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Abstract

We consider the problem of propagation of photons in the quantum theory of non-relativistic matter
coupled to electromagnetic radiation, which is, presently, the only consistent quantum theory of matter and
radiation. Assuming that the matter system is in a localized state (i.e. for energies below the ionization
threshold), we show that the probability to find photons at time t at the distance greater than ct , where c is
the speed of light, vanishes as t → ∞ as an inverse power of t .
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

One of the key postulates in the theory of relativity is that the speed of light is constant and
the same in all inertial reference frames. This postulate, verified to begin with experimentally,
can also be easily checked theoretically for propagation of disturbances in the free Maxwell
equations. However, one would like to show it for the physical model of matter interacting with
electromagnetic radiation. To have a sensible model, one would have to consider both matter and
radiation as quantum. This, in turn, requires reformulation of the problem in terms of quantum
probabilities. The latter are given through localization observables for photons. We define it
below. Now we proceed to the model of quantum matter interacting with (quantum) radiation.
(By radiation we always mean the electromagnetic radiation.) In what follows we use the units
in which the speed of light and the Planck constant divided by 2π are 1.

∗ Corresponding author.
E-mail addresses: bony@math.u-bordeaux1.fr (J.-F. Bony), jeremy.faupin@math.u-bordeaux1.fr (J. Faupin),

im.sigal@utoronto.ca (I.M. Sigal).

0001-8708/$ - see front matter c⃝ 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2012.07.019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82773565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/aim
http://dx.doi.org/10.1016/j.aim.2012.07.019
http://www.elsevier.com/locate/aim
mailto:bony@math.u-bordeaux1.fr
mailto:jeremy.faupin@math.u-bordeaux1.fr
mailto:im.sigal@utoronto.ca
http://dx.doi.org/10.1016/j.aim.2012.07.019


J.-F. Bony et al. / Advances in Mathematics 231 (2012) 3054–3078 3055

Presently, the only mathematically well-defined such a model, which is in a good agreement
with experiments, is the one in which matter is treated non-relativistically. In this model, the state
space of the total system is given by H = H p ⊗ H f , where H p is the state space of the particles,
say H p = L2(R3n), and H f is the state spaces of photons (i.e. of the quantized electromagnetic
field), defined as the bosonic (symmetric) Fock space, F , over the one-photon space h (see
Appendix B for the definition of F ). In the Coulomb gauge, which we assume from now on,
h is the L2-space, L2

transv(R3
; C3), of complex vector fields f : R3

→ C3 satisfying k · f = 0,
where k = −i∇y in the coordinate representation. In what follows, we use the momentum
representation. Then, by choosing orthonormal vector fields ελ(k) : R3

→ R3, λ = 1, 2,
satisfying k · ελ(k) = 0 and ελ(−k) = ±ελ(k) (ελ(k), λ = 1, 2, are called the polarization
vectors), we identify h with the space L2(R3

; C2) of square integrable functions of photon
momentum k ∈ R3 and polarization index λ = 1, 2.

The dynamics of the system is described by the Schrödinger equation,

i∂tψt = Hψt , (1.1)

on the state space H = H p ⊗ H f , with the standard quantum Hamiltonian (see [17,46])

H =

n
j=1

1
2m j


−i∇x j − g j Aκ(x j )

2
+ V (x)+ H f .

Here, m j and x j , j = 1, . . . , n, are the (‘bare’) particle masses and the particle positions, V (x),
x = (x1, . . . , xn), is the total potential affecting the particles and g j are coupling constants
related to the particle charges. Moreover, Aκ := κ̌ ∗ A, where A(y) is the quantized vector
potential in the Coulomb gauge (div A(y) = 0), describing the quantized electromagnetic field,
and given by

Aκ(y) =


λ=1,2


ελ(k)


eik·yaλ(k)+ e−ik·ya∗

λ(k)

κ(k)

dk
√

2|k|
, (1.2)

where κ ∈ C∞

0 (R
3) is a radial ultraviolet cut-off. The operator H f is the quantum Hamiltonian

of the quantized electromagnetic field, describing the dynamics of the latter,

H f =


λ=1,2


ω(k)a∗

λ(k)aλ(k) dk, (1.3)

where ω(k) = |k| is the dispersion relation. The integrals without indication of the domain of
integration are taken over entire R3. Above, λ is the polarization, aλ(k) and a∗

λ(k) are annihilation
and creation operators acting on the Fock space H f = F (see Appendix B for the definition of
annihilation and creation operators).

Assuming for simplicity that our matter consists of electrons and nuclei and that the nuclei
are infinitely heavy and therefore are manifested through the interactions only (put differently,
the molecules are treated in the Born–Oppenheimer approximation), one arrives at the operator
H with the coupling constants g j := α1/2, where α =

e2

4π h̄c ≈
1

137 is the fine-structure
constant. After that one can relax the conditions on the potentials V (x) allowing say general
many-body ones. For a general discussion of the Hamiltonian H see [12,28]. The spectral theory
was developed in [1,4,7,10,21,23,25,26,31,32,41,47,50]. The beginnings of the scattering theory
appeared in [6,11,18–20,24,27,33,48]. (For more extensive references see [5,51,54].) Since the
structure of the particle system is immaterial for us, to keep notation as simple as possible, we
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consider a single particle in an external potential, V (x), coupled to the quantized electromagnetic
field. Furthermore, since our results hold for any fixed value of α, we absorb it into the ultraviolet
cut-off κ . In this case, the state space of such a system is H = L2(R3) ⊗ F = L2(R3

; F) and
the standard Hamiltonian operator acting on L2(R3

; F) is given by (we omit the subindex κ in
A(x))

H :=


p + A(x)
2

+ H f + V (x), (1.4)

with the notation p := −i∇x , the particle momentum operator. We assume that V is real valued
and infinitesimally bounded with respect to p2.

Our goal is to show that photons departing a bound particle system, say an atom or a molecule,
move away from it with a speed not higher than the speed of light. Let dΓ (b) denote the
lifting of a one-photon operator b to the photon Fock space (and then to the Hilbert space
of the total system, see the precise definition in Appendix B), y := i∇k be the operator
on L2(R3

; C2), canonically conjugate to the photon momentum k and let 1Ω (y) denote the
characteristic function of a subset Ω of R3. To test the photon localization, we define the
observables dΓ (1Ω (y)), which can be interpreted as giving the number of photons in Borel
sets Ω ⊂ R3. These observables are closely related to those used in [19,24,39] and are
consistent with a theoretical description of detection of photons (usually via the photoelectric
effect, see e.g. [43]).1 The fact that they depend on the choice of polarization vector fields,
ελ(k), λ = 1, 2, is not an impediment here as our results imply analogous results for
e.g. similarly constructed observables2 based on the space L2

transv(R3
; C3) instead of L2(R3

; C2),
or localization observables constructed by Amrein [2]. (Both observables are also covariant under
rigid motions, g, of R3,

TgdΓ (1Ω (y))T
−1
g = dΓ (1g−1Ω (y)),

where Tg = Γ (tg) is generated by one particle transformations tg : f (y) → f (g−1 y), as is
usually required for localization observables.)

With the definition of localization observables given, we say that photons propagate with
speed ≤c′ if for any initial condition ψ0 and for any c > c′, the state, ψt , of the system at time t ,
satisfies the estimatedΓ


F(|y| ≥ ct)

 1
2ψt

 −→ 0 as t → ∞,

for any bounded function F(s ≥ 1) supported in the domain {s ≥ 1}. Similarly, one can define
the propagation with speed ≥c′. As with any other quantum models, this definition allows for a
non-zero probability that photons propagate with arbitrary high speed. However, as estimates of
such probabilities for massive free relativistic particles show (see [49]), these events (as with the
problem of reversibility) have so low probabilities as to make them undetectable.

1 The issue of localizability of photons is a tricky one and has been intensely discussed in the literature since the
1930 and 1932 papers by Landau and Peierls [38] and Pauli [45] (see also a review in [37]). A set of axioms for
localization observables was proposed by Newton and Wigner [44] and Wightman [55] and further generalized by Jauch
and Piron [36]. Localization observables for massless particles satisfying the Jauch–Piron version of the Wightman
axioms were constructed by Amrein [2].

