
Science of Computer Programming 18 (1992) 181-204

Elsevier

181

Balanced trees with removals:
an exercise in rewriting and proof

C.M.P. Reade
Department of Computer Science, Brunei University, Uxbridge, Middlesex, LIB8 3PH, UK; and
FMG, SED, lnformatics Department, Rutherford Appleton Laboratory, Chilton,
Didcot, OX11 OQX, UK

Communicated by R.S. Bird

Received May 1991

Revised November 1991

Abstract

Reade, C.M.P., Balanced trees with removals: an exercise in rewriting and proof, Science of

Computer Programming 18 (1992) 181-204.

An equational algorithm to remove values from 2.3-trees is given along with a novel proof

technique for use in showing correctness. The removal algorithm involves rewrite rules which

ensure balance is restored in trees and uses similar methods to those used by Hoffman and

O’Donnell for an insertion algorithm. However, the combination of equational rewrite steps is

more subtle for removals and the algorithm is less obviously correct. Diagrams are used to show

informally how the rewriting steps preserve order and balance and a method for formalising a

correctness proof is also shown. This formalisation involves proofs with “subtypes” in the sense

of sets of values of the same type which aid the derivation of properties of auxiliary functions.

1. Introduction

An elegant equational program for inserting values into 2-3-trees is provided by

Hoffman and O’Donnell [6]. Their algorithm involves equational rewrite rules which

ensure that the balance and order of a tree is restored when a new value is inserted.

A solution to the problem of removing values from 2-3-trees is presented here which

requires a more complex combination of equational rewrite rules. The subtlety of

the algorithm forces a more careful consideration of correctness than seems necessary

for the simpler insertion algorithm and a method of proof (involving typed sets of

values) is introduced for showing the formal correctness of both algorithms.

Correspondence to: C.M.P. Reade, Department of Computer Science, Brunei University, Uxbridge,

Middlesex, UB8 3PH, UK. Email: Chris.Reade@brunel.ac.uk

0167-6423/92/$05.00 @ 1992-Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82773776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

182 C.M. P. Rude

2. Two-three-trees, equational programs and insertions

2.1. Two-three-trees

The algorithms concern 2-3-trees (see Fig. 1) where each tree is either empty (E)

or a 2-node of the form TR(tl ,a,t2) or a 3-node of the form Tr3(tl ,a,t2,b,t3) and

trees are ordered and balanced:

Definition. Assuming node items are drawn from a totally ordered set S, a tree t

(constructed from Tr2, Tr3 and E) is ordered if 3i,j E S (i < j) such that t has ordered

node items (strictly) between i and j, where: E has ordered node items between i and

j if i <j; Tr2(t, ,a,t,) has ordered node items between i and j if i < a < j and t, has

ordered node items between i and a and t2 has ordered node items between a and

j; Tr3(t, ,a,tz ,b,t3) has ordered node items between i and j if i <a < b < j and t, has

ordered node items between i and a and t2 has ordered node items between a and

b and t3 has ordered node items between b and j.

Definition. A tree t (constructed from Tr2, Tr3 and E) is balanced if 3 integer k 2 0

such that t is balanced with depth k, where E is balanced with depth 0; TR(t, ,a,t*)

is balanced with depth k+l if t, and t2 are balanced with depth k; Tr3(t, ,a,t2,b,t3)

is balanced with depth k+ 1 if t, , t2 and t3 are balanced with depth k.

In the sequel we will assume that the node items are integers for simplicity, and

write tree23 for the type of all integer trees formed from the constructors (not

necessarily ordered or balanced).

E R A?
11 I2 11 t2 I3

Tr2(tl .a,12) TLS(tl,a,tZ,b,t3)

E E E E E E E E E E E E E

‘h2(TR~r3~.5.E.lO.E). 20. Tr3CE.30.E.35.E)). 40. Tr3(-W(E.5O,E). 60. Tr2(E.(U),E). 90, Tr3@.95.E,99,E)))

Fig. 1. Diagrams for 2.3-trees

Balanced rrees with removals 183

2.2. Insertions

Appendix A contains an equational program for the insertion of a value into a

2-3-tree based on the one described by Hoffman and O’Donnell [6]. An extra

constructor

Put : tree23 X int X tree23 + tree23

is used in the algorithm and may be created during an insertion, but subsequently

removed during rebalancing. Put nodes (of the form Put(t1 ,a,t2)) are inserted at a

leaf by a put function (distinct from the Put constructor) which also replaces Tr2

and Tr3 constructors by functions tr2 and tr3 as it descends the tree. The functions

tr2 and tr3 restore balance by (respectively) absorbing or bubbling up the Put node

and creating normal Tr2 and Tr3 nodes. (A sentinal function checktop absorbs Put

nodes reaching the top of the tree, increasing tree depth by 1.)

Figure 2 gives a graphical description of the rewrite rules for put, tr2 and tr3

where we have represented applications of the latter two functions as boxes. (Error

cases are omitted.) An expression of the form tr2(tl ,a,t2) can be thought of as an

active 2-node that may rewrite to something else, where Tr2(tl ,a,t2) is a passive

2-node data object. Similarly tr3 can be thought of as an active version of Tr3.

2.3. Equational and functional programs

The insertion algorithm is (almost) presented as an equational program of a

particular form which has come to be called a constructor system of equations (Thatte

[ll]). For such systems, the equations adhere to a convention whereby active

(defined) functions are distinguished from passive (data-constructor) functions. On

the left-hand side of an equation the expression always has the form f(E, , , E,)

where f is active and the Ei only involve variables and passive functions or constants

(i.e. the Ei are patterns). Furthermore variables are not repeated on the left-hand

side of an equation and variables on the right of an equation are always introduced

on the left. The distinction between constructors and defined functions is advocated

for equational definitions for technical reasons even though it is not a necessary

restriction on the more general form of equational programs (see [g, Section 12.11).

