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We investigated the metabolism of arachidonic acid in normal skin-derived fibroblasts (NF) as well as in keloid-
derived fibroblasts (KF) in response to macrophage migration inhibitory factor (MIF), a pluripotent cytokine. We
found that MIF enhanced cyclooxygenase-2 activity in NF more than in KF. Consistent with this finding,
prostaglandin E2 (PGE2), an antifibrogenic molecule, was more significantly increased in NF than in KF by MIF
treatment. As regarding E prostanoid receptor 2, the level of expression was significantly lower in KF than in NF.
On the other hand, Forskolin, a direct activator of adenylcyclase, decreased collagen synthesis in both NF and
KF, which indicates that cAMP plays an important role in regulating collagen synthesis. As PGE2 induces cAMP
production, it is conceivable that increased collagen synthesis in KF might be owing to decreased PGE2 and
cAMP production. These findings may aid in the development of a therapeutic strategy for the regulation of
collagen synthesis in keloid fibroblasts.
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INTRODUCTION
Keloids are benign dermal tumors that invade normal skin
beyond the boundaries of an original wound. Keloids are
characterized by the overproliferation of fibroblasts and an
increase in collagen synthesis (Peltonen et al., 1991; Babu
et al., 1992; Lee et al., 1999; Chodon et al., 2000; Chin et al.,
2001; Funayama et al., 2003), and they are reflective of a
pathologic wound healing response with proliferative dermal
growth. The pathologic features are known to be caused by
the excessive deposition of collagen; however, the etiology
remains elusive. Keloids can be considered as the end result
of an excessive wound healing response, in which inflam-
matory cells play a major role. In this context, it is
conceivable that the interaction between keloid fibroblasts
and inflammatory cells is essential for keloidogenesis. In fact,
a significant amount of infiltrated T lymphocytes and

macrophages have been detected in the keloid dermis, in
comparison to that in the dermis of normal skin (Boyce et al.,
2001).

Macrophage migration inhibitory factor (MIF) was origi-
nally identified as a T-cell-derived cytokine (Bloom and
Bennett, 1966; David, 1966). This cytokine has been
recognized as a pituitary hormone that is released in response
to an array of stimuli, a proinflammatory cytokine released
primarily by macrophages, and a T-cell activator essential for
immune responses (Bernhagen et al., 1993; Calandra et al.,
1994; Bacher et al., 1996). MIF is a unique protein induced
by glucocorticoids and counteracts their anti-inflammatory
and immunosuppressive functions (Calandra et al., 1995).
Recent studies have revealed that MIF is ubiquitously
expressed in various types of cells, and has been re-evaluated
as a pluripotent cytokine involved in the broad-spectrum
immune system (Bucala, 1996; Nishihira, 2000). MIF is
known to be involved in angiogenesis, tumor growth, and
metastasis (Sun et al., 2003). MIF also activates cytosolic
phospholipase A2 (cPLA2) and cyclooxygenase-2 (COX-2) in
cultured fibroblast-like synoviocytes. Moreover, anti-MIF
antibody significantly reduced IL-1b-induced COX-2 activity
and COX-2 mRNA expression, suggesting that MIF acts as
an essential component for the upregulation of cPLA2 and
COX-2 activity induced by IL-1b (Sampey et al., 2001). These
previous observations prompted us to investigate the role
of MIF in normal skin-derived fibroblasts (NF) and
keloid-derived fibroblasts (KF), relevant to arachidonic acid
metabolites.

ORIGINAL ARTICLE

990 Journal of Investigative Dermatology (2006), Volume 126 & 2006 The Society for Investigative Dermatology

Received 17 June 2005; revised 12 December 2005; accepted 4 January
2006; published online 9 March 2006

1Department of Plastic and Reconstructive Surgery, Hokkaido University
Graduate School of Medicine, Sapporo, Japan; 2GeneticLab Co., Sapporo,
Japan and 3Department of Molecular Biology, Hokkaido University Graduate
School of Medicine, Sapporo, Japan

Correspondence: Dr Toshihiko Hayashi, Department of Plastic
and Reconstructive Surgery, Hokkaido University Graduate School
of Medicine, Sapporo 060-8638, Japan. E-mail: toshi-116@nifty.com