2 These observables are similar to those introduced by Mandel [42]. Since polarization vector fields are not smooth,
using them to reduce the results from one set of localization observables to another would limit the possible time decay.
However, these vector fields can be avoided by using the approach of [40].
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To formulate our result, we let Σ denote the ionization threshold defined by

Σ := lim
R→∞

inf
ϕ∈DR
∥ϕ∥=1

⟨ϕ, Hϕ⟩,

where DR = {ϕ ∈ D(H); ϕ(x) = 0 if |x | < R} (see [25]). We also define the Hilbert space

X := D(dΓ (⟨y⟩)
1
2 ), with the norm

|||u||| :=


dΓ (⟨y⟩)+ 1
 1

2 u
.

Let f ∈ C∞

0 (R; [0, 1]) be such that supp( f ) ⊂ [1, 2] and define F(s) =
 s
−∞

f (τ ) dτ . We will
localize the photon position using the following operator

F(|y| ≥ ct) = F(|v| ≥ 1) := F(|v|), (1.5)

where v := y/ct . Throughout the paper, the notation f . g, for functions f and g, stands for
f ≤ Cg where C is a positive constant. The norm in H, as well as the operator norm, are denoted
by ∥ · ∥, while the norms in F and h are denoted respectively by ∥ · ∥F , ∥ · ∥h.

Our main result is the following.

Theorem 1.1. Let F be as above, χ ∈ C∞

0 ((−∞,Σ )) and c > 1. For all u ∈ X, the evolution
ut := e−it Hχ(H)u obeys the estimatesdΓ


F(|y| ≥ ct)

 1
2 ut

 . t−γ |||u|||,

where

γ < min
1

2


1 −

1
c


,

1
10


. (1.6)

Thus e−it Hχ(H)u is supported asymptotically in the set |y| ≤ ct . In other words, photons do
not propagate faster than the speed of light.

The estimate of Theorem 1.1 is usually called a strong propagation estimate in the literature
(see [13,52]). In order to prove it, we first need to ‘improve’ the infrared behavior of the
electron–photon interaction given by (1.2), which can be done, as usual, by performing
a Pauli–Fierz transformation. For technical convenience, we use a generalized Pauli–Fierz
transformation as in [50]. Next, we employ the method of propagation observables by
constructing a positive, unbounded observable, whose Heisenberg derivative is negative (up to
integrable remainder terms). In our proof, the required estimates on the remainder terms are
obtained thanks to Hardy’s inequality in R3, together with a suitable control of the growth of
dΓ (|k|

−δ) along the evolution, for some 0 ≤ δ ≤ 1.
For massive Pauli–Fierz Hamiltonians (that is with a dispersion relation of the form ω(k) =√

k2 + m2, m > 0), a weak version of the maximal velocity estimate is derived in [14] (see
also [19] for a different weak maximal velocity estimate). Compared to [14], the main difficulty
we encounter is that, in our case, the number of photons operator is not relatively bounded with
respect to the Hamiltonian. It is presently not known whether or not the number of photons
remains bounded along the evolution (see, however, the recent paper [15] for the case of massless
spin-boson model). Another difficulty here is due to the lack of smoothness of the relativistic
dispersion relation ω(k) = |k| at the origin. In Quantum Mechanics, maximal and minimal
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velocity estimates were proven in [35,53]. The result of Theorem 1.1 is used in the proof of
asymptotic completeness for Rayleigh scattering in [16].

Our paper is organized as follows. In Section 2, we introduce a generalized Pauli–Fierz
transformation and prove our main theorem. Various ingredients of the proof of Theorem 1.1
are deferred to the next sections. In Section 3, we estimate interaction terms. Section 4 is devoted
to the estimate of the growth of dΓ (|k|

−δ) along the evolution. In Section 5, we control remainder
terms by estimating some commutators. Domain questions are discussed in Appendix A. Finally,
for the convenience of the reader, standard definitions of operators in Fock space and some
standard bound and commutator formulas are recalled in Appendix B, and our main notations
are listed in Appendix C.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we use the generalized Pauli–Fierz transformation (see [50]) defined
as follows. For any h ∈ L2(R3

; C2), we define the operator-valued field

Φ(h) :=
1

√
2
(a∗(h)+ a(h)). (2.1)

Using it, we can write

A(x) = Φ(gx ), gx (k, λ) :=
κ(k)

|k|
1
2

ελ(k)e
ik·x . (2.2)

Let ϕ ∈ C∞(R; R) be a non-decreasing function such that ϕ(r) = r if |r | ≤ 1/2 and |ϕ(r)| = 1
if |r | ≥ 1. For 0 < µ < 1/2, we define the function

qx (k, λ) := −
κ(k)

|k|
1
2 +µ

ϕ(|k|
µελ(k) · x),

and the unitary operator

U := e−iΦ(qx ),

on L2(R3
; F). We also introduce the Pauli–Fierz transformed Hamiltonian H by H := U H U ∗.

Using the properties of ελ(k) and the relations (B.4) and (B.6) of Appendix B, we computeH =


p + A(x)2
+ E(x)+ H f + V (x),

whereA(x) := Φ(gx ), gx (k, λ) := gx (k, λ)+ ∇x qx (k, λ), (2.3)

E(x) := Φ(ex ), ex (k, λ) := i|k|qx (k, λ), (2.4)

V (x) := V (x)+
1
2


λ=1,2


R3

|k||qx (k, λ)|
2dk. (2.5)

The operator H is self-adjoint with domain D(H) = D(H) = D(p2
+ H f ) (see Theorem A.1

in Appendix A).
The generalized Pauli–Fierz transformation is technically convenient since the coupling

functions qx (k, λ), gx (k, λ) and ex (k, λ) satisfy the estimates

|∂m
k qx (k, λ)| . κm(k)|k|

−
1
2 −|m|

⟨x⟩
1+|m|, (2.6)
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|∂m
k gx (k, λ)| . κm(k)|k|

1
2 −|m|

⟨x⟩
1
µ

+|m|
, (2.7)

|∂m
k ex (k, λ)| . κm(k)|k|

1
2 −|m|

⟨x⟩
1+|m|, (2.8)

where κm(k) ≥ 0 is compactly supported and bounds κ(k) and all its derivatives up to the order
|m|. These estimates will play an important role in our analysis. Eqs. (2.6) and (2.8) follow
directly from the definition of qx and ex . To obtain (2.7) for m = 0, we use

|gx (k, λ)| =
|κ(k)|

|k|
1
2

eik·x
− ϕ′(|k |

µ ελ(k) · x)


≤
|κ(k)|

|k|
1
2

eik·x
− 1

 +
1 − ϕ′(|k |

µ ελ(k) · x)
,

and the estimates |eik·x
− 1| . |k||x | and |1 − ϕ′(|k |

µ ελ(k) · x)| . (|k|
µ
|x |)r for all r > 0. The

latter is implied by the property that 1 − ϕ′(|k|
µελ(k) · x) = 0 for |k|

µελ(k) · x ≤
1
2 . Choosing

r = 1/µ, we arrive at (2.7) for m = 0. The case of |m| > 0 is treated similarly.
We define the Hilbert spaces Xδ := D


dΓ (|k|

−δ)
1
2

, with the norms

∥u∥δ :=


dΓ (|k|

−δ)+ 1
 1

2 u
,

and Xδ,β := D

dΓ (|k|

−δ)
1
2

∩ D


dΓ (|y|

2β)
1
2

, with the norms

∥u∥δ,β :=


dΓ


|k|

−δ
+ |y|

2β
+ 1

 1
2 u

.
We shall prove the following theorem.

Theorem 2.1. Let F be as in (1.5), χ ∈ C∞

0 ((−∞,Σ )) and c > 1. For all parameters β, γ, δ
such that

0 ≤ 2β < δ < 1, (2.9)

0 ≤ γ < min


1 −
1
c


β,

3δ − 2
10


, (2.10)

and for u ∈ Xδ,β , the evolution ũt := e−it Hχ(H)u satisfiesdΓ

F(|y| ≥ ct)

 1
2 ũt

 . t−γ ∥u∥δ,β . (2.11)

We first verify that Theorem 2.1 implies Theorem 1.1 and next proceed to the proof of
Theorem 2.1.

