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Abstract

The Wigner transform (WT) has been extensively used in the formulation of phase-space models for a variety of wave propaga-
tion problems including high-frequency limits, nonlinear and random waves. It is well known that the WT features counterintuitive
‘interference terms,’ which often make computation impractical. In this connection, we propose the use of the smoothed Wigner
transform (SWT), and derive new, exact equations for it, covering a broad class of wave propagation problems. Equations for spec-
trograms are included as a special case. The ‘taming’ of the interference terms by the SWT is illustrated, and an asymptotic model
for the Schrödinger equation is constructed and numerically verified.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Wigner transform (WT), or Wigner function, is a well-known object in quantum mechanics [1,21,22,29,32,33,
36,39,41], signal processing [6,7,14,15,22–24,34], and high-frequency wave propagation [5,9–13,18–20,26–28,30,31,
37,38]. It provides one of the most appropriate ways to describe the passage from quantum to classical mechanics in
physics, and at the same time it is close to a proper time-frequency energy density in signal processing. However, its
applicability is limited by certain complicated, counterintuitive features, collectively described as interference terms
[7,15,17,23–25].

Smoothed Wigner transforms [5–7,14], Wigner measures [5,9,18–20,26–28,30,31,38,43], Wigner spectra [16,22]
and other variants have been proposed as alternatives that keep as much as possible from the WT’s good properties
while suppressing the features that make it impractical. These constructions have been extensively used in the study
of wave propagation in the broad sense—e.g. in high-frequency limits, as well as in acoustics, electromagnetism,
elasticity and quantum mechanics. An important feature in this connection, is that the WT and its generalizations
allow one to work more directly with important physical observables, such as energy. This is so because energy, energy
fluxes, etc. are often quadratic in the underlying filed, just like the WT. Moreover, WTs and Wigner spectra are also
used in the study of high-frequency wave problems with random and/or nonlinear features, including semiconductors
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and nonlinear optics [1,10–12,22,29,37]. Recently, computational schemes for linear, nonlinear, deterministic and
stochastic WT-based models have been developed [12,27–29].

It seems to be widely recognized however that the numerical propagation of the WT (even with asymptotic, e.g.
Liouville, equations) is not a practical approach for high-frequency wave propagation. This is so because of the
interference terms; the WT is itself a high-frequency wavefunction in a higher-dimensional space than the original
wavefunction, and working with it would be more expensive than working with the original problem. Indeed, in all the
computational works mentioned above, the subject of the numerical evolution is either a Wigner measure or a smooth
phase space density (which may be interesting due to nonlinearities [22]), or a Wigner spectrum (i.e. smoothed in the
context of a stochastic formulation [16,22,37]), but never a complete WT corresponding to a realistic high-frequency
wavefield. In other words, Wigner homogenization usually consists of two steps: first, one simplifies the equations of
motion for the WT—to get, for example, a Liouville equation—then one uses a reduced representation to keep track
of the main features of WT.

A particular approach that has been extensively worked out is to keep a Liouville equation, as far as the equa-
tions of motion are concerned, and use Wigner measures to describe asymptotically the WT, e.g. as in [20,26,30].
The Wigner measure is an asymptotic object, with no interference terms and no negative values. The prototype
Wigner measure corresponds to a WKB wavefunction uε(x, t) = A(x, t)e(2πi/ε)S(x,t), ε � 1, and is W 0(x, k, t) =
|A(x, t)|2δ(k − ∇xS(x, t)). This approach offers a tractable scheme for asymptotic analysis that does not break down
when caustics appear. It has recently been used in conjunction with the level set method in the development of a
specialized computational technique [27,28]. The Wigner measure approach thus reclaims computability by solving
the ε → 0 limit problem. This also means that information is lost, in particular around caustics [14].

In this paper we propose a computable asymptotic approach based on smoothed WTs, i.e. WTs convolved with a
smooth kernel. The derivation of the exact equations for SWTs, and their asymptotic treatment is presented, along with
numerical results confirming their validity and the overall computability of this approach. The results are compared
to exact and full numerical solutions of the corresponding PDEs.

2. The Wigner transform and the smoothed Wigner transform

The Wigner transform is defined as a sesquilinear mapping

Wε :f (x), g(x) �→ Wε[f,g](x, k) =
∫

y∈Rn

e−2πikyf

(
x + εy

2

)
ḡ

(
x − εy

2

)
dy.