One difference in conventions between equational and functional forms is that

in the former the equations form an unordered set (so that left-hand sides should

cover distinct cases) whereas in the latter overlaps are resolved by taking the

(textually) first case to apply. In practice it is more convenient to write definitions

with the latter convention which we have adopted for the equations given here. We

can convert from the overlapping form to provide a set of unordered equations (see

for example [12] for details of such an algorithm). In all the examples given here,

the conversion amounts to simply splitting cases which overlap into a collection of

subcases (obtained by enumerating constructions for the variables which overlap)

and deleting overridden cases.

184 C. M. P. Reade

(Notation for 112. tr3 and Put)

R /JTx “tR
11 12 11 t2 t3 t1 12

tR(tl,a.t2) tr3(11 .a,t2,b,t3) put@1 ,a.t2)

put n E _

E E

n-

put” a R I” -%-=
11 t2

>B

\

a R
11 t2

a A
put” 11 12

a A
11 putntz

13 -

t1 t2 t3

11 12 t3

12 t3

A-R
11 12 t1 t2

11 t2 t3

putntlt2 13

t1 put ” t2 t3

11 t2 punt3

htfi4_fi
11 t2 t1 12 t3 14

tdjr+4_fi
12 t3 11 12 t3 14

z+$q_fi
t3 14 11 t2 t3 t4

m-n
11 12 13 t1 12 t3

Fig. 2. Rewrite rules for put, tr2 and tr3

Balanced trees wifh removals 185

3. A remove operation

When an item is removed from a tree, subtrees have to be combined while order

and balance are preserved. We seek an algorithm which avoids extra scanning of

subtrees (e.g. to calculate depth) and which avoids nesting auxiliary constructors

(such as Put(Put(. .))). In the worst case, nesting could increase the number of

rewrites needed to restore balance from O(log n) to O((log n)*), where n is the

number of nodes in the tree. It can also increase the complexity and number of

cases in pattern matching. We show a particular algorithm here making use of an

additional constructor Taken and discuss variations later.

3.1. Taken nodes

The constructor

Taken : tree23 + tree23

is introduced to signify a subtree with depth one less than that required for a balance.

The functions tr2, tr3 and checktop can be modified to absorb Taken nodes as well

as Put nodes, as they restore the balance. The additional rules for tr2 and tr3 are

given in Appendix B and presented diagrammatically in Figs. 3 and 4. Note that

not all combinations of Taken and Put nodes are dealt with because, as we will see

later, not all cases will arise. tr2 rewrites only deal with a single possible Taken

node in an immediate subtree, whereas tr3 rewrites deal with up to three Taken

nodes in the three immediate subtrees (in parallel but not nested below each other).

The first rule to apply should be chosen when there are overlaps (see remarks in

Section 2.3).

Notice that in the diagrams, one can check by eye that the height of a subtree is

preserved by the rewrite, and hence that balance is being preserved as Taken nodes

are absorbed or pushed up the tree. This acts as an informal check and is the basis

for a formal argument presented in Section 4.

3.2. Removals

Appendix C contains the equations for the main removal operation remove23

which involves the auxiliary functions: merge, remove, leftPut and rightPut (as

well as tr2, tr3 and checktop). (The insert23 and put functions for this version are

exactly as before and do not introduce any Taken nodes.) One of the design decisions

for this removal algorithm is that the function merge : tree23 x tree23 + tree23

should create an extra level when combining two subtrees with the same depth. In

Fig. 5, the merge operation is depicted with a double bar linking the two trees being

merged. Once again, one can check by eye that the tree on the right-hand side of

each rule is indeed one level greater than the argument trees on the left-hand side

(i.e. at the level of the double bar) and the subtrees preserve their depth. Taken

nodes are introduced where necessary to keep subtrees at the correct relative level.

186 C. M. P. Reade

a A B A
Taken E-ERROR E Taken _ ERROR

I I
ti ti

otherwise

Fig. 3. Additional rules for tr2.

The function remove descends a tree to find an item to be removed, replacing

visited Tr2 and Tr3 nodes by tr2 and tr3 nodes for rebalancing. When the item is

found at a node, subtrees are combined by merging. This is a simple merge if the

item is found in a 2-node and the merge will create an extra level to replace the

one removed. If the item is found at a 3-node, a more complex merge takes place

using leftPut or rightPut to combine the merged subtree with the remains of the

partly removed 3-node. The rewrite rules of remove, leftPut and rightPut are

depicted in Fig. 6.

In order to understand some of the design decisions, the reader should note the

following: merge can only produce (a normal tree or) a tree with a Taken node as

root, but not a tree with a Put node as root. Similarly, put can only produce (a

normal tree or) a tree with a Put node as root, but not a tree with a Taken node as

root. remove can produce a Taken or a Put (or a normal tree) and leftPut and

rightPut expect a normal tree or a possible Taken as root of the merge argument

to produce a normal tree or possibly a tree with Put as root. Thus leftPut and

rightPut provide a crossover boundary which separates Takens and Puts. A Taken

Balanced trees with removals 187

Taken

Taken Taken Taken - a b

I I I /ii-i
11 12 t3 t1 I2 t3

ti 12 I3 t4

Tak*4- &4

t1 t2 I3 t1 I2 t3

&4_)A!34
t1 r2 I3 t1 t2 t3

Fig. 4. Additional rules for tr3.