Proof of Theorem 1.1. For γ as in (1.6), we fix β and δ satisfying (2.9) and (2.10). Letχ ∈ C∞

0 ((−∞,Σ )) be such that χχ = χ . We set u := χ(H)u and ût := e−it Hχ(H)Uu.
We also recall the definition ut := e−it Hχ(H)u. Using the Pauli–Fierz transformation U , we
write dΓ (F(|v|))

1
2 ut

2
=


ût ,U dΓ (F(|v|))U ∗ût


.

Using the relation (B.6) of Appendix B, we compute

U dΓ (F(|v|))U ∗
= dΓ (F(|v|))− Φ(iF(|v|)qx )+

1
2

Re

F(|v|)qx , qx


h
. (2.12)
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We can estimate the second term given by (2.12) asût ,Φ(iF(|v|)qx )ût

 .
Φ(iF(|v|)qx )⟨x⟩

−τ1(H f + 1)−
1
2


×

(H f + 1)
1
2 ⟨x⟩

τ1χ(H)∥u∥
2. (2.13)

Corollary 3.2 impliesΦ(iF(|v|)qx )⟨x⟩
−τ1(H f + 1)−

1
2

 . t−d1 ,

with 0 ≤ d1 < 1/2 and τ1 = 3/2 + d1. Moreover, since ⟨x⟩ and H f commute, we obtain(H f + 1)
1
2 ⟨x⟩

τ1χ(H)2
=

χ(H)(H f + 1)⟨x⟩
2τ1χ(H)

≤
(H f + 1)χ(H)⟨x⟩

2τ1χ(H)
. 1, (2.14)

where we used Theorem A.2 of Appendix A. Thus, (2.13) becomesût ,Φ(iF(|v|)qx )ût

 . t−d1∥u∥
2. (2.15)

Similarly, using Lemma 3.1 and Theorem A.2, the last term given by (2.12) is estimated asût ,Re

F(|v|)qx , qx


L2(R3;C2)

ût

 .
F(|v|)qx (k, λ)⟨x⟩

−τ2
⟨x⟩

τ2χ(H)∥u∥
2

. t−d2∥u∥
2, (2.16)

with 0 ≤ d2 < 1 and τ2 = 1 + d2. Now, by Theorem 2.1, we have
ût , dΓ (F(|v|))ût


. t−2γ

∥Uu∥
2
δ,β . (2.17)

Therefore it remains to show that

∥Uu∥
2
δ,β .


u,


dΓ (⟨y⟩)+ 1


u

.

Using the definition of the norm ∥Uu∥δ,β and the relation (B.6) of Appendix B, we can compute
as above

U ∗

dΓ (|k|

−δ)+ dΓ (|y|
2β)+ 1


U =


dΓ (|k|

−δ)+ dΓ (|y|
2β)+ 1


+Φ


i(|k|

−δ
+ |y|

2β)qx

+

1
2

Re

(|k|

−δ
+ |y|

2β)qx , qx

h
. (2.18)

Next, we use the standard Hardy’s inequality: D(|y|
s) ⊂ D(|k|

−s), for all 0 ≤ s < 3/2, and, for
all u ∈ D(|y|

s),|k|
−su

 .
|y|

su
. (2.19)

(For s = 1, this is the refined uncertainty principle, see [28], and for 0 < s < 1, this can be
obtained by interpolation. For the general case, s < 3/2, see [29,30,8].) Since 0 ≤ 2β ≤ δ < 1,
Hardy’s inequality, together with Lemma B.3 of Appendix B, implies

dΓ (⟨y⟩
δ)+ 1

−
1
2

dΓ (|k|

−δ)+ dΓ (|y|
2β)+ 1


dΓ (⟨y⟩

δ)+ 1
−

1
2

 . 1.
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Besides, Lemma B.1 of Appendix B givesΦ

i|k|

−δqx

(N + 1)−

1
2 ⟨x⟩

−1ψ

2
=


R3

Φ

i|k|

−δqx

(N + 1)−

1
2 ⟨x⟩

−1ψ(x)
2

F dx

.


R3

|k|
−δqx (k, λ)⟨x⟩

−1
2

h
∥ψ(x)∥2

F dx

. sup
x∈R3

|k|
−δqx (k, λ)⟨x⟩

−1


h
∥ψ∥

2, (2.20)

where N := dΓ (1) is the number operator. Using now (2.6) and δ < 1, this yieldsΦ

i|k|

−δqx

(N + 1)−

1
2 ⟨x⟩

−1
 . 1.

The same way, (2.6) and δ < 1 imply
|k|

−δqx , qx

h
⟨x⟩

−2
 . sup

x∈R3

|k|
−
δ
2 qx (k, λ)⟨x⟩

−1
2

h
. 1.

Similarly, by Lemma 3.1 (with t = 1) and Lemma B.1 of Appendix B, we haveΦ

i|y|

2βqx

(N + 1)−

1
2 ⟨x⟩

−2
 . sup

x∈R3

|y|
2βqx (k, λ)⟨x⟩

−2


h
. 1,

|y|
2βqx , qx


h
⟨x⟩

−3
 . sup

x∈R3

|y|
βqx (k, λ)⟨x⟩

−
3
2
2

h
. 1,

since 0 < β < 1/2. Combining (2.18), the previous estimates and an interpolation argument, we
obtainu,U ∗


dΓ (|k|

−δ)+ dΓ (|y|
2β)+ 1


Uu

.
u, dΓ (⟨y⟩

δ)+ N + ⟨x⟩
4
+ 1

u
.

u, dΓ (⟨y⟩
δ)+ ⟨x⟩

4
+ 1

u
.

To conclude, it suffices to use thatdΓ (⟨y⟩
δ)

1
2 χ(H)dΓ (⟨y⟩)+ 1

−
1
2

 . 1,

by Proposition A.4 of Appendix A, and⟨x⟩
4u . ∥u∥,

by Theorem A.2 of Appendix A. Then, (2.17) becomes
ût , dΓ (F(|v|))ût


. t−2γ

∥u∥
2. (2.21)

Eventually, Theorem 1.1 follows from (2.12) together with the estimates (2.15), (2.16) and
(2.21). �

Proof of Theorem 2.1. We use the method of propagation observables. We construct a family
of operators Φt (called a propagation observable) such that, on one hand, Φt ≥ t2γ dΓ (F(|v|)),
and, on the other hand, the Heisenberg derivative

DΦt := ∂tΦt − i

Φt , H

,

can be decomposed into a non-positive part and an integrable remainder term (plus possibly a
term which can be treated by another observable). Recall the notation ut = e−it Hχ(H)u. Fix
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β, γ, δ satisfying (2.9)–(2.10). We set

Jβ(s) := sβF(s
1
2 ) ∈ C∞(R). (2.22)

The family Φt is defined, as a quadratic form on χ(H)D(dΓ (⟨y⟩
β)), by

Φt := t2γ dΓ

Jβ(v

2)

.

The fact that Φt is well-defined follows from β < 1, the bound
dΓ (⟨y⟩

β)+ 1
−1dΓ


Jβ(v

2)


dΓ (⟨y⟩
β)+ 1

−1
 . 1,

and Proposition A.4. We show below the following lemma.

Lemma 2.2. Assume 0 ≤ β < δ < 1, 0 ≤ γ < min((1 − 1/c)β, 1/4) and 0 < ε < 1/2 − 2γ .
In the sense of quadratic forms on χ(H)D(dΓ (⟨y⟩

β)),

Φt ≥ t2γ dΓ (F(|v|)), (2.23)

and there exists C > 0 such that

DΦt ≤ −
θ

t
Φt + Ct−1−δ+2γ dΓ (|k|

−δ)+ Ct−1−ε, (2.24)

where θ := 2((1 − 1/c)β − γ ) > 0.

Rewriting inequality (2.24) in terms of quadratic forms on the vectors ut = e−it Hχ(H)u and
using Φt ≥ 0 and ⟨ut , DΦtut ⟩ = ∂t ⟨ut ,Φtut ⟩, we obtain

∂t ⟨ut ,Φtut ⟩ . t−1−δ+2γ ut , dΓ (|k|
−δ)ut


+ t−1−ε

∥u∥
2.

It then follows from Lemma 4.1 that

∂t ⟨ut ,Φtut ⟩ . t−
3
5 (1+δ)+2γ

∥u∥
2
δ + t−1−ε

∥u∥
2.