Abbreviations: ANOVA, analysis of variance; cPLA2, cytosolic phospholipase
A2; COX-2, cyclooxygenase-2; EP2, E prostanoid receptor 2; ERK,
extracellular signal-regulated kinase; KF, keloid-derived fibroblasts;
MIF, macrophage migration inhibitory factor; NF, normal skin-derived
fibroblasts; PGE2, prostaglandin E2; PICP, procollagen type I C-peptide;
RT-PCR, reverse transcriptase-polymerase chain reaction

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82773747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


As regards the metabolism of arachidonic acid, cPLA2 is
known to play a central role in providing arachidonic acid
from membrane phospholipids for the subsequent synthesis
of prostaglandins and leukotrienes. Among the reported
arachidonic acid metabolites, prostaglandin E2 (PGE2) inhi-
bits fibroblast proliferation and collagen synthesis (Korn et al.,
1980; Goldstein and Polgar, 1982; Bitterman et al., 1986;
Fine and Goldstein, 1987; Elias, 1988; Fine et al., 1989;
Kawamoto et al., 1995; Wilborn et al., 1995). In this context,
phospho-p44/42 mitogen-activated protein kinase (extra-
cellular signal-regulated kinase (ERK)1/2) can phosphorylate
cPLA2, which then induces an increase in cPLA2 activity (Lin
et al., 1993). It has been reported that MIF regulates cPLA2 by
the activation of mitogen-activated protein kinase (Mitchell
et al., 1999). In this study, we examined the induction of
cPLA2 by MIF in NF and KF, and we investigated the
mechanism of the fibrogenesis in keloids. A better under-
standing of the pathophysiology of keloids might help in the
development of an appropriate strategy for the treatment of
keloids.

RESULTS
Immunohistochemical localization of MIF

Immunohistochemical analysis was carried out using tissues
obtained during surgical excision. The keloid dermal skin
showed significant MIF-positive staining. In particular, higher
levels of expression of MIF were observed in KF than in NF
(Figure 1). On the other hand, in normal skin and normal
scar, endothelial cells exhibited the physiological expression
of MIF, but no such expression in NF or in the extracellular
matrix was detected.

Activation of cPLA2 by MIF

cPLA2 activity was expressed as the release of [3H]arachi-
donic acid from fibroblasts. In the prelabeled NF and KF,
the release of [3H]arachidonic acid in non-stimulated
both fibroblasts showed the similar level. To determine an
influence of MIF on cPLA2 activity in NF and KF, each type
of fibroblast was stimulated with recombinant human
MIF (500 ng/ml). The addition of MIF was associated with
an increase in the release of [3H]arachidonic acid from both

NF and KF. Interestingly, the release of [3H]arachidonic acid
was higher in KF than in NF when these cells were stimulated
with MIF (Figure 2).

cPLA2 mRNA induction in NF and KF by MIF

To examine in detail the effects of MIF on cPLA2 activity,
the induction of cPLA2 mRNA by MIF in NF and KF was
determined by reverse transcriptase-polymerase chain
reaction (RT-PCR). As shown in Figure 3, MIF upregulated
cPLA2 mRNA in both NF and KF, but there was no signi-
ficant difference in the levels of cPLA2 mRNA induced by
MIF. These findings suggested that the specific induction of
cPLA2 activity in KF by MIF was not transcriptionally
regulated.

ERK1/2 phosphorylation by MIF

The ERK cascade is a convergent pathway in the mitogenic
activity of various growth factors. The phospho-p44/42
mitogen-activated protein kinase (ERK1/2) phosphorylates
cPLA2, leading to an increase in cPLA2 activity. Therefore, the
release of arachidonic acid depends on the phosphorylation
and activation of cPLA2. MIF has been shown to stimulate the
phosphorylation of p44/p42 ERK MAP kinase (Mitchell et al.,
1999; Fukuzawa et al., 2002). Here, we analyzed the expres-
sion of phosphorylated ERK with MIF (100 or 500 ng/ml)
in NF and KF by immunoblot analysis using anti-phospho-
ERK1/2. In both NF and KF, the phosphorylated form of
ERK1/2 was significantly enhanced at 15 minutes by MIF, and
returned to the initial level at 1 hour (Figure 4). Interestingly,
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Figure 1. (a–c) Immunohistochemistry of MIF in keloid fibroblasts. We