When f = g, it is called the Wigner distribution (WD) of f and denoted as Wε[f ](x, k). The WD of a wavefunction
f (x) is a good way to realize a joint breakdown of the wavefunction’s energy over space x and wavenumber k—with
the caution that it takes on negative values as well.

The WT has a number of important properties, which are relevant both in wave propagation and in signal process-
ing. The books [15,17] are two very important sources, [15] emphasizing the signal processing point of view, and [17]
the relation between the WT and pseudodifferential operators. Here we will only mention some properties that we
directly use. It can be shown that∫

k∈Rn

Wε[f ](x, k) dk = ∣∣f (x)
∣∣2

,

∫
x∈Rn

Wε[f ](x, k) dx = 1

εn

∣∣∣∣f̂ (
k

ε

)∣∣∣∣2

.

Sometimes this is called the exact marginals property; it motivates the interpretation of the WT as a phase space energy
density, since it allows the expression of more familiar forms of the energy in terms of the WT. In fact, even when
the L2 norm is not the natural energy of the problem, the amplitude of the wavefield is always a relevant quantity.
Moreover, it can be shown that, if L(x, ε∂x) is a pseudodifferential operator with Weyl symbol L(x, k), then∫

x,k∈Rn

L(x, k)Wε[f,g](x, k) dx dk =
∫

y∈Rn

ḡ(y)L(x, ε∂x)f (y) dy.

The last equation, sometimes called the trace formula, allows us to express more general energies, as well as other
quantities, like energy flux, in terms of the WT. Any sesquilinear/quadratic observable of the wave propagation can
be expressed explicitly in terms of the WT.
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We mentioned a few times the interference terms. By ‘interference terms’ we mean wave patterns that appear in
regions of phase space with small or no energy [15,23,25]. (‘Energy,’ unless otherwise specified, means the L2 norm of
the wavefunction, and at the same time the net integral of its WT. Accordingly, ‘regions of phase space with significant
energy’ are regions over which the WT has significant integral.) The values of the WD on the interference terms are
large, often larger than on the regions that hold significant energy. For real-life signals this results in a complicated,
counterintuitive, obscured picture. In other words, the WT exhibits as short waves as the original wavefunction, but
in twice the space dimensions. The interference terms are the price we pay for the nice analytic properties of the WT.
However, unlike the original wavefunction, we can average the waves out and still keep ‘most’ of the information.

Cohen’s class of distributions [7,8,15,25] is defined as the class of all sesquilinear transforms of the form

Cε[f,g](x, k) =
∫

y,u,z∈Rn

f

(
u + εy

2

)
ḡ

(
u − εy

2

)
e−2πi[ky+zx−zu]φC(z, y) dy dudz

for any distribution φC(z, y) (restricting f,g to test functions). An equivalent definition is the class of transforms that
results from convolving the WT with a distributional kernel KC(x, k) = F−1

(z,y)→(x,k)[φC(z, y)],

Cε[f,g](x, k) =
∫

x′,k′∈Rn

KC(x − x′, k − k′)Wε[f,g](x′, k′) dx′ dk′.

Among them there are many attractive alternatives to the WT. When the kernel is chosen to be the WD of some func-
tion h,KC(x, k) = Wε[h](x, k), and if f = g, we get the spectrogram of f with window h. Although spectrograms
have nonnegative values, it is sometimes said that they are too spread out and have smoothed-out many important,
relatively fine features [15,25]; this point will emerge in some form in the context of wave propagation as well. It turns
out that choices which allow some negative values can be more interesting. Smoothing WTs with an appropriate ker-
nel tames the interference terms, but does not necessarily kill them completely; there is a balance between smoothing
enough and not smoothing too much. In this connection we define the scaled smoothed Wigner transform (SWT) as
the sesquilinear transform

W̃ σx,σk;ε[f,g](x, k) = 2

εσxσk

∫
x′,k′∈Rn

e
− 2π |x−x′ |2

εσ2
x

− 2π |k−k′ |2
εσ2

k Wε[f,g](x′, k′) dx′ dk′. (1)

This is a WT convolved with a tensor-product Gaussian with space-domain variance proportional to εσ 2
x and

wavenumber-domain variance proportional to εσ 2
k . That is, smoothing kernel also depends on the semiclassical pa-

rameter ε, in a way selected with the problem (2) and the high-frequency regime in mind; see Figs. 1 and 2 for
intuition on the scale of smoothing. When the SWT exhibits negative values we say we have subcritical smoothing.
When σx,σk are chosen so that the SWT coincides with a spectrogram we have critical smoothing, and naturally
nonnegative values.

