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This article is a continuation of a previous article by the author [Harmonic
analysis on the quotient spaces of Heisenberg groups, Nagoya Math. J. 123 (1991),
103-117). In this article, we construct an orthonormal basis of the irreducible
invariant component H3¥'[ 4] of the Hilbert space L*(H'$ "\ H'§ ") in the pre-
vious article and also construct a nonholomorphic modular form of half integral
weight using the Hermite functions.  © 1994 Academic Press, Inc.

1. INTRODUCTION

This article is a continuation of a previous article by the author. In [Y],
we showed that the vector space H#'[ 4] is an irreducible invariant sub-
space of the Hilbert space L*(H "\ H(") with respect to the right
regular representation of the Heisenberg group H'&*' (see Section 3 for the
precise definition). In this article, we construct an orthonormal basis for
the vector space H*)[ ] using the Hermite polynomials. Hermite polyno-
mials arise from the problem of a quantum harmonic oscillator in one
dimension. They are solutions of the confluent hypergeometric equation.
Thus Hermite polynomials can be expressed in terms of the hypergeometric
functions (see (2.25a) and (2.25b)). Using the Hermite functions, we
construct a nonholomorphic modular form of half integral weight. This
implies that the hypergeometric functions are related to the theory of
automorphic forms.

In Section 2, we review Hermite polynomials and Hermite functions. We
collect their properties to be used in the following sections. In Section 3,
we construct an orthonormal basis for the vector space H4*'[ 4] using
Hermite polynomials. In Section 4, we prove that the theta series 3,(Q)
(see (4.14)) obtained by using the Hermite function is a nonholomorphic
modular form of half integral weight. In fact, this result is a generalization
of that of Vigneras [V].
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Notations. We denote Z, R, and C the ring of integers, the field of real
numbers, and the field of complex numbers, respectively. F* denotes the
set of all & x / matrices with entries in a commutative ring F. E, denotes the
identity matrix of degree g. o(A) denotes the trace of a square matrix A.
For Ae F*" and Be F*® we set B[A]='ABA. For a real number «,
[«] denotes the greatest integer not exceeding «. We denote by H, the
Siegel upper half plane of degree g.

Z8E={J=(J)eZ"9|J,>0 forall k, 1},
IJ! = Z Jk,,
k!

(A+N+AY =4+ Ny +A0)" - (g + Ny + Ay )™,

2. Tur HERMITE FUNCTIONS

In this section, we collect some properties of the Hermite polynomials
and the Hermite functions to be used in the following sections.

The Hermite polynomials H,(x) (n=0,1,2,..) in one variable x are
defined by the generating functions

> H
e—(rZ_zxrj — Z :l('X) I (21)
n=0 *

The Hermite polynomial H,(x) is a solution of the differential equation,
the so-called Hermite equation

y'—=2xy" +2ny=0. (2.2)
There are several ways to represent the Hermite polynomial (cf. [S]). Indeed,

(21 (~1)kn!

H,.(x)= kgo m (2x)" %, n=0,1,2, .. (2.3)
2 dn —x2 .
H (x)=(-1)"¢" P (e™™) (the Rodrigues formula) (2.4)
i .
H ()= | e e gy (2.5)
a! e7(12-2xl]
Hn(x)=§;z‘i§c—ﬁ""dt, (2.6)

where the contour C encloses the origin.
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LEMMA 2.1. We have the recursion formulas

H,(x)=2nH,_(x), nzl. 2.7)
H,, (x)—2xH,(x)+2nH, ,(x)=0, nzl. (2.8)
Proof. These formulas follows immediately from (2.6). Q.E.D.
LEMMA 2.2
1 [n/2] nl
= . 29
X 2nk=0k! (n_k), nfzk(x) ( )
Proof. (2.9) follows from (2.3). Q.E.D.

The Hermite polynomials satisfy the orthogonality relation
f H,,(x) H,(x)e = dx=2"n! 725, (2.10)

where 4, denotes the Kronecker delta symbol. We set
u,(x):=2""2nN)" V2 g e~¥2H (x), n=0,1,2,.... (2.11)
Then according to (2.10), we have the orthonormality relation

[ ) s dx=35,,. (2.12)

-

We see easily from (2.7) and (2.8) that u,{x) is a solution of the differential
equation

y' —(x*=(2n+1))y=0. (2.13)
We set
= (=1 (n)'P 20 Ygn2 n=0,1,2, ... (2.14)

(4

n

Now we define the Hermite function #,(x) by

n

e en T e (x) . (2.15)

weo n!