188 C. M. P. Reade

(Notation for merge)

n
11 12

me& 11. t2)

n TakeIl

-I
E E E

11 I2 13 14 15 16 ti 12 c3

Fig. 5. Rewrite rules for merge.

bubbling up from a merge will be caught and removed by one of these, but the

lack of a Taken bubbling up may cause the generation of a Put. This is then dealt

with by higher tr3 and tr2 nodes. tr2 and tr3 need to be able to deal with either a

single Put arising as (the root of) a subtree or Taken subtrees (but not both). In the

case of tr2, only one argument can be rooted by Taken but up to three of tr3’s,

arguments can be rooted by Taken. A proof that all other cases (of both a Taken

and a Put or nested Takens or two Puts) cannot arise, is required to justify the

algorithm. We explore this in Section 4.

3.3. Possible variations

There are several alternatives which could be used, but the conventions about no

nested auxiliary constructors may not hold when some alternatives are used. Several

alternative solutions to the one presented were explored. For example, Put nodes

can be generalised to allow three as well as two subtrees instead of introducing

Balanced trees with removals 189

Fig. 6. Rewrite rules for remove, leftPut and rightPut.

Taken nodes and it is even possible to avoid the use of Put using Taken nodes in

the definition of put as well as remove. The convention for such a version was that

put increased tree depth by one (as the default) but there is a problematic case

forcing us to consider nested Taken nodes. The functions tr2, tr3 and checktop can

be adapted by ensuring that they remain active after rewriting (in some cases at

least), or we could introduce tr2’, tr3’ and checktop’ to deal with the second level

of Taken nodes which can arise.

In all the alternatives found, it seemed necessary to deal with nested auxiliary

constructors. The chosen implementation is a careful selection of rules which work

together, keeping to certain conventions and avoiding the need for nested Taken

and/or Put nodes.

190 C. M. P. Reade

A different method for combining trees is to “pull up” a replacement value for

the value being removed. This is discussed in [9] where it is shown to require only

a small change to the definitions of the “merge” version.

3.4. An abstract type in&et

Since there are several conventions about 2-3-trees and the functions applicable

to them (i.e. keeping the trees balanced and ordered), the integrity of the trees

should be protected by using an abstract type. We choose a type intset for (finite)

integer sets.’ Values of the abstract type intset are represented by values of type

tree23 but integrity is guaranteed (e.g. by restricting the scope of an outer constructor

Set). For example, using Standard ML notation:

abstype intset = Set of tree23

with

emptyset =Set E

insertset n (Set t) = Set(insert23 n t)

removeset n (Set t) = Set(remove23 n t)

memberset n (Set t)=member23 n t

end

where member23:int -+ tree23+ boo1 tests to see if a value is contained in a tree.

Since it does not produce a tree, this function is not concerned with preservation

of balance and order, but it does rely on the tree being ordered when scanning. The

use of an abstract type to restrict scope ensures that only balanced, ordered trees

(with normal nodes Tr2, Tr3, E) can be created in representations of intset values.

4. Proof of correctness

In order to show that the insertion and removal algorithms are correct, we need

to establish that they preserve the invariant properties of trees being ordered and

balanced (as well as performing the correct abstract functions of inserting or

removing). This is the usual proof of correctness of an abstract type implementation

first expressed by Hoare [5], but the difficulty faced here is that in order to establish

the invariant property, many more intricate properties of auxiliary functions are

relied upon. Formalising and establishing these properties are the main challenge.

4.1. Subtype sets

In order to formalise what is to be proved, some notation is introduced for

classifying sets of values of the same type. These sets will be referred to as subtype

sets and are equivalent to predicates on a type (the characteristic function of the

’ Another application is given in [9] where 2-3-trees are used to implement a dictionary module where

node values consist of a pair of a key and associated information. The type of associated information

is arbitrary and the type of the keys has an ordering and is passed as a module parameter.

Balanced trees with removals 191

set) but set notation is more convenient. We extend the notation of product types

and function types to subsets of such types as follows:

Definition 4.1. If X, is a subtype set of type Ti (i = 1 ..n), then X1 X X2 x . . . x X, is the

subtype set of type T, x T2 x . . . x T, consisting of the values:

{(x1, x2,. , x,)Ix,EX1.X2~X*,. ..,X”~X,l.

Definition 4.2. If Xi is a subtype set of type T, (i = 1,2), then X1 + X2 is a subtype set

of type T, + T,, given by

X,+X, = {f:T,+T,(VxEX,*f(x)EX2}.

That is, X, + X2 is the set of functions f of type T, + T2 such that when f is applied

to a value in X, it produces a result in X2. (This notation also makes sense with

higher-order functions. For example, f E X1 -+ X2 + X3 means f : T, + T, + T3 and given

any XEX,, fxEX2+X3. Thus given YEX*, fxyEXB.)

Some basic rules, properties and useful derived rules concerning subtype sets are

summarised in Appendix D. Only sets, all of whose members have the same type,

are considered, so the notation s E S is only used when the underlying type of S is

the type of s. In the sequel we use juxtaposition of sets to denote binary intersection:

XY =XnY (e.g. in (D.5) of Appendix D) and by default, we take the intersection

of the empty collection of sets to be the full set of values of the type associated

with the collection.

To begin with, the following sets of trees are introduced, normal or normalised

trees, by which we mean (finite and total) balanced trees constructed only from E,

Tr2, Tr3 and integers (i.e. excluding Put and Taken), along with similar sets which

also allow a root node to be Put or Taken.