3. Derivation of the exact equations

Our central result is the derivation of exact equations for the SWT of a wavefunction. The same approach could
be used for other transforms from Cohen’s class as well [6], but we do not pursue that here. The wave propagation
problem we consider is the IVP

ε
∂

∂t
uε(x, t) + Lε(x, ε∂x)u

ε(x, t) = 0, uε(x,0) = uε
0(x), (2)

where ε is the typical wavelength. The operator’s Weyl symbol is assumed to be polynomial, and in general may
depend on ε, e.g. Lε(x, k) = P(x, k) + εQ(x, k). (Weyl symbols of differential operators with varying coefficients
are typically like that [17,20].) The initial condition uε

0(x) is assumed to be a function with typical wavelength of
O(ε). For now we will also assume it is a test function.

Two important generalizations are problems with smooth (but in general nonpolynomial) Weyl symbols, as well as
systems, i.e. problems where uε(x, t) is a d-dimensional vector, and the corresponding Weyl symbol Lε(x, k) a d × d

matrix. The simpler problem (2), as well as the extensions mentioned previously, have been treated in [2]. Here we
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(a) (b)

(c) (d)

Fig. 1. (a) A segment of human speech. (b) Wigner transform of the signal in (a). (c) A spectrogram of the signal in (a). (d) Smoothed Wigner
transform of the signal in (a).

will focus on the simpler case for clarity of presentation. Indeed, demonstrating that these new equations can indeed
be used for the formulation of efficient solvers, is as interesting as the derivation itself.

The use of pseudodifferential operators (PDOs), and specifically of the Weyl calculus, is essential and intimately
related with the WT itself [21,36]. An additional argument for the necessity of the use of PDOs, is that for PDEs with
smooth, nonpolynomial symbols, the SWT equations are pseudodifferential equations [2].

The core calculations are the following:

W̃ σx,σk;ε[xf,g](x, k) =
(

x − ε

4πi

∂

∂k
− εσ 2

x

4π

∂

∂x

)
W̃ σx,σk;ε[f,g](x, k), (3a)

W̃ σx,σk;ε[f,xg](x, k) =
(

x + ε

4πi

∂

∂k
− εσ 2

x

4π

∂

∂x

)
W̃ σx,σk;ε[f,g](x, k), (3b)

W̃ σx,σk;ε
[
ε

∂

∂x
f,g

]
(x, k) =

(
2πik + ε

2

∂

∂x
+ εσ 2

k

2i

∂

∂k

)
W̃ σx,σk;ε[f,g](x, k), (3c)

W̃ σx,σk;ε
[
f, ε

∂

∂x
g

]
(x, k) =

(
−2πik + ε

2

∂

∂x
− εσ 2

k

2i

∂

∂k

)
W̃ σx,σk;ε[f,g](x, k). (3d)

With direct use of the identities (3) we can pull out of the SWT any operator with polynomial symbol. A way to write
this result compactly is that, for any polynomial L(x, k),

W̃ σx,σk;ε[Lε(x, ε∂x)f, g
]
(x, k) = Lε

(
x − ε

4πi
∂k − εσ 2

x

4π
∂x, k + ε

4πi
∂x − εσ 2

k

4π
∂k

)
W̃σx,σk;ε[f,g](x, k), (4a)

W̃ σx,σk;ε[f,Lε(x, ε∂x)g
]
(x, k) = Lε

(
x + ε

4πi
∂k − εσ 2

x

4π
∂x, k − ε

4πi
∂x − εσ 2

k

4π
∂k

)
W̃σx,σk;ε[f,g](x, k). (4b)

We discuss the proofs in Appendix A.



