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We approximate from the exterior an upper semicontinuous multifunction C( .) 
from a metric space into the closed convex subsets of a normed space by means of 
globally Lipschitzean multifunctions; in particular, when C( .) is continuous, this 
approximation allows us to reduce the problem of the existence of solutions of the 
associated evolution equation to the case in which C( ) is Lipschitzean. 0 1991 

Academic Press, Inc. 

1. INTROD~JCTI~N 

It is known that an upper semicontinuous multifunction t + C(t) from a 
metric space I into the closed convex subsets of a Banach space E can be 
approximated from the exterior, under suitable conditions, by more 
“regular” multifunctions. In particular, it is possible to build a decreasing 
sequence of locally Lipschitzean multifunctions C,( .) which converge 
pointwise, with respect to the Hausdorff distance, to C( -) (see, for instance, 
Haddad [lo], De Blasi L-61, El Arni [9], and Ionescu Tulcea [ll]). 

In the procedure usually adopted, every C, comes from a piecewise 
constant multifunction, suitably “patched” by a partition of unity; in this 
paper we introduce a different method, which allows us to get globally 
Lipschitzean approximating multifunctions (Theorem 2.1) and is marked 
by a quite geometric approach. For the sake of simplicity, E is assumed to 
be a normed space, but the given result holds, more generally, in any 
locally convex metric space. As in the quoted literature, the proof relies 
on convexity assumptions, whose contribution is wholly exploited in 
Lemma 2.1. 
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The last section of the work is devoted to the differential inclusion (3.1), 
the so-called “Sweeping Process.” This problem was introduced by J. J. 
Moreau, who solved it in the case in which the multifunction C( .) has 
“finite retraction” [15, 161. Soon afterward other situations were studied, 
and now the solution is known to exist also when C( .) is continuous, or 
when E has finite dimension and C( .) is lower semicontinuous (Castaing 
[ 1, 2, 3,4], Monteiro Marques [ 12, 131, Tanaka [ 171, and Valadier 
[18,201). 

Since the existence of solutions can be proved more easily when C( ) is 
Lipschitzean, it is useful to reduce to that case by means of a suitable 
approximation of C( .): In this scheme of things some authors studied the 
connections between some kinds of convergence for multifunctions and the 
convergence of the corresponding solutions (see, for instance, Castaing 
[4]). Furthermore, in [ 191, Valadier provided an approximation from the 
interior of a lower semicontinuous multifunction by means of Lipschitzean 
multifunctions, and in this way obtained [20] the existence of solutions in 
that case. 

Here we deal with a continuous multifunction and give the following 
application to the Sweeping Process (Theorem 3.1): The solutions coming 
from the approximating multifunctions C,( . ) of Theorem 2.1 converge 
uniformly, and the limit function u is actually the solution of problem (3.1). 

I thank Professor C. Castaing and Professor M. Valadier for the useful 
discussions about the subject of this work. 

2. APPROXIMATION FROM THE EXTERIOR OF AN 
UPPER SEMICONTINUOUS MULTIFUNCTION 

In all that follows (I, d) will be a metric space and (E, I( . )I ) will be a 
normed space. We denote by Q?(E) the family of all bounded closed convex 
non-empty subsets of E, B will always stand for the unitary ball of E. If 
x E E and FE q(E) we call the distance between x and F the non-negative 
number 

dist(x, F) =,‘;fF Ily -x(1. 

If F, G E q(E), we define the excess of F over G as 

e(F, G) = sup dist (x, G); 
XEF 

finally, the Hausdorff distance between F and G is defined by 

h(F, G) = max(e(F, G), e(G, F)). 
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The following notation will also be used: 

IlJll = e(F, (0)) = sup Ibll. 
i E F 

We say that a multifunction 

c: I -+ V(E) 

is (metrically) upper semicontinuous [7] at t E I if 

lim e(C(z), C(t)) = 0, 
r--t* 

or, in other words, if for every E > 0 there exists a neighbourhood U of t 
such that 

C(z) E C(t) + EB, VSE u. 