Definition (Normalised trees of depth k). Let “Vk, for k> 0, be the sets defined

inductively by:

No=(E),
.llrki, = {Tr2(tl ,a,t2) 1 a E %, tl ,t2 E JV”,}

~r3(tl,a,t2,b,t3)Ia,bc%, tl,t2,t3cNk},

where %’ has been used to denote the set of integers (well-defined values of type

int). For later convenience, we will also define .Ar_, = {}. The set of all normalised

trees is denoted

~+‘ElJ{.&Ii?00).

Definition (Possible Put trees of depth k). Let 9)k, for k 2 0, be the set of normalised

trees of depth k extended to allow for a possible Put node at the root where the

immediate subtrees are normal trees of depth k:

CPk= JV~U {Put(tl ,a,t2)laE .%, tl,t2E Nk}.

192 C. M. P. Reade

Definition (Possible Taken trees of depth k). Let Yk, for k>O, be the set of

normalised trees of depth k extended to allow for a possible Taken node at the root

where the subtree is normalised with depth k - 1:

~~=~~u{Taken(t)It~~~~,} (for k>O).

In particular Y0 = N0 u {} = {E}. Clearly, we have for each k 2 0

MkC Yk, Nk= Pk, .Nk = S,Yk (= gk n Fk).

Now, for example, ,Ir, + Yk means the set of functions of type tree23 + tree23, which

when applied to a tree in .Nk, produces a tree in Yk. So if f E Nk+ Yk for all k 2 0,

then f produces a possible Taken tree with the same depth as its argument tree

(provided the argument tree is normal). It follows directly from the definitions of

.Nk that for k 3 0

That is, when Tr2 is applied to a triple of a normalised tree, an integer and another

normalised tree, of the same depth as the first (k), it produces a normalised tree of

depth k+l.

We outline the structure of a proof of correctness of the implementation of abstract

type intset using such subtype sets. (More detail can be found in [9].) The proof

is separated out into three parts for clarity of exposition:

(i) showing that removal and insertion preserve balance (and absence of Put

and Taken nodes);

(ii) showing that removal and insertion preserve order, and

(iii) showing that removal and insertion do remove and insert the required item

and the membership if nothing else is affected.

In fact, proving the third of these properties requires that we consider remove23,

insert23 and member23 simultaneously in showing the required abstract behaviour:

member23 n (insert23 n t) = true

member23 n (insert23 m t) = member23 n t, if n # m

member23 n (remove23 n t) = false

member23 n (remove23 m t) = member23 n t, if n # m

member23 n E = false

for all integers n and m and all 2-3-trees t provided that they are of an appropriate

form (i.e. balanced and ordered without Taken or Put nodes). Although we separate

the proof into three parts, there is still a dependence of (ii) on (i) and of (iii) on

(i) and (ii). Combining the parts into a single proof would avoid some repeated

case analyses but stating and proving the goal for each case becomes more complex.

Balanced frees with removals 193

4.2. Preservation of balance

Preservation of balance can be expressed as

remove23 E .Z + X+ N,

insert23E%+N-+N.

These properties can be derived from some stronger results and properties of

auxiliary functions listed in Appendix E. The proof of the main property of insert23

involves proving 12 other properties from Appendix E (about 30 cases in all) and

one induction (for put). The proof of the main property for remove23 involves

proving another 9 properties (about 60 new cases) with two more inductions (for

merge and remove). The number of cases is determined by the number of equations

for a function and the number of properties to be proved for that function. The

order in which properties are proved (and the number of inductions) is determined

by the dependency graph for the function definitions. (Any mutually dependent

functions would involve simultaneous proofs of properties by induction.)

As an illustration, we show part of the proof that remove E ZZ’+ ,/lr, + (Fku 9,J

by induction on k 2 0 assuming the properties listed in Appendix E for merge,

leftPut, rightPut, tr2 and tr3 (for all ks0).

Firstly, when k = 0,

follows immediately from the equation

remove n E = E

because ,Ira = {E} and E E Y,, u ?I-‘,, . Secondly, we assume the induction hypothesis that

removeEL?Z-+Nk+(Fku9)k)

and establish that

remove E 9 + Nk+, + (Yk+, u gk+,)

That is, for n E .% and t E “Irk+, , remove n tE (Yk+, u gk+,). There are two cases to

consider:

Case 1: t = Tr2(tl ,a,t2) where tl ,t2 E .Nk and a E %.

Case l(a): n = a. Then, by definition,

remove n t = merge(t1 ,t2).

The property stated for merge in Appendix E and the fact that tl ,t2 E JV”, mean that

merge(t1 ,t2) E Fk+, . So remove n t E Yk+, and hence remove n t E Yk+, u Yk+, .
Case l(b): n <a. Then, by definition,

remove n t = tr2(remove n tl ,a,t2).

194 C. M. P. Reade

The induction hypothesis and the fact that tl E N, mean that remove n tl E Fk u Pk.

By considering the two separate cases remove n tl E Tk and remove n tl E gk along

with the properties stated for tr2 in Appendix E, we get that either

tr2(remove n tl ,a,t2) E .Yk+, or tr2(remove n tl ,a,t2) E .Nk+, .

so

remove n t E Fk+, u LPk+, .

(Because Nk+, = Yk+, = (.Tk+, u P,+I)).)

Case l(c): n>a. (This is analogous to Case l(b).)

Case 2: t = Tr3(tl ,a,t2,b,t3). This is proved similarly by considering five subcases

(n-a, n=b, n<a, a<n<b, b<n).

By induction, it follows that for all k 2 0, for all n E 9 and t E .Nk,

remove n t E (Tk u LPk)

(i.e. that remove E 5? + .Nk+ (Tk u LPk) for all k 2 O-as required.)

4.3. Proof of order preservation

The fact that the functions remove23 and insert23 preserve order can be shown

by a similar technique.