performed an immunohistochemical analysis of (a) normal skin or (b) normal

scar or (c) keloid samples using an anti-MIF antibody. Dermis obtained from

each sample was formalin-fixed and stained with rabbit anti-human MIF

antibody. After incubation with secondary antibody conjugated with horse-

radish peroxidase, the sections were developed with diaminobenzidene. We

repeated immunohistochemical analyses on normal skin (n¼ 6), normal scar

(n¼6), and keloids (n¼ 6), which showed the similar immunostaining

patterns. We demonstrated representatives for these samples. Bar¼50 mm.
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Figure 2. Time course of [3H]arachidonic acid release induced by MIF

stimulation from keloid fibroblasts. Each type of fibroblast was treated with

recombinant human MIF (500 ng/ml) for 6, 12, and 18 hours. cPLA2 activity

was represented by [3H]arachidonic acid released (c.p.m.). *Po0.05;

**Po0.01 (ANOVA with Scheffe’s post hoc test). Data shown are the

mean7s.d. of six independent experiments.
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Figure 3. Expression of cPLA2 mRNA after treatment with MIF. Fibroblasts

were incubated in the presence or absence of recombinant human MIF

(500 ng/ml) in DMEM/1% FBS. Expression of cPLA2 and GAPDH mRNA was

examined by RT-PCR as described in Materials and Methods. Similar results

were obtained from three independent experiments.
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KF showed a more strongly phosphorylated band of ERK
than that of NF at 15 minutes when the cells were stimulated
with MIF.

PGE2 production in response to MIF and IL-1b in NF and KF

We assessed PGE2 production in order to detect COX-2
activity in non-stimulated fibroblasts. There was no signifi-
cant difference between NF and KF in terms of PGE2

production (Figure 5). We then measured PGE2 production
in NF and KF upon treatment with MIF (500 ng/ml) or IL-1b
(5 ng/ml) for 6 and 12 hours. COX-2 activity was detected
by ELISA of PGE2 production in the cellular supernatants.
PGE2 production was upregulated in response to MIF as
well as to IL-1b in NF (Figure 6a and b). In contrast, the
induction of PGE2 accumulation by MIF and IL-1b was
significantly higher in NF than KF. Thus, the difference
in PGE2 production in the stimulated cells was reflective of
the differences between NF and KF with respect to COX-2
activity.

COX-2 mRNA induction by MIF or IL-1b in NF and KF

To examine whether or not the observed differences in PGE2

production depended on COX-2 activity, we compared the
levels of COX-2 mRNA expression in NF and KF using RT-
PCR analysis after the cells had been treated with MIF
(500 ng/ml) or IL-1b (5 ng/ml) for 12 hours. We found
significantly higher levels of expression of COX-2 mRNA in
the stimulated NF than in the stimulated KF. In KF, no
differences in the levels of expression of COX-2 mRNA were
observed. With the addition of MIF or IL-1b, the levels

of COX-2 mRNA expression clearly increased in NF and in
KF as well, albeit to a lesser extent than in NF (Figure 7a
and b).

Effect of anti-MIF antibody on PGE2 production and COX-2
mRNA expression induced by IL-1b

PGE2 production and the levels of COX-2 mRNA expression
clearly increased in response to IL-1b (5 ng/ml) in NF. To
examine the involvement of MIF in the activation, we added
an anti-MIF monoclonal antibody. We found that anti-MIF
monoclonal antibody (50 mg/ml) inhibited both PGE2 produc-
tion and COX-2 mRNA expression induced by IL-1b in NF
(Figure 8a and b). Similar results were obtained in KF (data
not shown).
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Figure 4. MIF-induced ERK1/2 activation in NF and KF. NF and KF were

stimulated with recombinant human MIF (100 or 500 ng/ml). In order to

examine ERK1/2 activity, the cells were lysed and subjected to immunoblot

analysis using anti-phospho-specific ERK1/2 (upper panel) and anti-ERK1/2

(lower panel) antibodies, as described in Materials and Methods. Similar

results were obtained from three independent experiments.
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Figure 5. PGE2 accumulation in unstimulated NF and KF. NF and KF were

incubated for 24 hours in DMEM/1% FBS. Both NF and KF were grown to

80% confluence. Aliquots of the supernatants were then collected for PGE2

ELISA as described. Data shown are the mean7s.d. of six independent

experiments.
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Figure 6. PGE2 accumulation in NF and KF stimulated with MIF or IL-1b.

