct modulo 2q + 1 in the second
coordinate, while the first and the last vertices are distinct modulo 4 in the first coordinate. Therefore, P is a path. Next,
the edge lengths of P, in the order they are encountered, are (0, 1), (0, 2), . . . , (0, q), (2, q), (2, q − 1), . . . , (2, 1),

(1, q). Let

C = P ∪ �̂2q+1(P ) ∪ �̂4q+2(P ) ∪ �̂6q+3(P ).

Then, clearly C is an n-cycle in an orbit of length 2q + 1 and

�(C) = {(0, 1), (0, 2), . . . , (0, q), (2, q), (2, q − 1), . . . , (2, 1), (1, q)}.
Now, let d0, d1, . . . , dt denote the integers with 0�dj < 2q and gcd(dj , 2q + 1) > 1. For j = 0, 1, . . . , t , consider

the walk Pj : (0, 0), (1, dj ), (2, 2q). Clearly, Pj is a path and the edge lengths of Pj , in the order they are encountered,
are (1, dj ), (1, 2q − dj ). Let

Cj = Pj ∪ �̂2(Pj ) ∪ �̂4(Pj ) ∪ �̂6(P − j) ∪ · · · �̂8q+2(Pj ).

Then Cj is an n-cycle in an orbit of length 2 and

�(Cj ) = {(1, dj ), (1, 2q − dj )}.
Since gcd(q, 2q + 1) = 1, we have that dj �= q and thus �(C) ∩ �(Cj ) = ∅ for 0�j � t .

Let T = {�(C), �(C0), . . . , �(Ct )}, and let (e, f ) ∈ S′\T . Then e = 1 and gcd(f, 2q + 1) = 1. Thus,

X = {�−1(C), �−1(C0), . . . ,�
−1(Ct )} ∪ {Circ(n; {±�−1((e, f ))})|(e, f ) ∈ S′\T }

is a complete system of representatives for a cyclic hamiltonian cycle system of Kn − I . �

Before continuing, let � denote the Euler-phi function, that is, for a positive integer a, �(a) denotes the number of
integers r with 1�r �a and gcd(r, a)=1. For a positive integer a, �(a) is easily computed from the prime factorization
of a. Let a = p

k1
1 p

k2
2 · · · pkt

t where p1, p2, . . . , pt are distinct primes and k1, k2, . . . , kt are positive integers. Then

�(a) =
t∏

i=1

p
ki−1
i (pi − 1).

We now handle the case when n ≡ 2 (mod 8).

Lemma 3.3. For n ≡ 2 (mod 8) with n�4 and n �= 2p� where p is an odd prime and ��1, the graph Kn − I has a
cyclic hamiltonian cycle system.

Proof. Suppose that n ≡ 2 (mod 8) with n �= 2p� where p is an odd prime and ��1, say n= 8q + 2 for some positive
integer q. Let 4q + 1 = p

k1
1 p

k2
2 · · · pkr

r q
j1
1 q

j2
2 · · · qjs

s where p1, p2, . . . , pr , q1, q2, . . . , qs are all distinct primes with
r, s�0; p1 < p2 < · · · < pr ; pi ≡ 3 (mod 4), ki �1 for 1� i�r; qm ≡ 1 (mod 4), and jm �1 for 1�m�s. Since
n ≡ 2 (mod 8), it follows that

∑
ki is even.
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Case 1. Suppose that s�1, or some ki is even for 1� i�r , or r > 2. Let

a =

⎧⎪⎪⎨
⎪⎪⎩

q
j1
1 if s�1,

p
ki

i if s = 0 and ki is even for some 1� i�r, or

p
k2
2 p

k3
3 if s = 0, ki is odd for 1� i�r, and r > 2.

Note that for each choice of a, we have that a ≡ 1 (mod 4). Let b = (4q + 1)/a and observe that gcd(a, b) = 1. Next,
we will use � to relabel the vertices of Kn − I = Circ(n; {1, . . . , n− 1}\{n/2}) with the elements of Z2a × Zb. The set

S′ = {(0, j), (a, j)|1�j �(b − 1)/2} ∪ {(i, j)|1� i�a − 1, 0�j �b − 1}
has the property that S′ ∩ −S′ = ∅ and �−1(S′ ∪ −S′) = {1, 2, . . . , n − 1}\{n/2}, so we can think of the elements of
S′ as the edge lengths of the relabelled graph.