We begin by formalising the ordered trees as a subtype of tree23.

Definition. The set 0 of all ordered trees is given by

O=IJ{B;,,1i,jE%,ii(j}

where, for all ij E .ZZ’, i < j

CBi,j = {Tr2(tl ,a,t2) 1 a~~,iiaaj,tl~~,,,,t2~~3,,j}

~r3(tl,a,t2,b,t3)~a,b~~,ica<b<j,tliSi,,,t2t~B,b,t3t~b,j}

So ~i,j denotes the set of trees which are ordered and bounded by i and j as i

and j range over all integers (i < j). This is a well-founded inductive definition for

larger and larger intervals i..j, with base cases i..i + 1. We have that ~i,i+, = {E} and

Wi,j G ?Z13,,, whenever r s i and J . ’ < s and for convenience, we also define

Bi,j = 0 whenever j 3 i

The trees in %i,j need not be balanced and they do not involve Taken and Put nodes.

Accordingly, we extend the above sets ~i,j to allow for a Taken or Put node as root:

Balanced frees with removals 195

Definition (Extended, ordered trees). For i,j E 3

8~.j = %,j

;iP,t(tl ,a,t2) (aEZ,i<a<j,tlE93,,,,t2E%?3,,j}

(Taken(t1) 1 tl E CBi,,}.

Writing {a} for the subset of % containing just a, it follows from these definitions

that for any i,a,b,j E 9:

Tr2 E Bi,, X {a} X B3,,, * %‘i,j,

Tr3 E CZ8i.a X {a} X B3a,b X {b} X 3b.i + CBi,i,

Put E CBi,, X {a} X B3,,, + ~i,j,

Taken E LB,,, + ‘8i,j.

It is tempting to assert that remove23 E Z+ B+ 0 and insert23 E 9’+ B+ 0.

However, this turns out no? to be true! The problem is that some of the intermediate

functions will only work properly on balanced trees, so this needs to be taken into

account when trying to establish that they also preserve order. The goal should be

to show that

remove23 E 9 + .AW + JVYY,

insert23~%+NO+NO.

Combining the balance information with the properties of Tr2, Tr3, Put and Taken

given above (using (Subset) and (D.l) of Appendix D gives (for any i,a,b,j,kE 3

where k 3 0):

These properties can then be used to establish the properties of auxiliary functions.

The properties listed in Appendix F can be proved analogously to the way properties

of balance are proved and the goal stated above follows easily from these. (The

number of cases in this proof is the same as for balance but each case involves

more subcases so the size of proof is approximately double that for balance.)

4.4. Proof of abstract properties

The last part of the proof is to show that for all m,n E SF and appropriate t:

member23 n (insert23 n t) =true

member23 n (insert23 m t) =member23 n t, if n # m

member23 n (remove23 n t) =false

member23 n (remove23 m t)=member23 n t, if n # m

member23 n E =false

196 C. M. P. R eade

By appropriate we mean that t is ordered and also normalised. (The latter being

necessary as before to ensure that merging and other auxiliary functions work

properly.) We can simply formalise this as the invariant property

It should be noted that the naive approach of trying to prove these equations

directly by structural induction on trees soon comes unstuck because auxiliary

functions act on the result of inserts and removes as they pass down a tree and

properties of the results (beyond their top level structure) need to be known. This

requires proving many auxiliary properties as in the proof of the invariant. If we

had chosen to prove correctness via an abstraction function [5] from normalised,

balanced trees to sets (instead of directly showing overall behaviour is correct), the

same problems are encountered. The invariant property and abstraction function

do not provide sufficient information about the auxiliary functions for straight-

forward inductive proofs. Thus we continue with the use of subtype sets to express

the properties needed to establish correctness.

We introduce some more subtypes (Vi?, and 9”) for each n E % to denote trees

which (roughly speaking) contain (respectively do not contain) the value n. More

precisely, we define these sets as trees which produce true (respectively false) when

an appropriate membership test is applied to them (they need not be ordered or

balanced). These sets can be described as:

%!” = Inverselmage(member23 n, {true}),

9” = Inverselmage(member23 n, {false}),

and the main properties we need to establish are (for every n,m E 2):

remove23 E {n} + NO + 9’, ,

remove23 E {n} + %,.NO + %?,,. provided n f m,

remove23 E {n} + LBa,AY7 + Sm,

insert23E{n}+.hW+ %“,

insert23 E {n} + %,JVT + %:, ,

insert23 E {n} + 9a,NC!7 + 9’, provided n f m.

These can be established from similar results replacing NO by A.kgi,j and (a large

number of) further properties of auxiliary functions. In turn these properties allow

an easy proof of the equations

memberset n emptyset =false

memberset n (insertset n s) =true

memberset n (insertset m s) = memberset n s (when n # m)

memberset n (removeset n s) =false

memberset n (removeset m s) =memberset n s (when n Z m)

Balanced trees with remouals 197

There are, however, three times as many properties to show for this part of the

proof and detailed proofs considering all the cases for these were not carried out

in full.

5. Discussion and conclusions

We discuss firstly the equational algorithm for removal (and variations), then the

proof of correctness, and finally the proof method and notation more generally.

5.1. Variations on the algorithm

As was pointed out in Section 3.3, several variations on the definitions of functions

used in removing and inserting could be used. The merge version discussed in this

report was only arrived at after several alternatives had been explored and a

“pulling-up” version was subsequently discovered to be just a small variation. None

of the other versions found was as simple as the ones described here.