NF and KF were incubated for 6 or 12 hours in the presence or absence of

(a) recombinant human MIF (500 ng/ml) or (b) IL-1b (5 ng/ml) in DMEM/1%

FBS. Aliquots of the supernatants were collected for PGE2 ELISA as described.

*Po0.05; **Po0.01 (ANOVA with Scheffe’s post hoc tests). Data shown

are the mean7s.d. of six independent experiments.
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Figure 7. COX-2 mRNA expression after treatment with MIF or IL-1b.

NF and KF were incubated for 12 hours in the presence or absence of

(a) recombinant human MIF (500 ng/ml) or (b) IL-1b (5 ng/ml) in DMEM/1%

FBS. Expression of COX-2 and GAPDH mRNA was examined by RT-PCR.

Similar results were obtained from three independent experiments.
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Effects of PGE2 or Forskolin on PICP production

The addition of PGE2 to the culture media decreased
procollagen type I C-peptide (PICP) levels in the cellular
supernatants in NF (Figure 9a). On the other hand, PGE2 had
no significant effect on PICP levels in KF. The addition of
Forskolin to the culture media clearly decreased PICP levels
in both NF and KF (Figure 9b).

cAMP production in NF and KF with PGE2

To investigate why the addition of PGE2 was associated with
decreased PICP levels in the cellular supernatants in NF, but
less so in KF, we measured cAMP production in NF and KF in
response to various concentrations of PGE2. The results demon-
strated that cAMP production by PGE2 was significantly higher
in NF than KF (Figure 10).

EP2 expression in NF and KF

It is known that PGE2 transduces its biological signal through
its specific receptor, E prostanoid receptor 2 (EP2). We
compared the expression levels of the EP2 in NF and KF using
Immunoblot analysis. We found significant differences in the
expression of the EP2 receptor between NF and KF. The
expression of the EP2 receptor was significantly lower in KF
than in NF (Figure 11).

DISCUSSION
A number of studies have demonstrated that MIF plays a
pivotal role in the systemic as well as in the local

inflammatory and immune responses. As for the role of MIF
in association with arachidonic acid metabolism, several
reports have been published. MIF stimulated mitogen-
activated protein kinase and cPLA2, which indicates unique
action of this protein in cell proliferation (Mitchell et al.,
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Figure 8. Effect of anti-MIF antibody on COX-2 activity induced by IL-1b in

NF. (a) NF were treated with anti-MIF monoclonal antibody (50 mg/ml) or non-

immune IgG (50 mg/ml), IL-1b (5 ng/ml) in DMEM/1% FBS and were incubated

for 12 hours. Aliquots of the supernatants were collected for PGE2 ELISA as

described in Materials and Methods. *Po0.05; **Po0.01 (ANOVA with

Scheffe’s post hoc tests). Data shown are the mean7s.d. of six independent

experiments. (b) Expression of COX-2 and GAPDH mRNA was examined by

RT-PCR. Similar results were obtained from three independent experiments.
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Figure 9. Regulation of collagen synthesis by treatment with PGE2 and

Forskolin. Cells were treated with (a) PGE2 or (b) Forskolin in DMEM/0.5%

FBS for 24 hours, and PICP levels were measured. The control level (100%)

refers to the values obtained in the absence of PGE2 or Forskolin. *Po0.05;

**Po0.01 (ANOVA with Scheffe’s post hoc tests). Data shown are the

mean7s.d. of nine independent experiments.
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Figure 10. cAMP production in NF and KF. Cells were treated with various

concentrations of PGE2. cAMP production was measured by ELISA. *Po0.05;