382 A.G. Athanassoulis / Appl. Comput. Harmon. Anal. 24 (2008) 378–392
(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) The function f ε(x), ε = 0.7 (blue for real part, red for imaginary part). (b) Spectrogram of f ε(x), ε = 0.7. (c) Wigner transform of
f ε(x), ε = 0.7. (d) Smoothed Wigner transform of f ε(x), ε = 0.7. (e) Interference pattern in the WT (zoomed from (c)). (f) Interference pattern
in the SWT (zoomed from (d)).

We will now use identities (3), (4) to treat the wave propagation problem (2). First of all observe that, if uε(x, t)

satisfies (2), due to the sesquilinearity of the SWT it follows that

ε
∂

∂t
W̃ σx,σk;ε[uε(x, t)

]
(x, k, t) = εW̃σx,σk;ε

[
∂

∂t
uε, uε

]
(x, k, t) + εW̃σx,σk;ε

[
uε,

∂

∂t
uε

]
(x, k, t)

= 2 Re

(
W̃σx,σk;ε

[
ε

∂

∂t
uε, uε

]
(x, k, t)

)
= 2 Re

(
W̃ σx,σk;ε[−Lε(x, ε∂x)u

ε, uε
]
(x, k, t)

)
. (5)
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This is the reformulation of (2) that the identities (4) are applicable to. With direct use of Eqs. (4) it follows that (5)
can be rewritten as

ε
∂

∂t
W̃ (x, k, t) + 2 Re

(
Lε

(
x − ε

4πi
∂k − εσ 2

x

4π
∂x, k + ε

4πi
∂x − εσ 2

k

4π
∂k

)
W̃ (x, k, t)

)
= 0, (6)

where we have used the abbreviation W̃ (x, k, t) = W̃σx,σk;ε[uε(x, t)](x, k, t). The same equation can be cast in a
series. Define

A = 1

4πi

[(
∂x − iσ 2

k ∂k

)
∂y − (

∂k + iσ 2
x ∂x

)
∂z

]
, (7a)

B = iA = 1

4π

[(
∂x − iσ 2

k ∂k

)
∂y − (

∂k + iσ 2
x ∂x

)
∂z

]
. (7b)

We can take real and imaginary parts of these operators, e.g.

Re(A) = − 1

4π

(
σ 2

k ∂k∂y + σ 2
x ∂x∂z

)
.

Now, for any polynomial symbol L(x, k), Eq. (6) can be rewritten as

ε
∂

∂t
W̃ (x, k, t) +

∞∑
m=0

2εm

m! Re[Am]Re
[
L(z, y)|(z,y)=(x,k)W̃ (x, k, t)

]
+

∞∑
m=0

2εm

m! Re[Bm] Im
[
L(z, y)|(z,y)=(x,k)W̃ (x, k, t)

]
. (8)

Equation (8) is the form that can be readily used for formal asymptotic considerations. For its derivation, we Taylor-
expand the symbol of Eq. (6) around L(x, k). Observe that as long as L is a polynomial, only a finite number of the
terms of the series will be nonzero.

4. High-frequency asymptotics for the Schrödinger equation

Physically, the high-frequency—or geometrical optics, or semiclassical—asymptotic regime corresponds to wave
propagation problems where the coefficients (speed of sound, potential, etc.) vary on a length scale much larger than
the wavelengths that appear. Semiclassical limits of quantum mechanics [4,19,30,32,33,41], and fluid mechanics [40],
are two rich sources of problems in this regime.

Let us see what (5) leads to for the Schrödinger equation with polynomial potential V (x) in the high-frequency
regime. Let uε(x, t) satisfy

ε
∂

∂t
uε(x, t) − i

ε2

2
�uε(x, t) + iV (x)uε(x, t) = 0, uε(x,0) = uε

0(x). (9)

Then Eq. (8) for L(x, k) = − i
2 (2πk)2 + iV (x) implies

∂

∂t
W̃ (x, k, t) +

(
2πk

∂

∂x
− V ′(x)

2π

∂

∂k

)
W̃ (x, k, t) + ε

(
V ′′(x)

σ 2
x

8π2
+ σ 2

k

2

)
∂2

∂x∂k
W̃ (x, k, t) = O(ε2),

W̃ (x, k,0) = W̃σx,σk;ε[uε
0(x)

]
(x, k). (10)

In particular, the leading order of Eq. (10) is a Liouville equation in phase space. Naturally, the interpretation of the
series (8) as a multiple scale expansion is only valid as long as σx,σk = O(1), which is of course the default choice
following definition (1).