In the literature (e.g. Sedgewick [lo]), there is an “improved” (procedural) version

of the insertion algorithm which uses 4-nodes as well. The essential idea is to allow

a 4-node to replace a Put, but to scan ahead when descending to ensure that such

4-nodes are gradually bubbled up, away from new inserts and thus avoiding any

occurrence of a 4-node immediately below a 4-node. This then allows the tree

structure to be determined on the way down (rather than after rewrites going back

up) at the expense of a complicated look-ahead. This alteration is useful for

procedural programming where trees are altered in-place by the operations. In the

equational version this would simply replace some tr2 and tr3 rewriting in one step

to a passive node by a direct passive node construction with a Tr2 or Tr3 (or Tr4)

which is also a one-step construction. Thus there is no saving and considerable

overhead in a much more complex pattern match. However, the 4-node version can

allow for subsequent inserts to be started before previous ones are complete and

so may perform better with parallel rewriting. A further optimisation replaces 3-

and 4-nodes by 2-nodes with different colourings for the arcs (pointers) from a node

to the subtrees. This change only seems appropriate for procedural programs where

pattern matching has to be implemented as case analysis with pointer chasing

by the programmer. In this case, a complex case analysis is “simplified” by using

fewer cases for the nodes and introducing another level of cases for the colour

of arcs. In functional languages and equational programming systems such as

O’Donnell’s, pattern matching is implemented automatically and can produce very

efficient code (see Cardelli [2], O’Donnell [8, Section 18.21, Augustsson [l] and
Wadler [121).

198 C. M.P. Reade

5.2. Proof of the algorithm

Although an algorithm to insert values into balanced trees has been given else-

where, a full proof of correctness has not been given to our knowledge. Perhaps

this is not surprising because the insertion algorithm is fairly “obviously” correct

by inspection. For our removal algorithm, however, it would be stretching the

imagination a bit too far to claim it is “obviously” correct (although the diagrams

help in showing this informally). The use of subtype sets we have introduced to

solve this problem also allows us to prove the correctness of the original insertion

algorithm.

The essence of the method is that it provides a way to express and reason about

the proliferation of auxiliary properties which are needed to establish the invariant

and correct abstract behaviour. It seems unfortunate that we could not completely

separate our proof of balance preservation from proof of order preservation and

proof of the abstract properties of the trees. We might have considered extending

the definitions of merge and other functions, so that they worked for unbalanced

trees as well. Sometimes a proof can suggest a cleaner algorithm, and changing the

algorithm to simplify the proof might well be a good idea in some circumstances.

However, the removal algorithm will become more complex with such extensions

which are allowing for arguments which are inappropriate and which we should

not have to deal with. Such changes seem inappropriate in these circumstances.

An important point concerning proofs and rigor seems worth making here. Earlier

versions of the algorithm turned out to be incorrect despite “informal proofs”. The

errors were discovered during testing of the algorithm, and these led to the discovery

of an erroneous case in the proof which had been “checked”. Without machine

assistance, systematic proofs with a large number of very similar cases lead all too

easily to such human errors. Yet the full encoding of the proof seems to be a large

task making the difference in effort between fully formal and just rigorous proofs

quite noticeable. Mechanical support for such reasoning and the potential for partial

automation of similar proofs are topics currently being investigated by the author.

5.3. Subtype set proofs

The proof method is convenient for reasoning about many properties of functions

in equational and functional programs. In particular, the sets of values we consider

can either include or exclude partial values (such as I and Tr2(1,3,1)) and even

infinite values (such as t where t =Tr2(t,3,t)). Constructions of sets such as X

explicitly excluded partial values and infinite values, but these can be used to express

other properties. For example f E {I} + {I} expresses the strictness off and f E X + Y

where I @ Y expresses the totalness of f on the set X. As another example, suppose

take is defined by:

take 0 x=[]

take (Succ n) (a::x)=a::take n x

Balanced trees with removals 199

where :: and [] are the list constructors and 0 and Succ are natural number

constructors. Then for k 3 n 3 0, T any type, S any non-empty subtype set of T,

takeE{n}+S list,+S list,,

takeE{n}+S Plist,+S list,,

takeE{k}-+S list,+S Plist, (k#O),

takeE{n}+ S Inflist+S list,,

where S listk is the set of lists of length k with items in S (defined in a similar way

to .,Vil); S Plistk is the set of partial lists with k items (each in S)-i.e. terminating

in I instead of [] after the kth item; and S lnflist is the set of infinite lists with items

in S.

There are several dangers in casual use of arbitrary sets, such as unsound reasoning

with the empty set, failure of monotonicity for types involving function spaces,

interaction with polymorphism, order of pattern matching with lazy semantics. These

issues show the need for a fully formalised logic/type system to underpin this kind

of reasoning and to investigate the potential for mechanical assistance. Indeed, such

a formal system might be based on type systems such as that of Martin-L6f (see

e.g. NordstrGm et al. [7]), but there are some differences. We are interested in

establishing relatively simple properties of possibly non-terminating func-

tional/equational programs whereas only terminating programs can be constructed

within Martin-LX’s Type theory. Other type theories with both subtypes and

recursion such as those investigated by Cardelli [3,4] have been aimed at explaining

programming language features such as class abstraction and inheritance rather

than program correctness. These relationships to type systems are still being investi-

gated and the author would like to thank Hong Zhu for discussions concerning this.