**Po0.01 (ANOVA with Scheffe’s post hoc tests). Data shown are the
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Figure 11. EP2 expression in keloid fibroblasts. Cells were lysed and

subjected to immunoblot analysis using anti-EP2 polyclonal antibody (upper

panel). The results were standardized with b-actin. NF1, 2, and 3: fibroblasts

from normal skin samples obtained from three different patients. KF1, 2, and

3: fibroblasts from the keloid lesions of three different patients.
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1999). MIF also activates cPLA2 and COX-2 in cultured
fibroblast-like-synoviocytes (Sampey et al., 2001). Moreover,
this protein was found to be involved in cell proliferation in
response to IL-1b and tumor necrosis factor-a (Lacey et al.,
2003). Accordingly, we used MIF as a stimulatory factor for
the activation of the arachidonic acid cascade. We here
observed abundant MIF in keloid tissues by immunohisto-
chemical analysis.

In this study, we demonstrated that the release of
[3H]arachidonic acid from KF was greater than that from
NF. Immunohistochemical analysis revealed the abundant
expression of MIF protein in the cytosol of keloid fibroblasts.
In KF but not in NF, the induction of phosphorylated ERK was
obtained at 15 minutes when the cells were stimulated with
MIF. PGE2 production induced by MIF or IL-1b treatment was
significantly higher in NF than KF, suggesting the suppression
of COX-2 induction in KF, but not in NF. The difference in
PGE2 production between NF and KF was found to depend
on the levels of expression of COX-2 mRNA. The expression
of COX-2 mRNA was more markedly upregulated in NF than
KF in response to MIF or IL-1b treatment. Moreover, we found
that the sensitivity to exogenous PGE2 with respect to the
inhibition of collagen synthesis was more downregulated in
KF than in NF. These results suggested that differences
between NF and KF in terms of collagen synthesis might be
associated with difference in PGE2 production in NF and KF,
and also with the respective sensitivity of these two distinct
fibroblast types to exogenous PGE2.

The typical characteristics of keloids are the excessive
production and fibrotic deposition of collagen (Peltonen
et al., 1991; Babu et al., 1992; Lee et al., 1999; Chodon et al.,
2000; Chin et al., 2001; Funayama et al., 2003). Prostaglan-
din has the ability to downregulate fibroblast proliferation
and collagen synthesis, and fibroblasts are known to
synthesize PGE2 (Korn et al., 1980; Goldstein and Polgar,
1982; Bitterman et al., 1986; Fine and Goldstein, 1987; Elias,
1988; Fine et al., 1989; Kawamoto et al., 1995; Wilborn
et al., 1995). We hypothesized that KF might have a dimi-
nished capacity to synthesize PGE2 in comparison with that
of NF. This hypothesis was tested using primary cultures of
fibroblasts isolated from fresh keloid tissues obtained by
surgical excision.

We found more enhanced levels of release of [3H]arachi-
donic acid from KF than from NF in response to MIF,
indicating that KF have greater cPLA2 activity than NF. It was
reported that cPLA2 was activated by phosphorylation via the
activation of p44/42 ERK1/2 (Lin et al., 1993). As regards MIF,
it is known to be able to stimulate the phosphorylation of
p44/p42 ERK MAP kinase (Mitchell et al., 1999; Fukuzawa
et al., 2002). Here, we revealed the expression of phos-
phorylated ERK by MIF in NF and KF by immunoblot assay
using anti-phospho-ERK1/2 antibody. In both NF and KF, the
levels of the phosphorylated form of ERK1/2 were signifi-
cantly enhanced at 15 minutes following MIF pre-treatment,
and the levels returned to the baseline at 1 hour. Interestingly,
when KF was compared to NF, KF was found to exhibit
higher levels of phosphorylation of ERK at 15 minutes after
the addition of MIF. These data provide support for the

hypothesis that the difference between NF and KF in terms of
[3H]arachidonic acid release may depend on differences in
their respective levels of activated ERK. The endogenous
levels of PGE2 production were similar in NF and KF lacking
exogenous stimulation; however, as regards PGE2 produc-
tion in response to MIF (500 ng/ml) or IL-1b (5 ng/ml), the
induction of PGE2 production was significantly more
pronounced in NF than KF. It was considered likely that the
differences in PGE2 production in the stimulated cells might
have been reflective of differences between NF and KF in
terms of COX-2 activity.