It can be easily seen that making the SWT to coincide with a spectrogram corresponds to setting σxσk = 1 (in
which case the window in the spectrogram is a Gaussian with variance proportional to εσ 2

x ). Therefore apparently the
Liouville equation is valid for subcritical (i.e. σx,σk < 1) as well as critical (i.e. σxσk = 1) smoothing. In fact this
point is a little more subtle—we will come to it shortly.
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Both the leading order Liouville equation, and the generalized Fokker–Planck equation obtained by keeping the
O(ε) terms in (10), conserve the total integral of W̃ (x, k, t), i.e. the L2 norm, in agreement with the respective
conservation law for the Schrödinger equation. Indeed, using (10) and integration by parts we find

d

dt

∫
x,k

W̃ (x, k, t) dx dk =
∫

x,k

∂

∂t
W̃ (x, k, t) dx dk

=
∫

x,k

W̃ (x, k, t)

(
∂

∂x
(2πk) − ∂

∂k

(
V ′(x)

2π

)

+ ε
∂2

∂x∂k

(
σ 2

k

2
− V ′′(x)

σ 2
x

8π2

))
dx dk + O(ε2)

= O(ε2).

In the same way it can be shown that the natural “slow-scale energy” for this problem,

Ẽ(t) =
∫

x,k

L(x, k)W̃ (x, k, t) dx dk, (11)

is conserved. The term “slow-scale energy” has the following justification: the quantity

E(t) =
∫

x,k

L(x, k)W(x, k, t) dx dk

is well known to be equal the natural energy of the problem,

E(t) =
∫

x,k

L(x, k)W(x, k, t) dx dk = 〈
L(x, ε∂x)u

ε(x, t), uε(x, t)
〉;

this is a corollary of the so-called trace-formula mentioned in the Introduction. It is well known that the two quantities
E, Ẽ are close in high-frequency problems with smooth coefficients [30,34]. A ‘smoothed trace formula’ is needed
here, to allow us to estimate more precisely how close

∫
x,k

L(x, k)W̃ (x, k, t) dx dk is to the actual energy—or to

express the energy exactly in terms of W̃ (x, k, t).
The application of the SWT we focus on in this work is homogenization [20,26,37]. The homogenization scheme

proposed here for the Schrödinger equation is to take the SWT of the initial condition of (2), and evolve it in time under
the leading order part of (5), typically a Liouville equation for high-frequency problems with smooth coefficients.

This can be used as a slow-scale solution of the problem (2). As we just briefly discussed earlier, quadratic ob-
servables like energy and energy flux can be expressed as moments of the WT [26,37]. The same moments of the
corresponding SWT give a coarser, smoothed out version of the same quantities. For example, the WT itself is of-
ten interpreted as a phase-space L2-norm quasi-density; in the same sense the SWT is a ‘slow scale,’ homogenized,
phase-space L2-norm quasi-density.

5. Numerical results

5.1. The numerical method

The WT is computed on a Cartesian grid in phase space with the FFT, with complexity O(N2 logN). The com-
plexity for the computation of the SWT is O(L2N2 logN) where L is the number of sampling points needed for
the smoothing kernel. When σx,σk = O(1), L is of O(1). Adaptive computation of the SWT that does not spend
much time on regions of phase space with no energy is also possible [35], and might be essential for two- and higher-
dimensional problems.

The Liouville equation is solved numerically with the use of particles, i.e. the numerical implementation of the
method of characteristics. An initial population of particles is created, so that the SWT can be interpolated up to an
error tolerance from its values on them. The trajectory of each particle is computed according to Hamilton’s ODEs
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with a Runge–Kutta solver; the value of the density on each particle remains unchanged in time. The solution at each
moment in time is constructed by interpolating the density from its values on the particles.