Appendix A. Equations for insert23, put, tr2, tr3 and checktop

insert23 n t =checktop(put n t)

put n E=Put(E,n,E)

put n (TR(t1 ,a,t2))

= if n=a then TrZ(t1 ,a,t2) else

if n < a then tr2(put n tl ,a,t2) else

(* n > a *) tr2(tl ,a,put n t2)

put n (Tr3(tl ,a,t2,b,t3))

=if n =a then Tr3(tl ,a,t2,b,t3) else

if n = b then Tr3(tl ,a,t2,b,t3) else

if n <a then tr3(put n tl ,a,t2,b,t3) else

if n < b then tr3(tl ,a,put n t2,b,t3) else

(*n> b*) tr3(tl ,a,t2,b,put n t3)

put n other=error “put of un-normalised tree”

C. M. P. Reade

tr2(Put(tl ,a,t2),b,t3)=Tr3(tl ,a,t2,b,t3)

tr2(tl ,a,Put(t2,b,t3)) =Tr3(tl ,a,t2,b,t3)

tr2 other =Tr2 other

tr3(Put(tl ,a,t2),b,t3,c,t4) = Put(Tr2(tl ,a,t2),b,Tr2(t3,c,t4))

tr3(tl ,a,Put(t2,b,t3),c,t4) = Put(TR(t1 ,a,t2),b,Tr2(t3,c,t4))

tr3(tl ,a,t2,b,Put(t3,c,t4)) = Put(Tr2(tl ,a,t2),b,Tr2(t3,c,t4))

tr3 other =Tr3 other

checktop (Put(t1 ,a,t2)) =TR(tl ,a,t2)

checktop other =other

Appendix B. Extended equations for tr2, tr3 and checktop

tr2(Put(tl ,a,t2),b,t3) =Tr3(tl ,a,t2,b,t3)

tr2(tl ,a,Put(t2,b,t3)) =Tr3(tl ,a,t2,b,t3)

tr2(Taken tl ,a,E) =error “tR(Taken_,_,E)”

tr2(Taken tl ,a,Tr2(t2,b,t3)) =Taken(Tr3(tl ,a,t2,b,t3))

tr2(Taken tl ,a,Tr3(t2,b,t3,c,t4))=Tr2(Tr2(tl ,a,t2),b,Tr2(t3,c,t4))

tr2(E,a,Taken tl) =error “tR(E,_,Taken_)”

tr2(Tr2(tl ,a,t2),b,Taken t3) =Taken(TrB(tl ,a,t2,b,t3))

tr2(Tr3(tl ,a,t2,b,t3),c,Taken t4)=Tr2(Tr2(tl ,a,t2),b,Tr2(t3,c,t4))

tr2 other =Tr2 other

tr3(Put(tl ,a,t2),b,t3,c,t4) = Put(TR(t1 ,a,t2),b,Tr2(t3,c,t4))

tr3(tl ,a,Put(t2,b,t3),c,t4) = Put(TR(t1 ,a,t2),b,Tr2(t3,c,t4))

tr3(tl ,a,t2,b,Put(t3,c,t4)) = Put(TR(t1 ,a,t2),b,Tr2(t3,c,t4))

tr3(Taken tl ,a,Taken t2,b,Taken t3) =Taken(Tr3(tl ,a,t2,b,t3))

tr3(Taken tl ,a,Taken t2,b,t3) =Tr2(Tr2(tl ,a,t2),b,t3)

tr3(tl ,a,Taken t2,b,Taken t3) =TR(tl ,a,Tr2(t2,b,t3))

tr3(Taken tl ,a,Tr2(t2,b,t3),c,Taken t4) =Tr2(Tr2(tl ,a,t2),b,Tr2(t3,c,t4))

tr3(Taken tl ,a,Tr3(t2,b,t3,c,t4),d,Taken t5)

=Tr2(Tr3(tl ,a,t2,b,t3),c,Tr2(t4,d,t5))

tr3(Taken tl ,a,E,b,t2) =error “tr3(Taken_,_,E,_,_)”

tr3(Taken tl ,a,Tr2(t2,b,t3),c,t4) =Tr2(Tr3(tl ,a,t2,b,t3),c,t4)

tr3(Taken tl ,a,Tr3(t2,b,t3,c,t4),d,t5) =Tr3(Tr2(tl ,a,t2),b,Tr2(t3,c,t4),d,t5)

tr3(tl ,a,E,b,Taken t2) =error “tr3(_,_,E,_,Taken_)”

tr3(tl ,a,Tr2(tr2,b,t3),c,Taken t4) =TR(tl ,a,Tr3(t2,b,t3,c,t4))

tr3(tl ,a,Tr3(t2,b,t3,c,t4),d,Taken t5) =Tr3(tl ,a,Tr2(t2,b,t3),c,Tr2(t4,d,t5))

tr3(E,a,Taken tl,b,t2) = error “tr3(E,_,Taken_,_,_)”

tr3(Tr2(tl ,a,t2),b,Taken t3,c,t4) =Tr2(Tr3(tl ,a,t2,b,t3),c,t4)

tr3(Tr3(tl ,a,t2,b,t3),c,Taken t4,d,t5) =Tr3(Tr2(tl ,a,t2),b,Tr2(t3,c,t4),d,t5)

tr3 other =Tr3 other

Balanced trees with removals 201

checktop (Put(t1 ,a,t2)) =Tr2(tl ,a,t2)

checktop (Taken t) =t

checktop other =other

Appendix C. Equations for remove23, remove, merge, leftPut and rightPut

remove23 n t =checktop(remove n t)

remove n E = E

remove n (TR(t1 ,a,t2))

= if n =a then merge(t1 ,t2) else

if n < a then tr2(remove n tl ,a,t2) else

(* n>a *) tr2(tl ,a,remove n t2)

remove n (Tr3(tl ,a,t2,b,t3))