Furthermore, C(a) will be said (metrically) continuous at t E I if 

lim h(C(t), C(z))=O, 
i--r, 

(2-l 1 

or, equivalently, if for every E > 0 there exists a neighborhood U of t such 
that (2.1) holds, and 

C(t) c C(r) + EB, VTE u, (2.2) 

We say that the multifunction C( .) is bounded if, for some M > 0, 

IIC(t)ll GM vtez. (2.3) 

THEOREM 2.1. Let C: I-, @T(E) be bounded and upper semicontinuous; 
then there exist constants L, E IO, + co [ and multifunctions C, : Z -+ %9(E) 
(n = 1, 2, . ..) which enjoy the following properties: 

(a) C,(t) 2 Cn+I(t) 2 C(t), VtEI; 

(b) lim h(C,(t), C(t)) =O, VtEI; 
n- +m 

(cl h(C,(t), C,(O) < L,d(t, 0, Vt, t’e z. 

We put forward the following result: 

LEMMA 2.1. Let (ri)is I be a family in v(E); suppose that, for some 
x,EE, hER+ 

xO+hBETi, ViEI, 
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L=iIff IIZi--xOJI =inf sup ((x-x0(/. 
x E I-, 

Then, for every E > 0, 

,?,(Ti+EB)G n ri +iEB. 
( > it?/ 

Proof. Let us put, for convenience, Z= ni, , Zi, Z, = niE, (Zj + EB). 
We must show that, whenever x E Z,, there exists some x’ E Z with 
11x - x’ll <L&/h. To this aim we put 

x’=x+ j-+-x) 

and deduce at once the inequality [lx’ -x(1 = E llxO-xll/(s + h) < 
E(L + c)/(h + E) < L&/h. Now we only have to prove that x’ E r. To this end 
we consider the homothetic mapping p: E + E defined by 

p(y)=r’~(y-x’), y E E. 

It is easy to check that 

P(X+EB)=x’--(x-x’+eB)=x,,+hB. 
E 

Now, since x E Z,, for every i E Z there is some xi E Zi n (x + EB). Then 
the point 

lies in x,, + hB and, even more so, in Zi. On the other hand, the definition 
of zi allows us to express x’ in the following way: 

E h 
x’=-z.+--x. 

h+E ’ h+E ” 

Then x’ is a convex combination of points of Zi, so that x’ E Zi. Since the 
index i is arbitrary, x’ E Z, as claimed. 1 

If t + C(t) is an upper semicontinuous multifunction and FE V?(E), it is 
easy to see that the function t + e(C(t), F) is upper semicontinuous in turn; 
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in particular, if t 4 C(t) fulfills the assumptions of the foregoing theorem 
and we put 

r(t, t)= dC(t), C(r)) (2.4) 

Y turns out to be upper semicontinuous with respect to t, and bounded 
above by 2M, with A4 given by (2.3). Hence it can be approximated from 
above, in a standard way, by functions r,, which are Lipschitzean with 
respect to t. For technical reasons we need the strict inequality r, > r; then 
we define 

rn(t, r)=i+sup (r(t’, z)-nd(t, t’)). 
I’ E I 

(2.5) 

We sum up the main properties of the functions rn we shall need later: 

(a’) r,(t, z) 3 rn+ l(tT TX 1+2Mar,(t, t)a l/n+r(t, t), Qt, ZEI 

(b’) lim r,(t, T) = e(C(t), C(z)), Q, ZEZ 
,,- +m 

Cc’) Ir,(t, 2) - r,(t’, z)l < 44 t’X Qt, t’, t E Z. 

Furthermore, the definition of r(t, t) implies immediately, whenever 
p>r(t, z), 

C(t) c C(t) + pB. (2.6) 

Now we are ready to prove the foregoing theorem. 

Proof of Theorem 2.1. We put 

c,(t)=d n (C(t)+r,(t, z)B) 
( 

. 
rsr > 

Of course, for every n E Z +, t E Z, C,(t) E V(E); now we are going to show 
that C,( .) fulfills conditions (a), (b), and (c). Since r, is a non-increasing 
sequence, it is obvious that C,,(t) 2 C, + 1 (t). Moreover, (2.6) and the last 
inequality in (a’) entail the inclusion C,(t) 2 C(t). 

In order to prove (b), fix t E 1, E > 0 and choose 6 E Z + such that 
r,( t, t) < E whenever n 2 fi. Then C,,(t) z cl(C( t) + r,( t, t) B) G C(t) + EB, so 
that h( C,( t), C(t)) < E. 