Unlike in NF, in KF, the increase in COX-2 activity was
not clearly observed after pretreatment of the cells with MIF
or IL-1b. Although COX-2 mRNA levels were similar under
non-stimulated conditions, these levels were indeed higher in
NF than in KF in the cases involving MIF or IL-1b stimulation.
The failure to augment COX-2 metabolic activity in KF
correlated with COX-2 mRNA levels. Our current results
demonstrated that MIF directly induces COX-2 expression in
NF. Moreover, COX-2 activity in NF was increased to a
greater degree by MIF or IL-1b than was the case in KF.
In other words, only a negligible increase in COX-2 mRNA
was induced in KF by these stimuli.

The autostimulatory pathway showing the biological link
between IL-1b and MIF has been reported in association with
activation of the arachidonic acid pathway (Sampey et al.,
2001). In consistent with this finding, we found that anti-MIF
monoclonal antibody (50 mg/ml) inhibited COX-2 activity
induced by IL-1b in NF. This fact indicates that MIF might be
involved in collagen production in response to IL-1b via PGE2

and COX-2.
PGE2, a final product in arachidonic acid metabolism, was

produced to a lesser extent in KF than in NF; however,
arachidonic acid availability as a source of this metabolic
pathway was less in NF than KF. These contradictory results
between NF and KF suggest the possibility that, for the PGE2

production in dermal fibroblasts, COX-2 activity is more
critical than the amount of arachidonic acid released.

Despite a higher level of MIF expression in KF compared
to NF demonstrated by immunohistochemistry, PGE2 produc-
tion in response to MIF was significantly reduced in KF than
in NF. In this context, inhibition of collagen synthesis by
PGE2, an antifibrogenic molecule, is more intense in NF than
in KF. Namely, it is suggested that decreased PGE2 produc-
tion in KF leads to enhanced collagen synthesis. On other
hand, KF showed a more intense phosphorylated band of
ERK than that of NF in response to MIF. The activation of
ERK by MIF might induce cell proliferation in KF in addition
to cPLA2 stimulation. Further investigation is in progress
to better understand the effect of MIF on ERK pathway in
keloidogenesis.

We here demonstrated that PGE2 inhibited collagen
synthesis in NF, and less so in KF. PGE2 has been reported
to exert suppressive effects on collagen production in fibro-
blasts. These suppressive effects are mediated by increases in
cAMP; such results are based on those of previous reports,
which demonstrated that cAMP is an antifibrotic second
messenger in fibroblasts (Kohyama et al., 2001; Liu et al.,
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2004). As regards the signal transduction associated with
PGE2, the biological activity of PGE2 was found to be exerted
via four receptor types: EP1, EP2, EP3, and EP4 (Coleman
et al., 1994; Negishi et al., 1995; Narumiya, 1996). As
regards fibrosis, recent publications have indicated that EP2
transduces PGE2 signaling and results in the downregulation
of collagen synthesis (Choung et al., 1998; Kolodsick et al.,
2003).

We hypothesized that the differences between NF and KF
in response to PGE2 were caused by differences in EP2
expression levels, and found that the expression of EP2 in KF
was lower than that in NF. Forskolin is known as an
agent that increases cAMP in a receptor-independent manner
by directly activating adenylate cyclase. Forskolin led to
decreases in the levels of collagen produced in both types
of fibroblasts within a range of 10�4–10�5

M. These results
indicated that the cAMP pathway is an important regulator of
collagen synthesis in KF.

We demonstrated more enhanced MIF in KF than NF as
shown in Figure 1. We examined only a few cases of normal
skin fibroblasts obtained from early wound skin lesion during
the course of this study. It showed higher MIF expression than
fibroblasts obtained from late stage wound, as in the case
of rat skin (Abe et al., 2000). According to these facts, it is
considered that MIF expression level sustains in KF, whereas
it transiently increased and returns to the minimal level in
NF. We believe that MIF may play an important role for
hyperproliferation of KF.