Assuming 3δ > 10γ + 2, this yields

∂t ⟨ut ,Φtut ⟩ . t−1−ε
∥u∥

2
δ ,

for someε > 0. Integrating this inequality from 1 to t , this implies

⟨ut ,Φtut ⟩ ≤
ut=1,Φt=1ut=1


+ C∥u∥

2
δ .

Combined with (2.23) and the fact that

Φt=1 := dΓ


|y|

c

2β
F


|y|

c


. dΓ


|y|

2β,
which follows from the definition of Φt and Lemma B.3, this gives the desired inequality (2.11).
This completes the proof of Theorem 2.1. �

Proof of Lemma 2.2. Estimate (2.23) is straightforward. To prove (2.24), we start with
computing DΦt . The relations below are understood in the sense of quadratic forms on
χ(H)D(dΓ (⟨y⟩

β)). With Jβ = Jβ(v2) defined in (2.22), and the notation pA := p + A(x),
we compute

DΦt = 2t2γ−1 dΓ

γ Jβ − v2 J ′

β


(2.25)

−t2γ 
dΓ


Jβ


, idΓ (|k|)


(2.26)

−t2γ

dΓ


Jβ


, ip2A + iE(x)


. (2.27)
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Consider the term given by (2.26). We have (see (B.2) of Appendix B)
dΓ


Jβ


, idΓ (|k|)


= dΓ


Jβ , i|k|


,

and it follows from Lemma 5.2 that
Jβ , i|k|


=

1

(ct)2
(J ′
β)

1
2 b(J ′

β)
1
2 + R, (2.28)

where b := y ·k +k · y, k := k/|k| and|k|
δ
2 R|k|

δ
2
 . t−1−δ, (2.29)

for all β < δ ≤ 1. Observe that for all w ∈ D(|v|β) = D(|y|
β),

−


w, (J ′

β)
1
2 b(J ′

β)
1
2w


≤ 2

|y|(J ′
β)

1
2w

(J ′
β)

1
2w


≤ 2ct

|v|(J ′
β)

1
2w

2
,

since supp(J ′
β) ⊂ [1,∞). This gives

− dΓ

(J ′
β)

1
2 b(J ′

β)
1
2


≤ 2ctdΓ


v2 J ′

β


. (2.30)

Combining (2.28) with (2.29) and (2.30), we obtain

− [dΓ (Jβ), idΓ (|k|)] ≤
2
ct

dΓ

v2 J ′

β


− Ct−1−δdΓ (|k|

−δ). (2.31)

It remains to estimate the term (2.27). Using the relation i[dΓ (b),Φ(g)] = Φ(ibg) (see (B.5)
of Appendix B), we compute

(2.27) = t2γ pA · Φ

iJβgx


+ t2γΦ


iJβgx


· pA + it2γΦ


iJβex


.

Since D(H) ⊂ D(p) ∩ D(A), we havepA1supp(χ)(H) . 1.

Moreover, it follows from Corollary 3.2 and an estimate similar to (2.14) thatΦ

iJβgx


1supp(χ)(H) .

Φ

iJβgx


⟨x⟩

−τ2(H f + 1)−
1
2


×

(H f + 1)
1
2 ⟨x⟩

τ21supp(χ)(H)
. t−d ,

for 0 ≤ d < 3/2 and τ2 = 1/2 + µ−1
+ 2β + d . Likewise,Φ


iJβex


1supp(χ)(H) . t−d .

Then, the previous estimates imply

∥1supp(χ)(H)(2.27)1supp(χ)(H)∥ . t−1−ε, (2.32)

for all 0 < ε < 1/2 − 2γ .
The estimates (2.31) and (2.32), together with (2.25)–(2.27), imply

DΦt ≤ 2t2γ−1dΓ

γ Jβ − v2 J ′

β +
1
c
v2 J ′

β


− Ct2γ−1−δdΓ (|k|

−δ)− Ct−1−ε,
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as a quadratic form on χ(H)D(dΓ (⟨y⟩
β
2 )). Using

v2 J ′
β = β Jβ +

1
2
|v|2β+1 F ′(|v|) ≥ β Jβ ,

this becomes

DΦt ≤ −θ t−1Φt − Ct2γ−1−δdΓ (|k|
−δ)− Ct−1−ε, (2.33)

which concludes the proof of the lemma. �

3. Estimates on interaction

In this section we prove estimates on the interaction used, in particular, to prove (2.32). Recall
that κ ∈ C∞

0 (R
3) is the ultraviolet cut-off entering (1.2) and the cut-off operator F(|v|) is defined

in (1.5).

Lemma 3.1. Let a ∈ [0, 3/2), b ∈ R, c ≥ 0, κ ∈ C∞

0 (R
3) and ρb

x (k) be such that, for
all m ∈ N3, |∂m

k ρ
b
x (k)| . |k|

b−|m|
⟨x⟩

|m|. Assume that b > a + c − 3/2. Then, for all
d ∈ [0, b − a − c + 3/2),

∀x ∈ R3,
|k|

−a
|y|

c F(|v|)κ(k)ρb
x (k)


L2(R3

k )
. t−d

⟨x⟩
a+c+d .

Proof. Let ℓx (k) = κ(k)ρb
x (k). Using Hardy’s inequality, (2.19), we can write|k|

−a
|y|

c F(|v|)ℓx (k)
 .

|y|
a+c F(|v|)ℓx (k)


.

F(|v|)|y|
−d


L∞

|y|
a+c+dℓx (k)


. t−d

|y|
a+c+dℓx (k)

. (3.1)

Next, to handle fractional derivatives |y|
s , we use a dyadic decomposition of κ . More precisely,

let ϕ ∈ C∞

0 (R
3
\ {0}) be such that

∀k ∈ supp(κ),

ν∈V

ϕ(νk) = 1, (3.2)

where V = {2− j
; j ∈ N} is the set of dyadic numbers. For n ∈ N, we have|y|

nϕ(νk)ℓx (k)
 .


i1,...,in∈{1,2,3}

yi1 · · · yinϕ(νk)ℓx (k)
,

and yi1 · · · yinϕ(νk)ℓx (k) can be written as a finite sum of terms of the form

w = ναϕ(νk)κ(k)ρb−β
x (k)⟨x⟩

β ,

where α, β ∈ N with α + β ≤ n, ϕ ∈ C∞

0 (R
3

\ {0}), κ ∈ C∞

0 (R
3) and ρb−β

x is such that

|ρb−β
x (k)| . |k|

b−β . Then,

∥w∥ . να+β−b
⟨x⟩

β
∥ϕ(νk)∥ . να+β−b−

3
2 ⟨x⟩

β
≤ νn−b−

3
2 ⟨x⟩

n .

This gives|y|
nϕ(νk)ℓx (k)

 . νn−b−
3
2 ⟨x⟩

n .

Now, an interpolation argument implies that, for all s ≥ 0,|y|
sϕ(νk)ℓx (k)

 . νs−b−
3
2 ⟨x⟩

s . (3.3)
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Combining (3.2) and (3.3), we obtain|y|
sℓx (k)

 ≤


ν∈V

|y|
sϕ(νk)ℓx (k)


.


ν∈V

νs−b−
3
2 ⟨x⟩

s . ⟨x⟩
s, (3.4)

provided that b + 3/2 − s > 0. Taking s = a + c + d and d ∈ [0, b − a − c + 3/2) and recalling
(3.1), we arrive at the statement of the lemma. �

Recall that v = y/ct and that the coupling functions qx , gx and ex are defined at the beginning
of Section 2 and satisfy (2.6)–(2.8).

Corollary 3.2. For all 0 < µ < 1/2, 0 ≤ β ≤ 1/2 and ε > 0,Φ

iF(|v|)qx


⟨x⟩

−τ1(H f + 1)−
1
2

 . t−d , 0 ≤ d <
1
2
, (3.5)Φ


i|v|2βF(|v|)gx


⟨x⟩

−τ2(H f + 1)−
1
2

 . t−d , 0 ≤ d <
3
2
, (3.6)Φ


i|v|2βF(|v|)ex


⟨x⟩

−τ3(H f + 1)−
1
2

 . t−d , 0 ≤ d <
3
2
, (3.7)

where τ1 = 3/2 + d, τ2 = 1/2 + µ−1
+ 2β + d and τ3 = 3/2 + 2β + d.