Now we only have to prove (c). To this end put, for convenience, 

rn,(t, 5) = (37) + r,(t, ~14 

and fix rz~Z+, t, t’ E T. Since rn enjoys property (c’), we deduce at once 
that 

m(t’, T) c C(r) + (r,(t, T) + nd(t, t’))B= rn(t, z) + nd(t, t’)B. 

505/92/2- 15 
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Furthermore, the family { Z,,(& z); r E Z} fulfills the assumptions of 
Lemma 2.1, where x0 is any point of C(t) and h < l/n (take, for instance, 
h = 1/2n). Indeed, thanks to (2.6) and the last inequality in (a’), we have 

Now we can apply Lemma 2.1 with E = nd(t, t’) and L controlled by the 
evaluation 

L = 2; Il~,(t, z) - xoll Q Ilr,(f, l) - XOII 

G rn(c t) + IIC(t) - XOII 6 a4 + 1 + lIC(t)ll + llxoll 
<4&Z+ 1. 

We get 

G C,(t) + L,d(t, t’)l?. 

Hence e(C,(t’), C,(t)) < L,d(t, t’), and in the same way we can get an 
analogous evaluation on e(C,(t), C,(t’)). Then 

MC,(r), C,(f)) < L&t, t’) 

as claimed. 1 

Remark 2.2. For the sake of simplicity, Theorem 2.1 is stated under the 
assumption (2.3); some slight changes in the proof, however, show that the 
assertion still holds if the multifunction C( .) has only a “controlled 
growth”; that is it satisfies, for some M> 0, t,E Z and every t E Z, the 
condition 

IIC(t)ll G Ml + 46 b)). 
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3. APPLICATIONS TO THE SWEEPING PROCE~.Y 

In this section E will be a separable Hilbert space, with inner product 
( ., . ) and norm 1) .I) ; C: I + V(E) is now a continuous multifunction, and 
the metric space Z is nothing but a closed interval [O, T] of the real line. 
W(Z) will be the Bore1 g-field in Z, and I the Lebesgue measure on I. If 
v: S?(Z) + [0, + 00 [ is a measure, Z’(v) will denote the space of all strongly 
v-measurable functions U: I+ E such that f, llull dv < + co. A countably 
additive set fuction p: 99(Z) + E will be simply called a vector measure on 
Z, and M(Z) will stand for the space of such measures; if PE M(Z), we 
denote by IpI: S?(Z) + [0, + co [ its variation measure, and by dp/d l,u[ the 
Radon-Nikodym derivative of p with respect to 1~1 [8, Theorem 6, p. 641. 
We denote by BV the space of all functions U: I-+ E with bounded varia- 
tion. As is known, if u E BP’, the limits 

u-(t)= lim u(r) (t>O), u+(t)= lim U(T) 
7-t+ (t<T) r--t*- 

exist, and the mapping Is, t] + u+(t) - U+(S) can be extended to a unique 
measure p: @(I) --) E which is called the derivative measure of u, and simply 
denoted by du, then ldul will stand for the total variation of du, and the 
Radon-Nikodym derivative of du with respect to (du( will be denoted, 
improperly, by dull dul. 

DEFINITION 3.1. If C E %7(E) and u E C we define the exterior normal 
cone to C at u as 

N(u;C)={pEEl(p,x-u)~O,xEC}; 

if u 4 C, we put N(u; C) = 0. 

DEFINITION 3.2. If u E BV and a E C(O), we say that u is a solution of 
the sweeping process (9’) associated to the multifunction C( .) issuing from 
(0, a) if: 

(i) u(O) = a, 

(ii) u(t) E C(t), VtEz (3.1) 

(iii) -* t E ldu, ( 1 W(t); C(t)) (du( - a.e. in I. 

Remark 3.1. If the solution u exists, and is required to be right- 
continuous, then it is necessarily unique (see, for instance, [14, 181). 
Furthermore, if u is absolutely continuous, condition (iii) in problem (9) 
can more simply be stated as 

-u’(t)EN(u(t); C(t)) A-a.e. in I. 
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Remark 3.2. If u is continuous, condition (iii) holds if and only if, on 
every half-closed interval J= Is, t], and for every continuous selection 4 of 
C( -), the following inequality is satisfied (see [ 12 or 18, Prop. 63): 

(3.2) 

The following result provides, in particular, an application of 
Theorem 2.1 to problem (9), and can be related to Theorem 2.3 of [4], 
which deals with a more general case. Here, the particular approximation 
given by Theorem 2.1 allows us to prove something more, that is the 
convergence of the whole sequence of the approximating solutions, not 
only of a suitable subsequence. 