In conclusion, we demonstrated here that exogenous
MIF enhanced COX-2 activity and PGE2 to a greater degree in
NF than in KF, and that cAMP, when elevated by Forskolin,
suppressed collagen synthesis in both types of fibroblast.
These findings suggest that the reduced capacity of KF to
downregulate collagen synthesis via PGE2 contributes to
cellular hyperproliferation in keloids. Our current results
indicate that the regulation of cellular levels of cAMP might
be useful as a therapeutic strategy in the regulation of
collagen synthesis and deposition in keloids.

MATERIALS AND METHODS
Tissue samples

Keloid is a benign dermal tumor as it invades normal skin beyond the

boundaries of the original wound and dose not regress sponta-

neously. Recurrence is common after surgical excision, which often

exacerbates the condition. Hypertrophic scars, on the other hand,

remain within the boundaries of the original wound, frequently

regress spontaneously, and recurrence is rare after surgical excision

(Rockwell et al., 1989; Chodon et al., 2000). Based on these data,

we differentiated keloid from hypertrophic scars.

A total of six keloid samples were obtained from six Japanese

patients. Only clinically typical samples were included in this study.

In addition, six normal age- and site-matched skin samples were

obtained during unrelated surgical operations. None of the keloid

patients had received previous treatment other than pressure

therapy. Written informed consent was obtained from all patients.

Primary fibroblasts from fresh keloid tissue and from normal tissue

obtained at the time of surgical excision were cultured for the

present experiments. All procedures were approved by the ethical

code of Hokkaido University School of Medicine in accord with the

Declaration of Helsinki Principles.

Fibroblast culture

Fibroblasts were grown in DMEM (Life Technologies Inc., Gaithers-

burg, MD) supplemented with 20% and 10% (vol/vol) heat-

inactivated fetal bovine serum (FBS) for the primary culture and

subsequent cultures, respectively, and 5 mg/ml L-glutamine in an

atmosphere of 5% CO2. Fibroblasts in the primary cultures were

trypsinized with 0.05% trypsin/0.53 mM EDTA/4Na (Life Technolo-

gies Inc., Carlsbad, CA). The three to four passed cells were used for

the experiments.

MIF

Recombinant MIF was prepared as described previously (Sun et al.,

2003).

Anti-MIF monoclonal antibody

We raised monoclonal antibodies against human MIF (Mizue et al.,

2000), and used them for the current experiments.

Assessment of cPLA2 activity

To measure the release of arachidonic acid from NF and KF,

fibroblasts (2� 105 cells) were labeled at 371C for 18 hours with

[3H]arachidonic acid (3mCi/3 ml per dish) (Amersham, Arlington

Heights, IL) in DMEM/1% bovine serum albumin as described

previously (Sakamoto et al., 1993; Croxtall et al., 1995; Sampey

et al., 2001).

Immunoblot analysis

Immunoblot analysis was performed as described previously

(Funayama et al., 2003), using anti-phospho-ERK antibody

(1:2,000; specific for the phosphorylated forms of ERK1 and ERK2

activated by dual phosphorylation in the Thr202/Tyr204 region; Cell

Signaling Technology, Beverly, MA), or anti-EP2 polyclonal antibody

(1:500; Cayman Chemical, Ann Arbor, MI).

RT-PCR for cPLA2 and COX-2

The PCR was performed as follows: cPLA2 and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), 941C for 2 minutes for one

cycle, 941C for 1 minute, 541C for 1 minute, 721C for 1 minute for 35

cycles, and 721C for 7 minutes for one cycle; COX-2 and GAPDH,

941C for 2 minutes for one cycle, 941C for 1 minute, 601C for

1 minute, 721C for 1 minute for 35 cycles, and 721C for 7 minutes for

one cycle using a thermal cycler (PC808, ASTEC, Tokyo, Japan). The

following PCR primers were used: for cPLA2, 50-GAG-CTG-ATG-T

TT-GCA-GAT-TGG-GTT-G-30 (forward) and 50-GTC-ACT-CAA-A

GG-AGA-CAG-TGG-ATA-AGA-30 (reverse); for COX-2, 50-TTC-AA

A-TGA-GAT-TGT-GGG-AAA-ATT-GCT-30 (forward) and 50-AGA-T

CA-TCT-CTG-CCT-GAG-TAT-CTT-30 (reverse); and for GAPDH,

50-CGT-CTT-CAC-CAC-CAT-GGA-GA-30 (forward) and 50-CGG-C

CA-TCA-CGC-CAC-AGT-TT-30 (reverse). After PCR, an aliquot of

each amplification mixture was subjected to electrophoresis on 2%

agarose gel, and the DNA was stained with ethidium bromide.