Then we see easily from (2.1) that #,(x) is given by
Hi(x)=c '(2n)"? e " H,(— /2nx), n=01,2.. (216)

Using the recursion formulas (2.7) and (2.8), we easily obtain
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LEMMA 2.3. For any positive integer ne Z*, we have

Cpi1Hp 41 (X) +4mc, xH,(x) + dnne, A, (x) =0. (2.17)

%1uy—muxum=cj*xa4u) (2.18)

n

An easy computation and (2.13) yields

LEmMMA 24
H(—x)=(—1)" H(x). (2.19)
H#,(x)=(—i)" H,(x). (2.20)
H(x)—dn’x*H(x) = —dn(n + 1) A (x). (2.21)

Here f” (x) denotes the Fourier transform of f(x). That is,
Fe=[" siyreay.

Thus #,(x) is an eigenfunction of the differential operator L =d?*/dx*—
4nx% We set p,(x) 1= H#,(x) e™. Let E :=x(d/dx) be the Euler operator.
Then (2.21) is equivalent to

Ap,(x)=4n(E—n) p,(x), (2.22)

where 4 = d?/dx* denotes the Laplacian operator on the real line. We set
h,(x) 1= #,(x)e ™. Then (2.21) is equivalent to

Ah,(x)= —4n(E+n+1) h(x). (2.23)

According to (2.10) and (2.16), the Hermite functions ##,(x) (n=0, 1, ...)
satisfy the orthonormality relation

|7 0 Hox) ax=5,,. (2.24)

In the introduction, we mentioned that the Hermite polynomials are solu-
tions of the hypergeometric equations. Indeed, Hermite polynomials are
expressed in terms of hypergeometric functions (cf. [S], p. 97). Precisely,

n!(—1)""? n1

H () == 22

) foreven n (2.25a)

and

2nt (—1)0 -2 —13
_1J_Jw__mﬂ<_"

H,(x)= CEA] ;2> foroddn. (2.25b)

[ S5
]
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3. AN ORTHONORMAL Basis oF H$*[{]

For any positive integers g and A, we consider the Heisenberg group
HEY .= {[(4 p) k]| 4 pe R* & ke R*M k + u') symmetric}
endowed with the following multiplication law
LA p), k] [(A @), k' 1=[(A+A u+ ) k+u' + AW —u'i].

We denote by H¥ " the discrete subgroup of H'& " consisting of integral
elements.

From now on, we fix an element Q of the Siegel upper half plane H, of
degree g. Now for a positive definite symmetric even integral matrix # of
degree 4 and Je Z%#’, we define a function on H§ "

A ; i
2l [0] (21004, ), k1) 1= ot =3

x Z (A_JrN+A)Je’!ia{-/’((i+N+A)-Q'U»'*'N*'A)+2U~*N+A)’l‘)}, (31)
Ne Zhg)

where 4e #~'ZH )70 D)

Let H{*[4] be the completion of the vector space spanned by
SO aURIL(4, p), k1)(J € ZL®). Then by Theorem 2 in [Y], HG*'[ 4]
is an irreducible invariant subspace of L*(H$" £\ H'* ) with respect to the
right regular representation of the Heisenberg group H'& "

Now we will construct an orthonormal basis for H$*'[ 4] using the
Hermite polynomials. For J=(J,,) e Z%® and x = (x;,) € R* #), we define
the Hermite polynomial H,(x) in several variables

Hy(x):= HJ“(xll) Hj,z(xlz) e HJ,,g(xhg)- (3.2)

Then according to (2.10), Hermite polynomials H,(x) (Je Z%#) satisfy
the following orthogonality relation

2Ly pher? if J=K
0 otherwise.