Proof. It follows from Lemma B.2 of Appendix B that, for all u ∈ H = L2(R3
; F),Φ


iF(|v|)qx


⟨x⟩

−τ1(H f + 1)−
1
2 u

2
.


R3

⟨x⟩
−2τ1

|k|
−

1
2 F(|v|)qx (k, λ)

2
h

+
F(|v|)qx (k, λ)

2
h


∥u(x)∥2

F dx . (3.8)

Using (2.6) and applying Lemma 3.1 with a = 1/2, b = −1/2, c = 0 to the first term on the
right hand side, and with a = 0, b = −1/2, c = 0 to the second term, we obtainΦ


iF(|v|)qx


⟨x⟩

−τ1(H f + 1)−
1
2 u

2
. t−2d


R3

∥u(x)∥2
F dx = t−2d

∥u∥
2, (3.9)

which gives (3.5). To prove (3.6) or (3.7), we proceed as above, applying Lemma 3.1 with
a = 1/2, b = 1/2, c = 2β and with a = 0, b = 1/2, c = 2β. �

4. Control of small momenta

In this section we estimate the growth of dΓ (|k|
−δ) (for −1 < δ < 3/2) along the evolution,

which was used in the proof of Theorem 2.1. The proof of the following lemma is similar to
[24, (4.8)].

Lemma 4.1. Let −1 < δ < 3/2 and χ ∈ C∞

0 ((−∞,Σ )). Then, for all u ∈ Xδ , the evolution

ũt := e−it Hχ(H)u satisfies the estimates
ũt , dΓ (|k|

−δ)ũt


. t

2(1+δ)
5 ∥u∥

2
δ .

Proof. Let h ∈ C∞([0,∞); R) be a decreasing function such that h(s) = 1 on [0, 1] and
h(s) = 0 on [2,+∞), and let h̄ = 1− h. For ν > 0, we decompose
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dΓ (|k|
−δ) = dΓ


|k|

−δh(tν |k|)

+ dΓ


|k|

−δ h̄(tν |k|)

. (4.1)

The contribution of the second term of (4.1) is estimated asut , dΓ

|k|

−δ h̄(tν |k|)
ut


≤ t (1+δ)ν

ut , dΓ

|k|h̄(tν |k|)

ut


. t (1+δ)ν
∥u∥

2, (4.2)

since dΓ (|k|h̄(tν |k|))χ(H) is bounded. To estimate the first term, we use the propagation
observable

Ψt := dΓ

|k|

−δh(tν |k|)

,

and compute

DΨt = ∂tΨt − i

Ψt , H

= νtν−1dΓ

|k|

1−δh′(tν |k|)

−


Ψt , i H

≤ −

Ψt , i H

,

since h′
≤ 0. Using (B.2), (B.5) of Appendix B and the notation pA = p+ A(x), the commutator

above can be expressed as follows
Ψt , i H

= pA · Φ

|k|

−δh(tν |k|)gx

+ Φ


i|k|

−δh(tν |k|)gx

· pA + iΦ


i|k|

−δh(tν |k|)ex

.

As in (2.20), using (2.7) and Lemma B.2 of Appendix B, we find thatΦ

i|k|

−δh(tν |k|)gx

(H f + 1)−

1
2 ⟨x⟩

−
1
µ

 ≤ sup
x∈R3

|k|
−δh(tν |k|)gx (k, λ)⟨x⟩

−
1
µ


h

+ sup
x∈R3

|k|
−δ− 1

2 h(tν |k|)gx (k, λ)⟨x⟩
−

1
µ


h

.
|k|

−δh(tν |k|)κ(k)


h

. t−(
3
2 −δ)ν .

Likewise, using (2.8) and Lemma B.2, we obtainΦ

i|k|

−δh(tν |k|)ex

(H f + 1)−

1
2 ⟨x⟩

−1
 ≤ sup

x∈R3

|k|
−δh(tν |k|)ex (k, λ)⟨x⟩

−1


h

+ sup
x∈R3

|k|
−δ− 1

2 h(tν |k|)ex (k, λ)⟨x⟩
−1


h

. t−(
3
2 −δ)ν .

The last two inequalities, an estimate similar to (2.14), ∥pAχ(H)∥ . 1 and ∂t ⟨ut ,Ψtut ⟩ =

⟨ut , DΨtut ⟩ imply

∂t ⟨ut ,Ψtut ⟩ . t−(
3
2 −δ)ν

∥u∥
2.

Hence, assuming ( 3
2 − δ)ν < 1, we obtain

⟨ut ,Ψtut ⟩ . t−(
3
2 −δ)ν+1

∥u∥
2
+

dΓ (|k|
−δ)

1
2 u

2
. (4.3)

The statement of the lemma follows from (4.1)–(4.3), after choosing ν = 2/5. �
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5. Some commutator estimates

In this part, we estimate some commutators appearing in Section 2. As usual, for ρ ∈ R, we
define the set of functions

Sρ(R) :=


f ∈ C∞(R);
∂n

s f (s)
 ≤ Cn⟨s⟩ρ−n for n ≥ 0


. (5.1)

Recall the notations v = y/ct and b = y ·k +k · y.

Lemma 5.1. Let G ∈ Sρ(R) with ρ < 0 and max(1 + 2ρ, 0) < δ ≤ 1. We have|k|
δ
2

G(v2), b


|k|

δ
2
 . t1−δ.

Proof. Let G denote an almost analytic extension of G. This means that G is a C∞ function on
C such that G|R = G,

supp G ⊂

z ∈ C; | Im z| ≤ C⟨Re z⟩


, (5.2)

|G(z)| ≤ C⟨Re z⟩ρ and, for all n ∈ N,∂G
∂ z̄
(z)

 ≤ Cn⟨Re z⟩ρ−1−n
| Im z|n . (5.3)

Moreover, if G is compactly supported, we can assume that this is also the case for G. Using the
Helffer–Sjöstrand formula (see e.g. [13,34])

G(v2) =
1
π


∂G(z)
∂ z̄

(v2
− z)−1d Re zd Im z,

we can write
G(v2), b


=

1
π


∂G(z)
∂ z̄


(v2

− z)−1, b


d Re zd Im z

= −
1

πc2t2


∂G(z)
∂ z̄

(v2
− z)−1y2, b


(v2

− z)−1d Re zd Im z. (5.4)

Let us first prove that

(v2
− z)−1y2, b


(v2

− z)−1
|k| = O


t2

|z|2| Im z|−3. (5.5)

A direct calculation gives

1
i


y2, b


= y2

|k|
−1

+ |k|
−1 y2

+ 2


i

yi |k|
−1 yi

−


i, j

yi y j

ki k j |k|

−3
+ 2yi


ki k j |k|

−3y j +

ki k j |k|

−3yi y j . (5.6)

Using Hardy’s inequality (see (2.19)) and the functional calculus, we get

(v2
− z)−1

|k| = |k|(v2
− z)−1

−
i

t2 (v
2
− z)−12k · y + 2i|k|

−1(v2
− z)−1

= |k|O

|z|| Im z|−2, (5.7)
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yi (v
2
− z)−1

|k| = |k|yi (v
2
− z)−1

+ iki (v
2
− z)−1

−
i

t2 yi (v
2
− z)−12k · y + 2i|k|

−1(v2
− z)−1

= |k|O

t |z|

3
2 | Im z|−2,

yi y j (v
2
− z)−1

|k| = |k|yi y j (v
2
− z)−1

+

iki y j + ik j yi + ki k j |k|

−3
− δi, j |k|

−1(v2
− z)−1

−
i

t2 yi y j (v
2
− z)−12k · y + 2i|k|

−1(v2
− z)−1

= |k|O

t2

|z|| Im z|−1
+ O


t |z|

3
2 | Im z|−2,

and

(v2
− z)−1 yi y j = O


t2

|z|| Im z|−1, (v2
− z)−1 yi = O


t |z|

1
2 | Im z|−1,

(v2
− z)−1

|k|
−1

= O

t |z|

1
2 | Im z|−1, (v2

− z)−1
= O


| Im z|−1.