Let d1, d2, . . . , dt denote the integers with 1�dj < a and gcd(dj , 2a) > 1 and let e1, e2, . . . , ea−1−t denote the
integers in the set {1, 2, . . . , a − 1}\{d1, d2, . . . , dt } so that gcd(ei, 2a) = 1 for 1� i�a − 1 − t . We will need to show
that 2(a − 1 − t)� t + 1.

First, �(2a) is the number of integers r with 1�n�2a and gcd(r, 2a)=1. Thus, 2a−�(2a) is the number of integers
r with 1�r �2a and gcd(r, 2a) > 1 so that (2a−�(2a))/2 is the number of integers r with 1�r �a and gcd(r, 2a) > 1.
Hence t = (2a − �(2a))/2 − 1, since each di < a. Substituting t = (2a − �(2a))/2 − 1 into 2(a − 1 − t)� t + 1, we
obtain the inequality �(2a)�2a/3, which needs to be verified for each choice of a above. Suppose first that a = q

j1
1 .

Then, since q1 �5 > 3 and �(2a)= q
j1−1
1 (q1 − 1), it easily follows that �(2a)�2a/3. Similarly, if a =p

ki

i , then again

�(2a)�2a/3 since pi �3. Next suppose that a = p
k2
2 p

k3
3 and observe that since p3 > p2 > p1, it follows that p2 �7

and p3 �11. Now �(2a)�2a/3 is equivalent to �(2a)/a�2/3, and since �(2a) = p
k2−1
2 (p2 − 1)p

k3−1
3 (p3 − 1), it

follows that �(2a)/a = (p2 − 1)(p3 − 1)/(p2p3)�60/77 > 2/3. Hence, �(2a)�2a/3 if a = p
k2
2 p

k3
3 .

Let b = 2m + 1 for some positive integer m. Since b = (4q + 1)/a and a ≡ 1 (mod 4), we also have b ≡ 1 (mod 4),
so m is even. Say m = 2j for some positive integer j, and define the walk P by

P : (0, 0), (0, 1), (0, −1), (0, 2), (0, −2), . . . , (0, j), (0, −j),

(a, j + 1), (0, −(j + 1)), (a, j + 2), (0, −(j + 2)), . . . , (a, m), (0, −m), (e1, 0).

Note that the vertices of P, except for the first and the last, are distinct modulo b in the second coordinate, while the
first and the last vertices are distinct modulo 2a in the first coordinate. Therefore, P is a path. Next, the edge lengths of
P, in the order they are encountered, are (0, 1), (0, 2), . . . , (0, m), (a, m), (a, m − 1), . . . , (a, 1), (e1, m). Let

C = P ∪ �̂b(P ) ∪ �̂2b(P ) ∪ · · · �̂(2a−1)b(P ).

Since the last vertex of P is (e1, 0), and gcd(e1, 2a) = 1, we have that C is an n-cycle in an orbit of length b where

�(C) = {(0, 1), (0, 2), . . . , (0, m), (a, m), (a, m − 1), . . . , (a, 1), (e1, m)}.
Now, define the walks P1, P2, . . . , Pt as follows for i = 1, 3, 5, . . . ,

Pi : (0, 0), (di, 1), (0, −1), (di, 2), (0, −2), . . . , (di, m), (0, −m), (−e(i+1)/2, 0),

and

Pi+1 : (0, 0), (di+1, 1), (0, −1), (di+1, 2), (0, −2), . . . , (di+1, m), (0, −m), (e(i+1)/2+1, 0).

For j = 1, 2, . . . , t , the vertices of Pj , except for the first and the last, are distinct modulo b in the second coordinate,
while the first and the last vertices are distinct modulo 2a in the first coordinate. Therefore, each Pj is a path. Next, the
edge lengths of Pj , in the order they are encountered, are (dj , 1), (dj , 2), . . . , (dj , m), (dj , m + 1), . . . , (dj , b − 1),

and (e(j+1)/2, m + 1) if j is odd or (ej/2+1, m) if j is even. Let

Cj = Pj ∪ �̂b(Pj ) ∪ �̂2b(Pj ) ∪ · · · �̂(2a−1)b(Pj ).
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Since the last vertex (k, 0) of Pj , where k = −e(j+1)/2 or k = ej/2+1 has the property that gcd(k, 2a) = 1, we have that
Cj is an n-cycle in an orbit of length b where

�(Cj ) = {(dj , 1), (dj , 2), . . . , (dj , m), (dj , m + 1), . . . , (dj , b − 1), (e(j+1)/2, m + 1)}
if j is odd, or

�(Cj ) = {(dj , 1), (dj , 2), . . . , (dj , m), (dj , m + 1), . . . , (dj , b − 1), (ej/2+1, m)}
if j is even.