H,(x) Hy(x) e o™ dx={ (3.3)

Rk g)

We set Y=Im Q= (1/2{)(2 - Q). Since Y is positive definite, we may
define the unique square root Y', Let .# be a positive definite, symmetric
even integral matrix of degree 4 and let .# " be its unique square root.
Then by an easy computation we see that the functions

H(J/2n #'PxY"?),  Jez¢®
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satisfy the orthogonality relation

[ H(J27 MY ) H (27 MY V2) eI iy
Rk &l

_ {2“" T2 (det M)TE? (det Y) PP if J=K

0 otherwise. (3:4)

We define
HG" [g] (1 [(4, p), k]) :=2"4V2(J1) =12 (det A )5 (det Y)*

X emeA =AU S H (2 MV A+ N+ A) YY)

Ne zZhe)

X enia{ﬂ((l+N+A)Q’(A+N+ A)+2(/1+N+A)"u)), (35)

where A€ # ' ZH&/ZH &),

LEMMA 3.1.  The functions HS*[31(R21[4, ), k1) (Je J&P) satisfy the
orthonormality relation

A
JRM H* [A] (QI[(4 p), k1) H [0] (Q1[(4 p), k1) di

0
1 if J=K
h {O otherwise (36)
Proof. 1t follows easily from (3.4) and Lemma 3.1 in [Y ]. Q.E.D.

From Lemma 2.2, we obtain

THEOREM 1. The functions H{*[§1(2|[(4, u), k1) (J€ Z'£) form an
orthonormal basis for H*[4].

4. THETA SERIES ASSOCIATED TO INDEFINITE QUADRATIC FORMS

Let g(¢) be an indefinite quadratic form on R* (heZ*) of signature
(s, t) with s+t = h. Let L be a lattice in R” such that g(L) = Z. The bilinear
form ¢, ) on R" associated to the quadratic form ¢(¢) is given by
CE Y i=q(E+n)—q(E)—q(n) (& ne R"). We recall that the dual L* of a
lattice L relative to g(&) is defined by

L*:={aecR"{(a,kyeZforall keL}.
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We choose a basis {e,, .., e,} for the real vector space R” such that for the
coordinate & ='(¢,, .., £,) € R* with respect to this basis {e,, .., e;}

gq&)=3&+ - +8-81 - = &)

For x=(x, .., Xs)€R"x --- x R"=R™ # with the column vectors x,=
WX i Xagy oo X5,) (1 g) we define

g(x) :=3(xi + - +x§g—x§+l,l_ _xig)’
G.(x):=3(0xi + - +x3,).
For J=(J,)e Z¢®, AeR, and a=(a,) e R* #, we define
Ji=dylodyl, A=iV gl=aly-..ale,
6J) =T+ ATy =T 1= o =g
For any Je Z%#), we set

;= (=1) (JN)V2 2/~ 1agir2 (4.1)

We define the Hermite functions #,(x) (J€ Z£#) in several variables by

the relation
tj

eI 2 T () T (42)
Jez(;bg’ )
For a function f on R" £, we define the Fourier transform by
fxy=|  f(y)e = dy,  xeR™,
R 2)
where {x, y> = x;; y;+ - FXg Vg = Xsr1, 1 Vse1,17™ 0 — Xng Vg for

x=(xy), y=(yy)€ R™ & and dy is the normalized Haar measure so that
vol(L¥) :=vol(R" ®/L&)=1.

LEMMA 4.1. For J=(J,)eJ%® and x=(x,;) € R* &, we have

Hi(x) = H, (x11) K, (X12) - - A, (Xig). (4.3)

Hy(—x)=(=1) H(x). (44)
H(x)= i (x11) - o (Xp)

XAy (= Xein 1) Hy (= X4p) (4.5)

Hy(x)= (= 1)1+ e i (x), (4.6)

641/49/1-6
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Proof. (4.3) follows easily from (2.15). (4.4) follows immediately from
(2.19). (4.5) follows from (4.3) and the definition of the Fourier transform.
(4.6) follows from (2.19), (2.20), and (4.5). QED.

LEMMA 4.2. Let A=Y35_ 35 (0%oxi)—2hr_ .. 35  (8%/oxs) be
the Laplacian on R™ & associated with the quadratic form §(x). Then we have

(s—0)g

(4 — 877G(x)) H5(x) = —4n (su) N ) #x). @47

Proof. 1t follows immediately from (2.21). Q.E.D.