Measurement of PGE2 accumulation in unstimulated NF and KF

NF and KF (2� 105 cells) were seeded and incubated overnight,

washed twice with PBS, and then incubated again for 24 hours in
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DMEM/1% FBS. The amount of PGE2 in the cellular supernatants

was then determined by ELISA (Cayman Chemical) according to the

manufacturer’s instructions. PGE2 accumulation was used to reflect

the activity of both cPLA2 and COX-2.

Measurement of PGE2 accumulation in NF and KF with MIF
or IL-1b

NF and KF (2� 105 cells) were seeded and incubated overnight. For

the inhibition of endogenous COX, fibroblasts were incubated with

serum-free DMEM containing 10 mM indomethacin for 15 minutes at

371C in an atmosphere of 5% CO2, and then the cells were washed

twice with PBS. Then, the indomethacin-treated fibroblasts were

treated with recombinant human MIF (500 ng/ml) or recombinant

human IL-1b (5 ng/ml) (BioVision, Palo Alto, CA) in DMEM/1% FBS

and were incubated for 6 or 12 hours at 371C in an atmosphere of

5% CO2. PGE2 formation in the supernatant was then measured by

ELISA.

Effect of anti-MIF antibody on IL-1b bioactivity

NF (2� 105 cells) were treated with anti-MIF monoclonal anti-

body (50 mg/ml) or non-immune IgG (50 mg/ml) followed by the

addition of recombinant human IL-1b (5 ng/ml) in DMEM/1% FBS,

and were incubated for 12 hours at 371C in an atmosphere of 5%

CO2. PGE2 formation in the supernatant was then measured by

ELISA specific for PGE2, and COX-2 mRNA levels in NF was

examined by RT-PCR.

Assay of human PICP

Type I collagen is derived from a large protein, type I procollagen,

which has propeptide extensions at both ends of the molecule.

Specific enzymes remove these propeptides before the collagen

molecules are assembled into fibers. A fragment removed from

the carboxy-terminus, PICP, is secreted by cells, and its level reflects

the level of synthesis of type I collagen. For detection of PICP in the

supernatants, NF and KF (3� 105 cells) were incubated at 371C for

24 hours in DMEM/0.5% FBS after the addition of PGE2 or Forskolin

(Sigma, St Louis, MO). The medium in each well was then collected

and frozen until use. The amount of PICP in the cellular supernatants

was determined by radioimmunoassay (Chugai, Tokyo, Japan)

according to the manufacturer’s instructions.

cAMP determination

The amount of cAMP produced by the cells in response to PGE2 was

quantified. At confluence, the cells were washed three times with

PBS and then were preincubated in DMEM containing 0.2 mM

3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, for

30 minutes. The media were removed, and the cells were further

incubated with test agents for 10 minutes. At the end of the treatment

period, the cell cultures were extracted with 0.1 M HCl. The cAMP

content was determined by ELISA (Cayman Chemical) according to

the manufacturer’s instructions.

Immunohistochemistry

Immunohistochemical analysis was performed as described (Nishio

et al., 1999). In brief, normal skin, normal scar, and keloid skin

samples were fixed with 4% formalin, and then paraffin-embedded.

The embedded tissues were cut into 3-mm-thick sections. Skin tissues

were stained immunohistochemically for MIF with a Histofine SAB-

PO Kit (Nichirei, Tokyo, Japan) according to the manufacturer’s

protocol.

Statistical analysis

The data were analyzed using analysis of variance (ANOVA)

followed by Scheffe’s post hoc analysis.
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