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Abstract

A map between manifolds which matches up families of complete vector fields is a fiber bundle mapping on each orbit of those
vector fields.
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1. Introduction

Definition 1. Write etX(m) ∈ M for the flow of a vector field X through a point m after time t . Let F be a
family of smooth vector fields on a manifold M . The orbit of F through a point m ∈ M is the set of all points
et1X1et2X2 . . . etkXk (m) for any vector fields Xj ∈ F and numbers tj (positive or negative) for which this is defined.

Example 1. The vector field ∂
∂θ

on the Euclidean plane (in polar coordinates) has orbits the circles around the origin,
and the origin itself.

Example 2. The set of smooth vector fields supported in a disk has as orbits the open disk (a 2-dimensional orbit) and
the individual points outside or on the boundary of the disk (zero dimensional orbits).

Example 3. On Euclidean space, the set of vector fields supported inside a ball, together with the radial vector field
coming from the center of the ball, forms a set of vector fields with a single orbit.

Example 4. Translation in a generic direction on a flat torus has densely winding orbits.
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Héctor Sussmann [2–4] proved that the orbits of any family of smooth vector fields are immersed submanifolds
(also see Stefan [1]). We prove that a mapping between two manifolds which carries one family of complete vector
fields into another, is a fiber bundle mapping on each orbit.

2. Proofs

For completeness, we prove Sussmann’s theorem.

Theorem 1. (Sussmann [2]) The orbit of any point under any family of smooth vector fields is an immersed submani-
fold (in a canonical topology). If two orbits intersect, then they are equal. Let F̄ be the largest family of smooth vector
fields which have the same orbits as the given family F. Then F̄ is a Lie algebra of vector fields, and a module over
the algebra of smooth functions.

Remark 1. Obviously, one could localize these results, replacing globally defined vector fields with subsheaves of the
sheaf of locally defined smooth vector fields.

Proof. We can replace F by F̄ without loss of generality. Therefore, if X,Y ∈ F, we can suppose that eX∗ Y ∈ F since
the flow of eX∗ Y is

et(eX∗ Y) = eXetY ,

which must preserve orbits. We refer to this process as pushing around vector fields.
Fix attention on a specific orbit. For each point m0 ∈ M , take as many vector fields as possible X1, . . . ,Xk , out

of F, which are linearly independent at m. Refer to the number k of vector fields as the orbit dimension. Pushing
around convinces us that the orbit dimension is a constant throughout the orbit. Refer to the map

(t1, . . . , tk) ∈ open ⊂ R
k �→ et1X1 . . . etkXkm0 ∈ M

(which we will take to be defined in some open set on which it is an embedding) as a distinguished chart and its
image as a distinguished set. The tangent space to each point et1X1 . . . etkXkm0 of a distinguished set is spanned by the
linearly independent vector fields

X1, e
t1X1∗ X2, . . . , e

t1X1 . . . e
tk−1Xk−1∗ Xk,

which belong to F, since they are just pushed around copies of the Xj . Let Ω be a distinguished set. Suppose that
Y ∈ F is a vector field, which is not tangent to Ω . Then at some point of Ω , Y is not a multiple of those pushed around
vector fields, so the orbit dimension must exceed k.

Therefore all vector fields in F are tangent to all distinguished sets. So any point inside any distinguished set stays
inside that set under the flow of any vector field in F, at least for a short time. So such a point must also stay inside the
distinguished set under compositions of flows of the vector fields, at least for short time. Therefore a point belonging
to two distinguished sets must remain in both of them under the flows that draw out either of them, at least for short
times. Therefore that point belongs to a smaller distinguished set lying inside both of them. Therefore the intersection
of distinguished sets is a distinguished set.

We define an open set of an orbit to be any union of distinguished sets; so the orbit is locally homeomorphic to
Euclidean space. We can pick a countable collection of distinguished sets as a basis for the topology. Every open
subset of M intersects every distinguished set in a distinguished set, so intersects every open set of the orbit in an
open set of the orbit. Thus the inclusion mapping of the orbit into M is continuous. Since M is metrizable, the orbit is
also metrizable, so a submanifold of M . The distinguished charts give the orbit a smooth structure. They are smoothly
mapped into M , ensuring that the inclusion is a smooth map. �
Example 5. Let α = dy − z dx in R

3. The vector fields on which α = 0 have one orbit: all of R
3, since they include

∂z, ∂x + z∂y , and therefore include the bracket:

[∂z, ∂x + z∂y] = ∂y.
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Definition 2. Take a map φ :M0 → M1, and vector fields Xj on Mj , j = 0,1. Write φ∗X0 = X1 to mean that for all
m0 ∈ M0, φ′(m0)X0(m0) = X1(φ(m0)). For families of vector fields, write φ∗F0 = F1 to mean that

(1) for any X0 ∈ F0 there is an X1 ∈ F1 so that φ∗X0 = X1 and
(2) for any X1 ∈ F1 there is a vector field X0 ∈ F0 so that φ∗X0 = X1.

Example 6. The vector field ∂x on R has R as orbit. Consider the inclusion (0,1) ⊂ R of some open interval. The
orbit of ∂x on (0,1) is (0,1). The orbits are mapped to each other by the inclusion, but not surjectively.