Define the set A=�(C)∪�(C1)∪�(C2)∪· · ·∪�(Ct ). Now, A contains t +1 elements from the set {(ei, m), (ei, m+
1)|1� i�a − 1 − t} whose size is 2(a − 1 − t). Since we have seen previously that 2(a − 1 − t)� t + 1, it follows
that there are enough distinct values of ei to make edge lengths in A distinct, so |A| = (t + 1)b.

Let c1, c2, . . . , cx denote the integers with 1�cj < b and gcd(cj , b) > 1 for 1�j �x. Fix j with 1�j �x and for
i = 1, 2, . . . , a − 1 − t , consider the walk Pi,j : (0, 0), (ei, cj ), (2ei, b − 1). Clearly, Pi,j is a path and the edge lengths
of Pi,j , in the order they are encountered, are (ei, cj ), (ei, b − 1 − cj ). Let

Ci,j = Pi,j ∪ �̂2(Pi,j ) ∪ �̂4(Pi,j ) ∪ �̂6(Pi,j ) ∪ · · · �̂2ab−2(Pi,j ).

Since gcd(ei, a) = 1, it follows that Ci,j is an n-cycle in an orbit of length 2 and

�(Ci,j ) = {(ei, cj ), (ei, b − 1 − cj )}.
Define the set

B =
⋃

1 � i � a−1−t

1� j �x

�(Ci,j ).

We want A ∩ B = ∅. Now, if A ∩ B �= ∅, then as gcd(ck, b) > 1 for every k and b = 2m + 1, we cannot have ck = m

or ck = m + 1, so it must be the case that b − 1 − ck = m + 1 for some k with 1�k�x. Thus ck = (b − 3)/2 = m − 1.
In this case, for i = 1, 2, . . . , a − 1 − t , define Pi,k : (0, 0), (ei, ck), (2ei, m) and create Ci,k as before. Thus

�(Ci,k) = {(ei, ck), (ei, 1)}.
Since gcd(2ei, 2a) = 2, it follows that Ci,k will be an n-cycle in an orbit of length 2. Thus A ∩ B = ∅.

Finally, consider the path P ′ : (0, 0), (1, 0), (−1, 0), (2, 0), (−2, 0), . . . , ((a − 1)/2, 0), (−(a − 1)/2, 0), (a, 1)

and let

C′ = P ′ ∪ �̂a(P ′) ∪ �̂2a(P ′) ∪ · · · ∪ �̂a(2b−1)(P ′).

Since gcd(1, b) = 1, we have that C′ is an n-cycle in an orbit of length a and

�(C′) = {(1, 0), (2, 0), . . . , (a − 1, 0), ((a + 1)/2, b − 1)}.
Since a ≡ 1 (mod 4) we have that gcd((a + 1)/2, 2a) = 1 and therefore ((a + 1)/2, b − 1) /∈ A ∪ B.

Let T = S′\(A ∪ B ∪ �(C′)) and let (e, f ) ∈ T . Then, it must be that gcd(e, 2a) = 1 and gcd(f, b) = 1. Thus,

X = {�−1(C), �−1(C1), . . . �
−1(Ct ), �

−1(C1,1), �
−1(C1,2), . . . , �

−1(C1,x), �
−1(C2,1), �

−1(C2,2),

. . . ,�−1(C2,x), . . . ,�
−1(Ca−1−t,1), �

−1(Ca−1−t,2), . . . , �
−1(Ca−1−t,x), �

−1(C′)}
⋃

{Circ(n; {±�−1((e, f ))})|(e, f ) ∈ T }
is a complete system of representatives for a cyclic hamiltonian cycle system of Kn − I .

Case 2. Suppose that s = 0, ki is odd for 1� i�r , and r = 2. Thus n = 2p
k1
1 p

k2
2 where k1 and k2 are odd. In this

case, we will let a = p
k1
1 , b = p

k2
2 and use � to relabel the vertices of Kn − I = Circ(n; {1, . . . , n − 1}\{n/2}) with the

elements of Z2a × Zb. The set

S′ = {(0, j), (a, j)|1�j �(b − 1)/2} ∪ {(i, j)|1� i�a − 1, 0�j �b − 1}
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has the property that �−1(S′) is a set of edge lengths of Kn − I , so we can think of the elements of S′ as the edge
lengths of the relabelled graph.