The results of the method described here are compared with exact solutions, as well as direct numerical solutions
of the corresponding Schrödinger equation (9). As we mentioned earlier, being able to compute faster with the SWT,
than by direct solution of (9) (or (2), in general), is essential to our point of view. So far, the method we present here
appears to be significantly faster than numerical solutions of (9) either with finite-difference or wavelet methods. The
difference in complexity appears to be more profound as ε → 0. Systematic numerical analysis and investigation are
in progress, but numerical experiments so far indicate that the time needed to take the SWT of the initial condition
and let it evolve it under a Liouville equation (the leading order part of (10)) is no more than O(ε−2 log(ε−1)), vs an
observed complexity of at least O(ε−3) for standard finite difference methods and O(ε−2.5) for a wavelet method [3].

In all examples we have looked into, the numerical solution of the Liouville equation, i.e. propagation of the
particles and interpolation from them, is the slowest part of the numerical solution. In fact, there are a lot of redundant
computations there. Typically the number of particles needed to represent the SWT are many-times-over more than
enough to represent the flow in phase space described by the Liouville equation—equivalently, Hamilton’s ODE. As
Ying and Candes point out [42], one can solve the ODE for a sufficient grid of initial conditions, and interpolate for the
bulk of the particle population, instead of solving from scratch for each particle. It seems that use of this technique—
the phase-flow method, as Ying and Candes call it—would significantly accelerate the method presented here. Let us
also note that all the steps of the algorithm, i.e. computation of the SWT, particle propagation, and interpolation, are
almost optimally parallelizable.

We also experimented with applying the same computational approach to the WT. It is expected that since it takes
more points (bigger support in phase space, but also finer grid needed) it would be accordingly slower. In addition
to that, it seems there is an essential stability issue. As the particles move around in phase space, interpolation from
them gives very poor results—one could say it becomes very noisy. So, unlike the SWT, a particle population that is
sufficient to describe the initial WT, is not necessarily sufficient to evolve it. This kind of behavior shows up whenever
the smoothing is too weak.

Three choices for the potential are examined here: a free-space problem, a harmonic oscillator, and a uniform force
field. In each case, the corresponding Schrödinger equation is solved, and the SWT and the spectrogram of the initial
condition are evolved in time with the corresponding Liouville equation. The dk-marginal of each phase-space density
is compared to the amplitude of the full solution; the validity of the Liouville equation for the SWT (σx,σk = O(1))

and its nonvalidity for the spectrogram are confirmed (see Figs. 4–8). One initial condition studied is

f ε(x) = A(x) exp

(
2πi

ε

(
−x4

4
− x2 + 2x

))
,

where A(x) is a smooth envelope defined as

A(x) = 0.25
[
tanh

(
6.87(x + 2.42)

) + 1
][

tanh
(
6.87(2.42 − x)

) + 1
]
,

see Fig. 2. Initial conditions that admit exact solutions are also considered, see below and Fig. 3.

5.2. Case studies

5.2.1. Case study 1: Free space Schrödinger equation
Consider the IVP

ε
∂

∂t
uε(x, t) − i

ε2

2
�uε(x, t) = 0, uε(x,0) = uε

0(x). (9a)

The corresponding Liouville equation for this problem is

∂

∂t
W̃ (x, k, t) + 2πk

∂

∂x
W̃ (x, k, t) = 0. (10a)

If uε
0(x) is a Gaussian wave packet the exact solution can be computed, i.e. if

uε
0(x) = exp

[−(
Kx2 + Λx + M

)]
, K,Λ,M ∈ C, Re(K) > 0,
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(a) (b)

(c) (d)

Fig. 3. (a) The initial condition (9) (blue for real part, red for imaginary part). (b) Wigner transform of the IC. (c) Smoothed Wigner transform of
the IC. (d) Spectrogram of the IC.

then the solution to (6a) is given by

uε(x, t) = 1√
2iεtK + 1

exp

[
Λ2 − 4KM + 2i

εt
(Kx2 + Λx + M)

4K − 2i
εt

]
.

Below is the comparison between the SWT method and the exact solution for (9a) with ε = 1 and initial condition

uε
0(x) = e− 1+7i

0.1 x2 + e− 0.2+3i
0.1 x2 + e− 0.9−8i

0.1 x2
, see Fig. 3.

Consider now Eq. (9a) with initial condition uε
0(x) = f ε(x), ε = 0.7.