Combining (5.6) with the previous estimates, we obtain (5.5).
Now, using again (5.6) and the previous estimates, one easily verifies that

(v2
− z)−1y2, b


(v2

− z)−1
= O


t3

|z|
3
2 | Im z|−2. (5.8)

By an interpolation argument, we then obtain from (5.5) (and its adjoint) and (5.8) that

|k|
δ
2 (v2

− z)−1y2, b

(v2

− z)−1
|k|

δ
2 = O


t3−δ

|z|
3
2 +

δ
2 | Im z|−2−δ


, (5.9)

for all 0 ≤ δ ≤ 1.
Introducing (5.9) into (5.4) gives|k|

δ
2

G(v2), b


|k|

δ
2 u

 . t1−δ

 ∂G(z)
∂ z̄

|z| 3
2 +

δ
2 | Im z|−2−δ

∥u∥ d Re z d Im z

. t1−δ


⟨Re z⟩−

1
2 +ρ−

δ
2 ∥u∥ d Re z . t1−δ

∥u∥, (5.10)

provided that δ > 1 + 2ρ, which concludes the proof of the lemma. �

Lemma 5.2. Let G ∈ Sρ(R) with ρ < 1 and max(2ρ − 1, 0) < δ ≤ 1. We have
G(v2), i|k|


=

1
ct

G ′(v2)b + R,

as a quadratic form on D(|y|
2ρ) ∩ D(|k|), with|k|

δ
2 R|k|

δ
2
 . t−1−δ.

Proof. Since ρ may be non-negative, we cannot directly express G(v2) with the
Helffer–Sjöstrand formula. Therefore, we use an artificial cut-off. Consider ϕ ∈ C∞

0 (R; [0, 1])

equal to 1 near 0 and ϕR(·) = ϕ(·/R) for R > 0. Let G (resp. ϕ ∈ C∞

0 (C)) be an almost analytic
extension of G (resp. ϕ) as in (5.2)–(5.3). Then, as a quadratic form on D(|y|

2ρ) ∩ D(|k|),
G(v2), i|k|


= s-lim

R→∞


(ϕRG)(v2), i|k|


, (5.11)
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where
(ϕRG)(v2), i|k|


=

1
π


∂(ϕR G)(z)

∂ z̄


(v2

− z)−1, i|k|

d Re zd Im z

= −
1
π


∂(ϕR G)(z)

∂ z̄
(v2

− z)−1v2, i|k|

(v2

− z)−1d Re zd Im z

=
1

π(ct)2


∂(ϕR G)(z)

∂ z̄
(v2

− z)−1b(v2
− z)−1d Re zd Im z

=
1

(ct)2
(ϕRG)′(v2)b + R R, (5.12)

and

R R =
1

π(ct)2


∂(ϕR G)(z)

∂ z̄
(v2

− z)−1b, (v2
− z)−1d Re zd Im z

=
1

π(ct)5


∂(ϕR G)(z)

∂ z̄
(v2

− z)−2y2, b

(v2

− z)−1d Re zd Im z. (5.13)

From (5.5), (5.7) and (5.8), we obtain

(v2
− z)−2y2, b


(v2

− z)−1
|k| = O


t2

|z|2| Im z|−4,
|k|(v2

− z)−2y2, b

(v2

− z)−1
= O


t2

|z|3| Im z|−5,
(v2

− z)−2y2, b

(v2

− z)−1
= O


t3

|z|
3
2 | Im z|−3.

Then, an interpolation argument gives

|k|
δ
2 (v2

− z)−2y2, b

(v2

− z)−1
|k|

δ
2 = O


t3−δ

|z|
3
2 (1+δ)

| Im z|−3−2δ. (5.14)

On the other hand, for all n ∈ N,∂(ϕR G)
∂ z̄

(z)
 ≤ Cn⟨Re z⟩ρ−1−n

| Im z|n, (5.15)

where Cn > 0 does not depend on R ≥ 1. Using (5.13) together with (5.14) and (5.15), there
exists C > 0 such that|k|

δ
2 R R |k|

δ
2
 ≤ Ct−1−δ,

for all R ≥ 1. Eventually, since (ϕRG)′(v2) converges strongly to G ′(v2) on D(|v|2ρ), the lemma
follows from (5.12) and the previous estimate. �
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Appendix A. Properties of the Hamiltonians H and H
In this appendix, we collect a few properties of the Hamiltonians H and H . We begin with

the following two important results.
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Theorem A.1 (Self-adjointness [31,32]). The Hamiltonians H and H are self-adjoint operators
on the domain

D(H) = D(H) = D


p2
+ H f


.

The fact that H is self-adjoint on D(p2
+ H f ) is proved in [32] by functional integral

methods. Another proof is given in [31] using abstract results based on commutator arguments.
Self-adjointness of H on D(p2

+ H f ) is another application of [31], using that |gx (k, λ)| .

κ(k)|k|
−

1
2 −µ with 0 < µ < 1/2.

Theorem A.2 (Exponential decay below the ionization threshold [25]). For all real numbers δ
and ξ such that ξ + δ2 < Σ ,eδ|x |1(−∞,ξ ](H)

 =
eδ|x |1(−∞,ξ ](H) . 1.

We now establish a property used in the proof of Theorem 1.1. It shows in particular that the
propagation observable Φt of Theorem 1.1 is well-defined. Recall that the notion of regularity
with respect to an operator is defined by

Definition A.3. Let (A,D(A)) and (H,D(H)) be self-adjoint operators on a separable Hilbert
space H. The operator H is of class Ck(A) for k > 0, if there is z ∈ C \ σ(H) such that

R ∋ t −→ eit A(H − z)−1e−it A,

is Ck for the strong topology of L(H).

We refer to [3] for properties of Ck(·). Since H and H are not of class C1(dΓ (⟨y⟩)), the proof
of the next proposition is not straightforward.

Proposition A.4. Let H# denote either H or H. For all χ ∈ C∞

0 ((−∞,Σ )) and 0 ≤ β < 1, we
have

χ(H#)D

dΓ (⟨y⟩

β)


⊂ D

dΓ (⟨y⟩

β)

.

Remark A.5. The allowed power of ⟨y⟩ in Proposition A.4 is related to the infrared singularity
of the interaction. More precisely, the requirement that β < 1 is due to the fact that the infrared
behavior of the interaction in H is of order |k|

−1/2. On the other hand, since the infrared behavior
of the interaction in H is of order |k|

1/2, one could in fact show that

χ(H)D

dΓ (⟨y⟩

β)


⊂ D

dΓ (⟨y⟩

β)

,

for any 0 ≤ β < 2. For our purpose, however, the stated result is sufficient.

We shall need the following two lemmas to prove Proposition A.4.

Lemma A.6. Let H# denote either H or H. Then

H#
∈ C1(N ).
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In particular, for all χ ∈ C∞

0 (R),

χ(H#)D(N ) ⊂ D(N ).

Proof. Let us prove that H ∈ C1(N ). Since D(H) = D(p2
+ H f ) and since N commutes with

p2
+ H f , we obviously have that

∀s ∈ R, eis N D(H) ⊂ D(H).
Therefore, by [3, Theorem 6.3.4] (see also [22]), it suffices to prove that Hu, Nu


−


Nu, Hu

 .
 Hu

2
+ ∥u∥

2, (A.1)

for all u ∈ D(H) ∩ D(N ). In the sense of quadratic forms on D(H) ∩ D(N ), using (B.2) of
Appendix B and the notation pA = p + A(x), we can compute H , N


= ipA · Φ(igx )+ iΦ(igx ) · pA + iΦ(iex ).

Using Lemma B.2 of Appendix B, estimate (A.1) easily follows. In the case of H , the proof is
similar. The fact that χ(H#)D(N ) ⊂ D(N ) is then a consequence of [3, Theorem 6.2.10]. �

Lemma A.7. Let H# denote either H or H. For all n ∈ N and z ∈ C, 0 < ± Im z ≤ 1, the
operator ⟨x⟩

−n(H#
− z)−1

⟨x⟩
n defined on D(⟨x⟩

n) extends by continuity to a bounded operator
on H satisfying⟨x⟩

−n(H#
− z)−1

⟨x⟩
n
 ≤

C

| Im z|n+1 . (A.2)

Moreover, ⟨x⟩
−n(H#

− z)−1
⟨x⟩

n(H#
− z) defined on D(H#) extends by continuity to a bounded

operator on H satisfying⟨x⟩
−n(H#

− z)−1
⟨x⟩

n(H#
− z)

 ≤
C

| Im z|n
. (A.3)

Estimates (A.2)–(A.3) are established in [9, Lemma A.5] in the case of H . Since the proof is
the same in the case of H , we do not reproduce it.