Let d1, d2, . . . , dt denote the integers with 1�dj < a and gcd(dj , 2a) > 1 and let e1, e2, . . . , ea−1−t denote the
integers in the set {1, 2, . . . , a − 1}\{d1, d2, . . . , dt } so that gcd(ei, 2a) = 1 for 1� i�a − 1 − t . In this case, note
that as p1 ≡ 3 (mod 4) and k1 is odd, gcd((a + 1)/2, 2a) = 2 so that (a + 1)/2 ∈ {d1, d2, . . . , dt }. Without loss of
generality, let d1 = (a + 1)/2 and e1 = 1.

Since k2 is odd and p2 ≡ 3 (mod 4), it follows that b = p
k2
2 = 4j + 3 for some positive integer j. Define the

walk P by

P : (0, 0), (0, 1), (0, −1), (0, 2), (0, −2), . . . , (0, j), (0, −j), (0, j + 1), (a, −(j + 1)),

(0, j + 2), (a, −(j + 2)), . . . , (0, 2j + 1), (a, −(2j + 1)), ((3a + 1)/2, 0).

Note that the vertices of P, except for the first and the last, are distinct modulo b in the second coordinate, while the
first and the last vertices are distinct modulo 2a in the first coordinate. Therefore, P is a path. Next, the edge lengths
of P, in the order they are encountered, are (0, 1), (0, 2), . . . , (0, 2j + 1), (a, 2j + 1), (a, 2j), . . . , (a, 1), ((a + 1)/2,

2j + 1). Let

C = P ∪ �̂b(P ) ∪ �̂2b(P ) ∪ · · · �̂(2a−1)b(P ).

Since the last vertex ((3a + 1)/2, 0) of P has the property that gcd((3a + 1)/2, 2a) = 1, we have that C is an n-cycle
in an orbit of length b where

�(C) = {(0, 1), (0, 2), . . . , (0, 2j + 1), (a, 2j + 1), (a, 2j), . . . , (a, 1), ((a + 1)/2, 2j + 1)}.
Define the walk P1 by

P1 : (0, 0), ((a + 1)/2, 1), (0, −1), ((a + 1)/2, 2), (0, −2), . . . , ((a + 1)/2, j), (0, −j),

(1, j + 1), (1 − (a + 1)/2, −(j + 1)), (1, j + 2), (1 − (a + 1)/2, −(j + 2)),

. . . , (1, 2j + 1), (0, −(2j + 1)), (−ea−1−t , 0).

If t �3, for i = 2, 3, . . . , t − 1, define the walk Pi by

Pi : (0, 0), (di, 1), (0, −1), (di, 2), (0, −2), . . . , (di, 2j + 1), (0, −(2j + 1)), (e(i+1)/2, 0),

if i is odd, or

Pi : (0, 0), (di, 1), (0, −1), (di, 2), (0, −2), . . . , (di, 2j + 1), (0, −(2j + 1)), (−ei/2, 0)

if i is even. If t �2, define the walk Pt by

Pt : (0, 0), (dt , 1), (0, −1), (dt , 2), (0, −2), . . . , (dt , 2j + 1), (0, −(2j + 1)), (ea−1−t , 0).

For i = 1, 2, . . . , t , the vertices of Pi , except for the first and the last, are distinct modulo b in the second coordinate,
while the first and the last vertices are distinct modulo 2a in the first coordinate. Therefore, Pi is a path. Next, the edge
lengths of Pi for i �= 1, in the order they are encountered, are (di, 1), (di, 2), . . . , (di, 2j +1), (di, 2j +2), . . . , (di, b−
1), and (e(i+1)/2, 2j +1) if 1 < i < t is odd, (ei/2, 2j +2) if i < t is even, or (ea−1−t , 2j +1) if i = t . The edge lengths
of P1, in the order they are encountered, are ((a + 1)/2, 1), ((a + 1)/2, 2), . . . , ((a + 1)/2, 2j), (1, 2j + 1), ((a +
1)/2, 2j + 2), . . . , ((a + 1)/2, b − 2), (1, b − 1) and (ea−1−t , 2j + 2). Let

Ci = Pi ∪ �̂b(Pi) ∪ �̂2b(Pi) ∪ · · · �̂(2a−1)b(Pi).