Example 7. If M0 = R
2
x,y and M1 = R

1
x , and φ(x, y) = x, and F0 = {∂x, ∂y} and F1 = {∂x,0}, then clearly

φ∗F0 = F1.

Example 8. The group SO(3) of rotations acts on the sphere S2, and we can map SO(3) → S2, taking a rotation g

to gn where n is the north pole. This map takes the left invariant vector fields to the infinitesimal rotations, and clearly
is a fiber bundle, the Hopf fibration.

Theorem 2. If Fj are sets of vector fields on manifolds Mj , for j = 0,1, and φ :M0 → M1 satisfies φ∗F0 = F1, then
φ takes F0-orbits into F1-orbits. On each orbit, φ has constant rank. If the vector fields in both families are complete,
then φ is a fiber bundle mapping on each orbit.

Proof. By restricting to an orbit in M0, we may assume that there is only one orbit. The map φ is invariant under the
flows of the vector fields, so must have constant rank.

Henceforth, suppose that the vector fields are complete. Given a path

et1X1 . . . etkXkm0

down in M1, we can always lift it to one in M0, so φ is onto. It might not be true that φ∗F̄0 = F̄1, but nonetheless we
can still push around vector fields, because the pushing upstairs in M0 corresponds to pushing downstairs in M1. So
without loss of generality, both F0 and F1 are closed under “pushing around”.

As in the above proof, for each point m1 ∈ M1, we can construct a distinguished chart

(t1, . . . , tk) �→ et1X1 . . . etkXkm1.

These Xk are vector fields on M1. Write Yk for some vector fields on M0 which satisfy φ∗Yk = Xk . Clearly φ is
a surjective submersion. Let U1 ⊂ M1 be the associated distinguished set; on U1 these tj are now coordinates. Let
U0 = φ−1U1 ⊂ M0. Let Z be the fiber of φ :M0 → M1 above the origin of the distinguished chart. Map

u0 ∈ U0 �→ (u1, z) ∈ U1 × Y

by u1 = φ(u0) and

z = e−tkYk . . . e−t1Y1u0.

Clearly this gives M0 the local structure of a product. The transition maps have a similar form, composing various
flows, so M0 → M1 is a fiber bundle. �

Keep in mind that all vector fields on compact manifolds are complete. Even though the orbits might not be
compact, our theorem says that the orbits upstairs will fiber over the orbits downstairs.

Example 9. Take M1 = R
2
x,y , and M0 ⊂ M1 a pair of disjoint disks, say those of unit radius around two points of

the x axis which are distantly separated. As the family F0 up in the disks, take the translation vector fields ∂x , ∂y

along coordinate axes in the right disk, and in the left, the pair of vector fields ∂x,0. Obviously these are not complete.
As the family F1, take the translation vector field ∂x , and a vector field f (x, y)∂y which vanishes in the left disk,
and nowhere outside of closure of the left disk, and equals ∂y in the right disk. The orbits downstairs are all two
dimensional, while those upstairs are one dimensional in the left disk, and two dimensional in the right.
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Example 10. Take E → M any fiber bundle, and pick a plane field on E transverse to the fibers. Every vector field
on M lifts to a unique vector field on E tangent to the 2-plane field. Suppose that the fibers of E → M are compact.
Lifting all complete vector fields, we get a family of complete vector fields on E. Their orbits must be connected and
fiber over M .

Example 11. Take any 2-plane field on SO(3) transverse to the leaves of the Hopf fibration SO(3) → S2, and lift
vector fields as in the last example. A two dimensional orbit would have to be diffeomorphic to S2, since S2 is simply
connected. The Hopf fibration admits no section, so therefore all orbits must be three dimensional, hence open and
disjoint, and cover SO(3), which is connected. Hence every 2-plane field transverse to the Hopf fibration has all of
SO(3) as orbit, even though the 2-plane field may be holonomic on an open set. The same result works for any circle
bundle on any compact manifold: either every plane field transverse to the circle fibers has a single orbit, or the circle
bundle trivializes on a covering space.

Example 12. Consider the Hopf fibration S3 → S7 → S4. Take any 4-plane field on S7 transverse to the fibers.
The orbits must be bundles over S4. The fibers of such a bundle cannot be zero dimensional, since S4 is simply
connected and the Hopf fibration is not a trivial bundle. Suppose that F → B → S4 is a fiber bundle, and that B ⊂ S7

is a subbundle. The bundle B cannot be trivial, since that would give rise to a section of the Hopf fibration. The
bundle B is determined completely by slicing S4 along the equatorial S3, and mapping S3 to the diffeomorphism
group of the fiber F . The fiber F cannot be the real line, the circle, or a closed surface other than the sphere, since
the diffeomorphism groups of these manifolds retract to finite dimensional groups which are aspherical. Therefore F

must be a sphere or noncompact surface, or a component of the complement in S3 of a set of disjoint spheres and
noncompact surfaces. Our theorem does not suffice to give a complete analysis of the possible orbits, but clearly it
makes a substantial contribution to this question.
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