5.2.2. Case study 2: Quantum harmonic oscillator
Consider the IVP

ε
∂

∂t
uε(x, t) − i

ε2

2
�uε(x, t) + i

290

2
x2uε(x, t) = 0, uε(x,0) = uε

0(x). (9b)

The corresponding Liouville equation for this problem is

∂

∂t
W̃ (x, k, t) + 2πk

∂

∂x
W̃ (x, k, t) − 290

2π
x

∂

∂k
W̃ (x, k, t) = 0. (10b)

Time-harmonic solutions for this problem can be constructed in terms of its well-known eigenfunctions. The amplitude
of a time-harmonic solution stays constant in time. Again, the SWT leads to satisfactory results and the spectrogram
not. Fig. 6 corresponds to the ninth eigenfunction.

Consider now Eq. (9b) with initial condition uε(x) = f ε(x), ε = 0.7.
0
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(a) (b)

(c) (d)

Fig. 4. Snapshots of the evolution in time of the wavefunction’s amplitude for problem (6a); exact solution vs SWT and spectrogram evolved in
time under Eq. (7a); initial condition given in Eq. (9).

(a) (b)

(c) (d)

Fig. 5. Snapshots of the evolution in time of the wavefunction’s amplitude for problem (9a); full numerical solution vs SWT and spectrogram
evolved in time under Eq. (10a), initial condition is uε

0(x) = f ε(x), ε = 0.7 (see Fig. 2 for details).

5.2.3. Case study 3: Uniform force field
Consider the IVP

ε
∂

uε(x, t) − i
ε2

�uε(x, t) + i · 2π · 300x · uε(x, t) = 0, uε(x,0) = uε
0(x). (9c)
∂t 2
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(a) (b)

Fig. 6. Snapshots of the evolution in time of the wavefunction’s amplitude for problem (9b); exact solution vs SWT and spectrogram evolved in

time under Eq. (10b); figure corresponds to the ninth eigenfunction of Eq. (9b), u(x, t) = e
−i 19

2 0.7
√

290t
e
− 1

2

√
290

0.7 x2
H9

(
x

√√
290

0.7

)
, where H9(x)

is the ninth Hermite polynomial. ε is equal to 0.7.

(a) (b)

(c) (d)

Fig. 7. Snapshots of the evolution in time of the wavefunction’s amplitude for problem (9b); full numerical solution vs SWT and spectrogram
evolved in time under Eq. (10b), initial condition is uε

0(x) = f ε(x), ε = 0.7 (see Fig. 2 for details).

The corresponding Liouville equation for this problem is

∂

∂t
W̃ (x, k, t) + 2πk

∂

∂x
W̃ (x, k, t) − 300

∂

∂k
W̃ (x, k, t) = 0. (10c)

Snapshots of the full solution, the SWT based slow-scale amplitude, and the spectrogram based slow-scale amplitude,
for uε(x) = f ε(x), ε = 0.7 follow.
0
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(a) (b)

(c) (d)

Fig. 8. Snapshots of the evolution in time of the wavefunction’s amplitude for problem (9c); full numerical solution vs SWT and spectrogram
evolved in time under Eq. (10c), initial condition is uε

0(x) = f ε(x), ε = 0.7 (see Fig. 2 for details).

The full numerical solutions of the Schrödinger equation for the case studies were generously provided by Kostas
Politis. They have been carried out using finite-differences and an adaptive, wavelet-based method. The wavelet
method is better at handling the development of caustics, as expected. More specifically, the observed complexity
grew faster in ε for the standard finite difference methods, as the numerical dispersion demands very fine discretiza-
tions to stay under control. For a more detailed comparison of various methods in the simulation of high-frequency
problems, see also [3] and the references therein. Computations in all cases were done on similar computers, in the
MATLAB environment.

6. Discussion of the numerical results—Understanding the error

The most striking conclusion of the numerical results is that the method works very well for subcritical smoothing,
but fails for critical smoothing (i.e. spectrograms). As we saw earlier, the same formal asymptotics we apply to
subcritical smoothing are applicable to the critical case—formally always. Here we will present a very short analysis
that helps understand this point; a more complete analysis can be found in [2].

Consider a potential of the form

V (x) = axs, where a ∈ R and s ∈ {0,1,2}. (12)

In any case, it is well known (and can be seen by setting σx = σk = 0 in (6) or (8)) the WT of the wavefunction,
W(x, k, t) = Wε[uε](x, k, t), satisfies (exactly, i.e. not asymptotically) a Liouville equation. Therefore its evolution
can be described in terms of a Hamiltonian flow

W(x, k, t) = W
(
φt (x, k),0

)
.