Proof of Proposition A.4. We show the proposition for H , the case of H being similar. Let
η ∈ C∞

0 ((−∞,Σ )) be such that χη = χ . Consider ϕ ∈ C∞

0 (R; [0, 1]) equal to 1 near
0 and ϕR(·) = ϕ(·/R) for R > 0. Let u ∈ D(dΓ (⟨y⟩

β)). We want to prove that for all
v ∈ D(dΓ (⟨y⟩

β)),dΓ (⟨y⟩
β)v, χ(H)u ≤ Cu∥v∥.

We writedΓ (⟨y⟩
β)v, χ(H)u = lim

R→∞

dΓ 
⟨y⟩

βϕR(y
2)


v, χ(H)η(H)u

≤ lim sup
R→∞

v, χ(H)η(H)dΓ 
⟨y⟩

βϕR(y
2)


u


+ lim sup
R→∞

v, dΓ 
⟨y⟩

βϕR(y
2)


, χ(H)η(H)u

+ lim sup
R→∞

v, χ(H)dΓ 
⟨y⟩

βϕR(y
2)


, η(H)u, (A.4)
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where the commutators should be understood in the sense of quadratic forms on D(N ). By
Lemma A.6, the previous expressions are justified since χ(H) and η(H) preserve D(N ). The
first term is easily estimated asv, χ(H)η(H)dΓ 

⟨y⟩
βϕR(y

2)

u
 ≤ C∥v∥

dΓ (⟨y⟩
β)u

. (A.5)

Let χ ∈ C∞

0 (C) denote an almost analytic extension of χ (see the beginning of the proof of
Lemma 5.1). To estimate the second term of (A.4), we write

dΓ

⟨y⟩

βϕR(y
2)


, χ(H)η(H)u

≤
1
π

 ∂χ(z)
∂ z̄


dΓ


⟨y⟩

βϕR(y
2)


, (H − z)−1η(H)ud Re zd Im z

≤
1
π

 ∂χ(z)
∂ z̄

(H − z)−1 BR(H − z)−1η(H)ud Re zd Im z

≤
1
π

 ∂χ(z)
∂ z̄

(H − z)−1
⟨ H⟩

1
2
⟨ H⟩

−
1
2 BR


N + ⟨x⟩

4
µ

+2β−1
×


N + ⟨x⟩

4
µ

+2β
(H − z)−1η(H)(N + 1)−1

∥(N + 1)u∥d Re zd Im z, (A.6)

where BR is the quadratic form on D(H) ∩ D(N ) defined by

BR :=
 H , dΓ


⟨y⟩

βϕR(y
2)


.

Using Lemma A.6, one verifies thatN (H − z)−1η(H)(N + 1)−1
 . | Im z|−2,

and by Theorem A.2,⟨x⟩
4
µ

+2β
(H − z)−1η(H) . | Im z|−1

⟨x⟩
4
µ

+2β
η(H) . | Im z|−1.

We claim that⟨ H⟩
−

1
2 BR


N + ⟨x⟩

4
µ

+2β−1
 . 1. (A.7)

Then (A.6)–(A.7) together with the properties of χ imply that
dΓ


⟨y⟩

βϕR(y
2)


, χ(H)η(H)u .


dΓ (⟨y⟩

β)+ 1

u
. (A.8)

Let us now prove (A.7). In the sense of quadratic forms on D(H) ∩ D(N ), we have

BR = dΓ


|k|, ⟨y⟩
βϕR(y

2)


+ ipA · Φ

i⟨y⟩

βϕR(y
2)gx


+ iΦ


i⟨y⟩

βϕR(y
2)gx


· pA + iΦ


i⟨y⟩

βϕR(y
2)ex


= dΓ


|k|, ⟨y⟩

βϕR(y
2)


− Φ


i⟨y⟩

βϕR(y
2)∇xgx


+ Im

gx , i⟨y⟩
βϕR(y

2)gx

h

+ 2ipA · Φ

i⟨y⟩

βϕR(y
2)gx


+ iΦ


i⟨y⟩

βϕR(y
2)ex


, (A.9)

where we used again the notation pA = p + A(x). Using (2.7) and applying Lemma 3.1 (with
t = 1), we obtain that, for all x ∈ R3,⟨y⟩

βϕR(y
2)gx (k, λ)


h

≤
⟨y⟩

βgx (k, λ)


h
. ⟨x⟩

1
µ

+β
,
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and likewise with ∇xgx (k, λ) or ex (k, λ) in place of gx (k, λ). Therefore, by Lemma B.1,gx , i⟨y⟩
βϕR(y

2)gx

h
⟨x⟩

−
2
µ

−β
 . 1, (A.10)Φ


i⟨y⟩

βϕR(y
2)∇xgx


⟨x⟩

−
1
µ

−β
(N + 1)−

1
2
 . 1, (A.11)Φ


i⟨y⟩

βϕR(y
2)ex


⟨x⟩

−1−β(N + 1)−
1
2
 . 1, (A.12)

and, since ∥⟨ H⟩
−

1
2 pA∥ . 1,⟨ H⟩

−
1
2 pA · Φ


i⟨y⟩

βϕR(y
2)gx


⟨x⟩

−
1
µ

−β
(N + 1)−

1
2
 . 1. (A.13)

Finally, using the representation formula

⟨y⟩
βϕR(y

2) =
1
π


∂(ψϕR)(z)

∂ z̄
(y2

− z)−1d Re zd Im z,

where ψ (resp. ϕ) is an almost analytic extension of (· + 1)
β
2 ∈ S

β
2 (R) (resp. ϕ ∈ C∞

0 (R)), one
can verify that

|k|, ⟨y⟩
βϕR(y

2)
 . 1,

and hence, by Lemma B.3,dΓ


|k|, ⟨y⟩
βϕR(y

2)

(N + 1)−1

 . 1. (A.14)

Estimates (A.10)–(A.14) together with the fact that ∥⟨x⟩
2
µ

+β
(N +1)1/2u∥ . ∥(N +⟨x⟩

4
µ

+2β
)u∥

imply (A.7).
It remains to estimate the third term in the right hand side of (A.4). To this end, let η denote

an almost analytic extension of η and write similarlyχ(H)dΓ 
⟨y⟩

βϕR(y
2)


, η(H)u

≤
1
π

 ∂η(z)
∂ z̄

χ(H)(H − z)−1 BR(H − z)−1u
d Re zd Im z

≤
1
π

 ∂η(z)
∂ z̄

χ(H)⟨x⟩
2
µ

+β
⟨x⟩

−
2
µ

−β
(H − z)−1

⟨x⟩
2
µ

+β
⟨ H⟩

1
2


×
⟨ H⟩

−
1
2 ⟨x⟩

−
2
µ

−βBR(N + 1)−1
(N + 1)(H − z)−1(N + 1)−1


×∥(N + 1)u∥d Re zd Im z. (A.15)

Theorem A.2 gives ∥χ(H)⟨x⟩
2
µ

+β
∥ . 1, Lemma A.7 yields ∥⟨x⟩

−
2
µ

−β
(H − z)−1

⟨x⟩
2
µ

+β
⟨ H⟩

1
2 ∥

. | Im z|−
2
µ

−β−1, and Lemma A.6 implies ∥(N +1)(H −z)−1(N +1)−1
∥ . | Im z|−2. Moreover

we claim that⟨ H⟩
−

1
2 ⟨x⟩

−
2
µ

−βBR(N + 1)−1
 . 1. (A.16)

To prove (A.16), it suffices to proceed in the same way as for (A.7). The only difference is (A.13),
which is replaced by⟨ H⟩

−
1
2 ⟨x⟩

−
1
µ

−β pA · Φ

i⟨y⟩

βϕR(y
2)gx


(N + 1)−

1
2
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≤

⟨ H⟩
−

1
2 ⟨x⟩

−
1
µ

−β pA⟨x⟩
1
µ

+β
⟨x⟩

−
1
µ

−βΦ

i⟨y⟩

βϕR(y
2)gx


(N + 1)−

1
2


.

⟨ H⟩
−

1
2 pA +

⟨ H⟩
−

1
2 ⟨x⟩

−1 ix
⟨x⟩

 . 1.