LEMMA 4.3. Let E:=Y1_, 3% | x.,(0/0x,,) be the Euler operator on
R™ &) We set P,(x)=H;(x) e (Je ZU®). Then we have

AP,(x)=4n(E—e(J)+pu) P)(x), pu=(h—ys)g (4.8)
Proof. (4.8) follows from (2.22), (2.23), and (4.7). Q.ED.

For the present time being, we fix an element 2 =X +iY e H,. We define
the function f, o(x) on R*# by

Fr alx) = (det Y)~¥2 o, (x Y'2) 2710y e R8) (49)

where 1=¢(J)—pu. Here 2Q =diag(l, .., 1, —1, .., —1) is the symmetric
matrix of degree /4 associated with the quadratic form 2g(x).

LEMMA 44. For any Qe H,, Je Z'"#, and xe R", we have

) h
Fo o) = (=0 (et @F 2 faln), a=a)+(445) e (410)
Proof. 1t suffices to show (4.10) for =Y, Y>0. Then we have

f7 ip-1(x) = (det Y)’VZJ ( )'}fl(éY—l/Z)eoni(x,{) dz
Rih g
= (det Y)/l/2+h/2 f %(6) 8'72’”.0" ECEN dé
Rh &)

_ (det Y)A/2+h/2j %(§)E—Zni<x)’m,f) df

o
= (det Y)¥2+ 42 3 (xY'?)

=(=1)u+ - +laidet Y)V2H2 o,(xY?) by (4.6)
=(—1)n* HeilVidet YR £, (x) by (4.9).

By an easy calculation, we obtain the desired result (4.10). Q.ED.
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For any o€ (L*)® and Je Z¢®, we define the theta series on H, by

9,,9:= Y fialx), Q=X+iYeH,. (4.11)

xelf+a

It is known that the Siegel modular group I, :=Sp(g, Z) is generated by

E, S e 0 —E,
( 0 Eg)’ S="S integral and <E 0 )

4

Therefore in order to investigate the transformation behaviour of
the theta series 3, (2) (€ H,) for the action of the Siegel modular
group, it suffices to investigate the transformation law of 3, ,(£2)
under the two actions Q— Q2+ S with $="'S integral and Q> — Q™!
(2eH,).

If S =S is a symmetric integral matrix of degree g, by an easy computa-
tion we have

9, (Q+ 8) =¥ @I  (2). (4.12)

The Poisson formula says that for a function fon R*x -.. x Rh=R* @

Y fly=Y fl)

xe L% ae(L*)E

THEOREM 2. Let a=¢e(J)+ (A +h/2)g. Then for any a e (L*)%, we have
the transformation law

8, ,(—R27)=(—i) (det Q)+H ¥ =g, (Q). (413)

ke (L*)2
k(mod LS)

Proof. Using the Poisson formula, we obtain

3{1.1(_9_[)= Z ek Z fJ. _a-1(x).
ke(L*)E xe L8+ k
k{mod L%)

Therefore by (4.10), we obtain (4.13). Q.ED.

We now define the theta series

SJ(Q) — (det Y)—A/Z Z %(GYUZ) e2mo(Qle] Y)eZm'o(Q[a]Q)’ (414)

ae L8
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where Q=X +iYe H,. According to (4.12) and Theorem 2, we have
3,(Q2+ 8)=39,(Q), for any integral S='SeZ®?®.  (4.15)
I(—Q7)=(=i)*(detQ)**"* Y 3, ,(Q). (4.16)

ke(L*)%
k(mod L%)

Therefore we obtain

THEOREM 3. We assume that a lattice L is self-dual with respect to the
quadratic form q(x), that is, L=L* Then the theta series 3,(2) is a
nonholomorphic modular form of weight i+ h/2 with respect to a certain
congruence subgroup of I',. Its level is the same as that of the quadratic form
d(x) on R*®,

Remark. In [F], using the pluriharmonic forms, Freitag constructed
the vector-valued theta series of a certain type and proved that this theta
series is a vector-valued modular form of half integral weight with respect
to a certain congruence subgroup.
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