= if n = a then leftPut(merge(t1 ,t2),b,t3) else

if n = b then rightPut(t1 ,a,merge(t2,t3)) else

if n <a then tr3(remove n tl ,a,t2,b,t3) else

if n < b then tr3(tl ,a,remove n t2,b,t3) else

(* n > b *) tr3(tl ,a,t2,b,remove n t3)

remove n other=error “remove of un-normalised tree”

merge(E,E) =Taken E

merge(Tr2(tl ,a,t2),Tr2(t3,b,t4))

=tr3(Taken tl ,a,merge(t2,t3),b,Taken t4)

merge(Tr2(tl ,a,t2),Tr3(t3,b,t4,c,t5))

=tr3(Taken tl ,a,merge(t2,t3),b,Tr2(t4,c,t5))

merge(Tr3(tl ,a,t2,b,t3),Tr2(t4,c,t5))

=tr3(Tr2(tl ,a,t2),b,merge(t3,t4),c,Taken t5)

merge(Tr3(tl ,a,t2,b,t3),Tr3(t4,c,t5,d,t6))

=tr3(Tr2(tl ,a,t2),b,merge(t3,t4),c,Tr2(t5,d,t6))

merge other =error “merge of inappropriate trees”

leftPut(TR(t1 ,a,t2),b,t3) =Tr3(tl ,a,t2,b,t3)

leftPut(Tr3(tl ,a,t2,b,t3),c,t4) = Put(TR(t1 ,a,t2),b,Tr2(t3,c,t4))

leftPut(Taken tl ,a,t2) =TR(tl ,a,t2)
leftPut(E,a,tl) = error “leftPut(E,_,_)”

leftPut(Put t ,a,tl) =error “leftPut(_,_,_)”

rightPut(t1 ,a,Tr2(t2,b,t3)) =Tr3(tl ,a,t2,b,t3)

rightPut(t1 ,a,Tr3(t2,b,t3,c,t4)) = Put(Tr2(tl ,a,t2),b,Tr2(t3,c,t4))

rightPut(t1 ,a,Taken t2) =TR(tl ,a,t2)

rightPut(t1 ,a,E) =error “rightPut(_,_,E)”
rightPut(t1 ,a,Put t) =error “rightPut(_,_,Put_)”

202 C. M. P. Reade

Appendix D. Some properties of subtype sets

SES SGS

SES’

ViEl(SESi) SEn,,,Si

SEn,,,Si ViEI(SESi)

fEX-+Y VXEX(f XEY)

VXEX(f XEY) fEx+Y

fl (xi + yi) E fl xi + fJ yi
rtl icl

n (X-+Y,)=X+nYi
itl itl

n (xi + yi) G U X, + U Y, isl icl icl
n (Xi+Y)=UXi+Y
1tl icl

(Xl x. . * XX”)(Y, x. . . XV”) = (X,Y,) x . . * x (X”Y,)

X’EX YGY’

x+YGx’+Y’

ViEI ftEXi+Y)

tEUiC,Xi+Y

ViEi(tEX-+Y,+&(,)) ViEI(f(i)EJ)

tEX+UitlYl+Ujs.JZj
IGJ

Ui,l zi E UjtJ ‘,

Appendix E. Balance properties of functions

(Subset)

(Intersection)

(Application)

@.I)

(D.2)

(D-3)

0.4)

(D.9

(D.6)

(D-7)

03.8)

(D-9)

Balanced trees with removals 203

Appendix F. Order properties of functions

204 C.M.P. Reade

leftPut E Tktl8i.a X {a} X NkE3,j + Yk+l%i,j

rightPut E ~~~i,a X {a} X yk+t 8a,j + ??‘,+I 8t.j

remove E % + Ni8i.j + (TTk U 9,) 8i.j

checktop E ~i,j + ~i,j

put E {nI + Nk %,, + pk &,,
where r=min(n- 1,i) and s=max(j,n +l)

References

[l] L. Augustsson, Compiling pattern-matching, in: Jouannaud, ed., Conference on Programming

Languages and Computer Architecture, Nancy, France, Lecture Notes in Computer Science 201

(Springer, Berlin, 1985) 368-381.
[2] L. Cardelli, Compiling a functional language, in: Proceedings ACM Symposium on Lisp and

Func?iona/ Programming, Austin, TX (1984).

[3] L. Cardelli and G. Longo, A semantic basis for quest, Research Report No. 55, DEC Systems

Research Center (1990).

[4] L. Cardelli and P. Wegner, On understanding types, data abstraction and polymorphism, Comput.

Sure. 17 (4) (1985) 471-522.

[5] C.A.R. Hoare, Proof of correctness of data representations, Acta Inform. 1 (1972) 271-281.

[6] C.M. Hoffman and M.J. O’Donnell, Programming with equations, ACM Trans. Programming

Languages Syst. 4 (6) (1982) 83-l 12.
[7] B. Nordstrom, K. Petersson and J.M. Smith, Programming in Martin-L@ Type Theory, International

Series of Monographs in Computer Science (7) (Clarendon Press, Oxford, England, 1990).

[8] M.J. O’Donnell, Equational Logic as a Programming Language (MIT Press, Cambridge, MA, 1985).

[9] C.M.P. Reade, Balanced trees with removals: an exercise in rewriting and proof, Tech. Report

CSTR-91-4, Department of Computer Science, Brunel University, Uxbridge (1991).

[IO] R. Sedgewick, Algorithms (Addison-Wesley, Reading, MA, 1983).

[1 I] S. Thatte, A refinement of strong sequentiality for term rewriting with constructors, Inform. Comput.

72 (1) (1987) 46-55.
[121 P. Wadler, Efficient compilation of pattern-matching, in: S. Peyton-Jones, ed., The implementation

of Functional Programming Languages, Prentice-Hall Series in Computer Science (Prentice-Hall,

Englewood Cliffs, NJ, 1987) Chapter 5.