Thereforeχ(H)dΓ 
⟨y⟩

βϕR(y
2)


, η(H)u .


dΓ (⟨y⟩

β)+ 1

u
. (A.17)

Eq. (A.4) together with the estimates (A.5), (A.8) and (A.17) conclude the proof of the
proposition. �

Appendix B. Creation and annihilation operators

Let h := L2(R3
; C2) be the momentum representation Hilbert space of a photon. The variable

k ∈ R3 is the wave vector or momentum of the photon. Recall that the propagation speed of the
light and the Planck constant divided by 2π are set equal to 1. The Bosonic Fock space, F , over
h is defined by

F :=

∞
n=0

Snh⊗n,

where Sn is the orthogonal projection onto the subspace of totally symmetric n-particle wave
functions contained in the n-fold tensor product h⊗n of h and S0h

⊗0
:= C. The vector

Ω := (1, 0, . . .) is called the vacuum vector in F . Vectors Ψ ∈ F can be identified with
sequences (ψn)

∞

n=0 of n-particle wave functions ψn(k1, λ1, . . . , kn, λn), where λ j ∈ {1, 2} are
the polarization variables, which are totally symmetric in their n arguments, and ψ0 ∈ C.

The scalar product of two vectors Ψ and Φ is given by

⟨Ψ ,Φ⟩ :=

∞
n=0


λ1,...,λn

 n
j=1

dk jψn(k1, λ1, . . . , kn, λn)ϕn(k1, λ1, . . . , kn, λn). (B.1)

Given a one particle dispersion relation ω(k), the energy of a configuration of n non-
interacting field particles with wave vectors k1, . . . , kn is given by

n
j=1 ω(k j ). We define the

free-field Hamiltonian, H f , giving the field dynamics, by

(H f Ψ)n(k1, λ1, . . . , kn, λn) =

n
j=1

ω(k j )ψn(k1, λ1, . . . , kn, λn),

for n ≥ 1 and (H f Ψ)n = 0 for n = 0. Here Ψ = (ψn)
∞

n=0 (to be sure that the right
hand side makes sense, we can assume that ψn = 0, except for finitely many n, for which
ψn(k1, λ1, . . . , kn, λn) decrease rapidly at infinity). Clearly, if ω(k) = |k|, the operator H f has
the single eigenvalue 0 with the eigenvector Ω and the rest of the spectrum absolutely continuous.

With each function f ∈ h one associates an annihilation operator a( f ) defined as follows.
For Ψ = (ψn)

∞

n=0 ∈ F with the property that ψn = 0, for all but finitely many n, the vector
a( f )Ψ is defined by

(a( f )Ψ)n(k1, λ1, . . . , kn, λn) :=
√

n + 1

×


λ=1,2


dk f (k, λ)ψn+1(k, λ, k1, λ1, . . . , kn, λn),
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for n ≥ 1 and (a( f )Ψ)n = 0 for n = 0. These equations define a closable operator a( f ) whose
closure is also denoted by a( f ). The creation operator a∗( f ) is defined to be the adjoint of a( f )
with respect to the scalar product defined in (B.1). Since a( f ) is anti-linear and a∗( f ) is linear
in f , we write formally

a( f ) =


λ=1,2


dk f (k, λ)aλ(k), a∗( f ) =


λ=1,2


dk f (k, λ)a∗

λ(k),

where aλ(k) and a∗
λ(k) are unbounded, operator-valued distributions. The latter are well-known

to obey the canonical commutation relations (CCR):
a#
λ(k), a#

λ′(k′)


= 0,

aλ(k), a∗

λ′(k′)


= δλ,λ′δ(k − k′),

where a#
λ = aλ or a∗

λ . We have the following standard estimates for annihilation and creation
operators a( f ) and a∗( f ), whose proof can be found, for instance, in [23, Section 3], [28]:

Lemma B.1. For any f ∈ h, the operators a( f )(N + 1)−1/2 and a∗( f )(N + 1)−1/2 extend to
bounded operators on H satisfyinga( f )(N + 1)−

1
2
 ≤ ∥ f ∥h,a∗( f )(N + 1)−
1
2
 ≤

√
2∥ f ∥h.

Lemma B.2. Let f ∈ h be such that (k, λ) → ω(k)−1/2 f (k, λ) ∈ h. Then, the operators
a( f )(H f + 1)−1/2 and a∗( f )(H f + 1)−1/2 extend to bounded operators on H satisfyinga( f )(H f + 1)−

1
2
 ≤

ω(k)− 1
2 f


h
,a∗( f )(H f + 1)−

1
2
 ≤

ω(k)− 1
2 f


h

+ ∥ f ∥h.

Now, using the definitions, one can rewrite the quantum Hamiltonian H f in terms of the
creation and annihilation operators, a and a∗, as

H f =


λ=1,2


dka∗

λ(k)ω(k)aλ(k),

acting on the Fock space F . More generally, for any operator, τ , on the one-particle space
h = L2(R3

; C2) we define the operator dΓ (τ ) on the Fock space F by the following formal
expression

dΓ (τ ) :=


λ=1,2


dka∗

λ(k)τaλ(k),

where the operator τ acts on the k-variable (dΓ (τ ) is the second quantization of τ ). The precise
meaning of the latter expression is

dΓ (τ )|Snh⊗n =

n
j=1

1 ⊗ · · · ⊗ 1  
j−1

⊗τ ⊗ 1 ⊗ · · · ⊗ 1  
n− j

.

Commutators of two such operators reduce to commutators of the one-photon operators:

[dΓ (τ ), dΓ (τ ′)] = dΓ ([τ, τ ′
]). (B.2)

A proof of the following lemma can be found in [23, Section 3].
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Lemma B.3. Let τ, τ ′ be two self-adjoint operators on h with τ ′
≥ 0, D(τ ′) ⊂ D(τ ) and

∥τϕ∥h ≤ ∥τ ′ϕ∥h for all ϕ ∈ D(τ ′). Then D(dΓ (τ ′)) ⊂ D(dΓ (τ )) and ∥dΓ (τ )Φ∥ ≤ ∥dΓ (τ ′)Φ∥

for all Φ ∈ D(dΓ (τ ′)).

Finally, let ω be a one-photon self-adjoint operator. The following commutation relations
involving the field operator Φ( f ) =

1
√

2
(a∗( f ) + a( f )) can be readily derived from the

definitions of the operators involved:

[Φ( f ),Φ(g)] = i Im⟨ f, g⟩h, (B.3)

eiΦ( f )Φ(g)e−iΦ( f )
= Φ(g)− Im⟨ f, g⟩h, (B.4)

[Φ( f ), dΓ (ω)] = iΦ(iω f ), (B.5)

eiΦ( f )dΓ (ω)e−iΦ( f )
= dΓ (ω)− Φ(iω f )+

1
2

Re⟨ω f, f ⟩h. (B.6)

Appendix C. Notations

Notation Definition/description of notation Reference
A(x) Φ(gx ), vector potential of the quantized electromagnetic field (2.2)A(x) Φ(gx ) (2.3)
b i(k · y + y ·k) Section 2
E(x) Φ(ex ) (2.4)

F Fock space over h Section 1
h L2(R3

; C2), one-photon space Section 1k k/|k| Section 2
H Hel ⊗ F , total Hilbert space Section 1
Hel Hilbert space for the electron Section 1
H f dΓ (|k|) (1.3)
H Hamiltonian of the standard model of non-relativistic QED (1.4)H U H U ∗, Pauli–Fierz transformed Hamiltonian Section 2
N dΓ (1), number operator Section 2
p −i∇x , momentum of the electron Section 1
pA p + A(x) Section 2
Σ Ionization threshold Section 1
U e−iΦ(qx ), generalized Pauli–Fierz transformation Section 2
v y/ct Section 2

X D(dΓ (⟨y⟩)
1
2 ) Section 1

Xδ D


dΓ (|k|
−δ)

1
2


Section 2

Xδ,β D


dΓ (|k|
−δ)

1
2


∩ D


dΓ (|y|
2β )

1
2


Section 2

y i∇k Section 1

||| · |||


dΓ (⟨y⟩)+ 1

 1
2

·

 Section 1

∥ · ∥δ


dΓ (|k|

−δ)+ 1
 1

2
·

 Section 2

∥ · ∥δ,β


dΓ


|k|

−δ
+ |y|

2β


+ 1
 1

2
·

 Section 2
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