Since the last vertex (�, 0) of Pi has the property that gcd(�, 2a)= 1, we have that Ci is an n-cycle in an orbit of length
b where

�(Ci) = {(di, 1), (di, 2), . . . , (di, 2j + 1), (di, 2j + 2), . . . , (di, b − 1), (e(i+1)/2, 2j + 1)}



2448 H. Jordon, J. Morris / Discrete Mathematics 308 (2008) 2440–2449

if i is odd and 1 < i < t ,

�(Ci) = {(di, 1), (di, 2), . . . , (di, 2j + 1), (di, 2j + 2), . . . , (di, b − 1), (ei/2, 2j + 2)}
if i is even and 1 < i < t ,

�(Ci) = {(di, 1), (di, 2), . . . , (di, 2j), (1, 2j + 1), (di, 2j + 2), . . . , (1, b − 1), (ea−1−t , 2j + 2)}
if i = 1, or

�(Ci) = {(di, 1), (di, 2), . . . , (di, 2j + 1), (di, 2j + 2), . . . , (di, b − 1), (ea−1−t , 2j + 1)}
if i = t and t �2.

Define the set A = �(C) ∪ �(C1) ∪ �(C2) ∪ · · · ∪ �(Ct ). Now, A contains t + 1 elements from the set {(ei, 2j +
1), (ei, 2j + 2)|1� i�a − 1 − t} whose size is 2(a − 1 − t). As in Case 1, t = (2a − �(2a))/2 where in this case
a = p

k1
1 , and we need 2(a − 1 − t)� t + 1. Since p1 �3, the inequality follows. So there are enough distinct values of

ei to make edge lengths in A distinct and therefore |A| = (t + 1)b.
Let c1, c2, . . . , cx denote the integers with 1�cj < b and gcd(cj , b) > 1 for 1�j �x. Fix j with 1�j �x and for

i = 1, 2, . . . , a − 1 − t , consider the walk Pi,j : (0, 0), (ei, cj ), (2ei, b − 1). Clearly, Pi,j is a path and the edge lengths
of Pi,j , in the order they are encountered, are (ei, cj ), (ei, b − 1 − cj ). Let

Ci,j = Pi,j ∪ �̂2(Pi,j ) ∪ �̂4(Pi,j ) ∪ �̂6(Pi,j ) ∪ · · · �̂2ab−2(Pi,j ).

Since gcd(ei, a) = 1, it follows that Ci,j is an n-cycle in an orbit of length 2 and

�(Ci,j ) = {(ei, cj ), (ei, b − 1 − cj )}.
Define the set

B =
⋃

1� i �a−1−t
1� j �x

�(Ci,j ).

We want A ∩ B = ∅. Now, if A ∩ B �= ∅, then as gcd(ck, b) > 1 for every k and b = 4j + 3, we cannot have c = 2j + 1
or c = 2j + 2, so it must be the case that b − 1 − ck = 2j + 2 for some k with 1�k�x. Then ck = (b − 3)/2. This
implies that 3|pk2

2 since gcd(ck, p
k2
2 ) > 1. This is impossible since p2 �7.

Finally, consider the path P ′ : (0, 0), (1, 0), (−1, 0), (2, 0), (−2, 0), . . . , ((a − 1)/2, 0), (−(a − 1)/2, 0), (a, 1)

and let

C′ = P ′ ∪ �̂a(P ′) ∪ �̂2a(P ′) ∪ · · · ∪ �̂a(2b−1)(P ′).

Since gcd(1, b) = 1, it follows that C′ is an n-cycle in an orbit of length a and

�(C′) = {(1, 0), (2, 0), . . . , (a − 1, 0), ((a + 1)/2, b − 1)}.
Let T = S′\(A ∪ B ∪ �(C′)) and let (e, f ) ∈ T . Then, it must be that gcd(e, 2a) = 1 and gcd(f, b) = 1. Thus,

X = {�−1(C), �−1(C1), . . . �
−1(Ct ), �

−1(C1,1), �
−1(C1,2), . . . , �

−1(C1,x), �
−1(C2,1), �

−1(C2,2),

. . . ,�−1(C2,x), . . . ,�
−1(Ca−1−t,1), �

−1(Ca−1−t,2), . . . , �
−1(Ca−1−t,x), �

−1(C′)}
⋃

{Circ(n; {±�−1((e, f ))})|(e, f ) ∈ T }
is a complete system of representatives for a cyclic hamiltonian cycle system of Kn − I . �

Theorem 1.1 now follows from Lemmas 3.1, 3.2 and 3.3.
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