For these potentials (making use of the fact that Hamiltonian flow happens to be linear) it can be readily seen that,
if w̃(x, k, t) satisfies

∂
w̃(x, k, t) +

(
2πk

∂ − V ′(x) ∂
)

w̃(x, k, t) = 0, (13a)

∂t ∂x 2π ∂k
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w̃(x, k,0) = W̃σx,σk;ε[uε
0

]
(x, k) =

∫
z,y

Gε(x − z, k − y)W
[
uε

0

]
(z, y) dz dy, (13b)

then

w̃(x, k, t) =
∫
z,y

Gε

(
φt (x − z, k − y)

)
W(z,y, t) dz dy. (14)

Put in words, the approximate slow-scale solution that the formal asymptotics lead us to, is not necessarily a very close
approximation to W̃ σx,σk;ε[uε](x, k, t), but rather a slow-scale version of the WT with smoothing kernel changing
with time. Equation (14) is exact for potentials of the form (12), therefore for the numerical examples presented here.
This now allows a better understanding of why spectrograms give “bad” results: when the smoothing kernel is large
enough to amount to critical smoothing, its evolution in (14) often dominates the actual propagation, thus giving a
very counterintuitive picture. Subcritical smoothing ensures, in many cases, that the evolution of the time-dependent
kernel in (14) is small compared to the propagation of the wavefunction.

Equation (14) has been generalized to smooth potentials—there is an additional term accounting for how close
the dynamics for the WT are to a Liouville equation (a good measure of how “semiclassical” the problem at hand
is). Also, in general the Hamiltonian flows are not linear, therefore we do not have a convolution, but a more general
kernel [2].
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Appendix A. Proof of the identities (3)

For simplicity we present the proof for ε = 1. The scaled version follows in the same lines. First of all note that (3b),
(3d) follow from (3a), (3c), respectively, due to the sesquilinearity of the SWT. Denote φ(z, y) = e− π

2 (σ 2
x z2+σ 2

k y2). By
construction

W̃ [f,g](x, k) = Fz,y→x,k

[
φ(z, y)F−1

x,k→z,y

[
W [f,g](x, k)

]]
and

W [f,g](x, k) = Fz,y→x,k

[
1

φ(z, y)
F−1

x,k→z,y

[
W̃ [f,g](x, k)

]]
,

or, more compactly,

W̃ [f,g](x, k) = φ

(
1

2πi
∂x,

1

2πi
∂k

)
W [f,g](x, k),

W [f,g](x, k) = 1

φ( 1
2πi

∂x,
1

2πi
∂k)

W̃ [f,g](x, k).

We use the elementary identity

W [xf,g](x, k) =
(

x − 1

4πi

∂

∂k

)
W [f,g](x, k).

We have
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W̃ [xf,g](x, k) = φ

(
1

2πi
∂x,

1

2πi
∂k

)
W [xf,g](x, k) = φ

(
1

2πi
∂x,

1

2πi
∂k

)(
x − 1

4πi

∂

∂k

)
W [f,g](x, k)

= φ

(
1

2πi
∂x,

1

2πi
∂k

)(
x − 1

4πi

∂

∂k

)
1

φ( 1
2πi

∂x,
1

2πi
∂k)

W̃ [f,g](x, k)

=
([

φ

(
1

2πi
∂x,

1

2πi
∂k

)
, x − 1

4πi

∂

∂k

]
1

φ( 1
2πi

∂x,
1

2πi
∂k)

+ x − 1

4πi

∂

∂k

)
W̃ [f,g](x, k).

The proof of (2a) is completed with the direct computation[
φ

(
1

2πi
∂x,

1

2πi
∂k

)
, x − 1

4πi

∂

∂k

]
= −σ 2

x

4π

∂

∂x
φ

(
1

2πi
∂x,

1

2πi
∂k

)
.

The same approach, making use of the elementary identity

W

[
∂

∂x
f,g

]
(x, k) =

(
2πik + 1

2

∂

∂x

)
W [f,g](x, k),

works for (2c). This proof is based on an idea found in [6].
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