THEOREM 3.1. Let C: I + q(E) be a continuous multtfunction, and suppose 
that, for every t EZ, C(t) has a non-empty interior. Let C,: I+ v(E) satisfy 
conditions (a), (b) and (c) of Theorem 2.1; given aE C(O), for every nEZ+ 
call u, the solution of the sweeping process (Pn) associated to C,( .) issuing 
from (0, a). Then the sequence (u,), converges uniformly on I to a continuous 
BV-function u which is the solution of problem (9). 

Proof: We divide the proof in three steps. 

Step 1: The sequence (u,), is bounded in variation. 
To this aim we can proceed as in [ 131: Since for every t E [0, T] the 

interior of C(t) is not empty and C( . ) is continuous and convex-valued, we 
can divide Z in a finite number of intervals 

J, = [to, t11, J2 = Ctl, bl, . . . . J,= Cts--l, tsl, 

with tO=O<t,< ... < t,= T, in such a way that for k= 1, . . . . s the set 
n {C(t); t E Jk} contains a ball xk + rk B. Now, by virtue of an evaluation 
given by Valadier (see, for instance, [ 18, Lemma 11) on each Jk the varia- 
tion of u, does not exceed the value M,= I(u,(tk--)-xkl(‘/2rk; hence an 
easy inductive argument on k shows the existence of a constant M such 
that 

T(u,; I) = j: Ilu;(z)ll dz Q M. (3.3) 

Step 2: The sequence (u,), converges uniformly to a BV-function. 
Fix t E Z and m, n EN, with m < n: Since u, and u, are Lipschitzean, and 

u,(O) = u,(O) = a,, we get 

5 ’ (u,(~) - u,(z), U;(T) - uin(~)> dT = 4 IMt) - U&)ll*. 
0 
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Now, let u,,,(r) be the projection of u,(r) on C,(r); then the left-hand side 
of the previous equality can be written as 

+ j; <urn(~) - M), 4n(~)> df, 

Now, U, is the solution of problem (9$), and, by definition, u,,,(r) E C,(z); 
hence the first term of the foregoing sum is non-positive. On the other 
hand, U, is the solution of problem (Pm), and from the inequality n > m we 
deduce that U,(Z)E C,(t); then the third term does not exceed zero as well, 
and we can get the following chain of inequalities: 

G “y-(4; 4 max{ IIu,,,(~) - u,(z)ll; 0 G T G t} 

,<Mmax{h(C,(t), C(r));O<r< T}. 

Now, the functions z + h(C,(z), C(z)) are continuous, and converge 
monotonically to zero as k -+ + co. By virtue of Dini’s Theorem they 
converge uniformly on I: we can conclude that 

lim max{Ilu,(z)-u,(z)ll;O~~dT)=O. 
m,n- +‘x 

Hence (u,), is a Cauchy sequence with respect to the norm of uniform 
convergence, and therefore converges to a continuous function U: I+ E. 
Furthermore, the variation of a function on an interval is lower semicon- 
tinuous with respect to pointwise convergence, so that u E BV because of 
the inequality 

s Id4 ,<lim inf IIu;ll dT <hf. 
I s n-i-m , 

Step 3: u is the solution of problem (9). 
Condition (i) is obviously satisfied; in order to prove (ii) it is enough to 

recall that, for every t E Z, C(t) is closed, and 

dist(u(t), C(t)) = Jm, dist(u,(t), C(t)) < lim h(C,(t), C(t)) =O. 
n- +m 

Now, by virtue of Remark 3.2, we only have to prove (3.2). Since (u,,)~ is 
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bounded in variation and converges uniformly to U, it can be shown that, 
on every interval J= [Is, t] and for every continuous function 4: I-+ E, 

(3.4) 

Indeed, (3.4) is certainly true for any step function 4, but (3.3) allows 
us to extend it to the closure of such functions with respect to uniform 
convergence, then, in particular, to all continuous functions. 

Now, let 4 be a continuous selection of C( . ); then, for every n E Z +, 4 
is a selection of C,( .), and since U, is a solution of (Pn), it is 

;(IMf)l12- Il~,(~)l12)~$J (4, 4) dz. 

Now, let n -+ + co; thanks to (3.4), (3.2) follows at once, and the proof is 
complete. m 
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