PSEUDO-MAGIC GRAPHS

Abstract

R.H. JEURISSEN

Mathematisch Instituut, Katholieke Universiteit, Toernooiveld, 6525 ED Nijmegen, The Netherlands

Received 22 May 1980
Revised 7 January 1982

Abstract

We characterize graphs for which there is a labeling of the edges by pairwise different integer labels such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. We generalize to mixed graphs, and to labelings with values in an integral domain.

1. Introduction

We consider finite, undirected, connected graphs, allowing loops and multiple edges. Let G be such a graph and E its edge set. If $\lambda \in \mathbb{Z}$, we call $s: E \rightarrow \mathbb{Z}$ a labeling for λ if for every vertex x :

$$
\sum_{e \in \mathbb{E}} i(x, e) s(e)=\lambda,
$$

where $i(x, e)=0$ if e is not incident with $x,=2$ if e is a loop at x, and $=1$ if e is an edge, not a loop, incident with $x . S(G)$ is the \mathbb{Z}-module of all such labelings, for any λ, and $Z(G)$ is the \mathbb{Z}-module of labelings for 0 . A labeling $s \in S(G)$ is called pseudo-magic if the 'labels' $s(e)$ are pairwise different, magic if moreover they are all non-negative. We shall first mention some resuits that are necessary for understanding the remainder of this paper. Further details may be found in the references. We shall then prove what is in effect a special case of the main theorem; the generalization and its analogous proof are saved for the final sections.
If a submodule of \mathbb{Z}^{a} has the property that for every i and $j, 1 \leqslant i<j \leqslant q$, it contains an element (x_{1}, \ldots, x_{q}) with $x_{i} \neq x_{i}$, then it contains an element with pairwise different components. In other words: if it is in none of the hyperplanes $x_{i}=x_{j}$, it is not in their union. The proof is easy, and the principle has been used before ([5, Theorem 5], [2, Theorem 3.1]). It follows that a graph G is not pseudo-magic iff it has a pair e, f of edges with $s(e)=s(f)$ for every $s \in S(G)$. These pairs we shall characterize. Note that a graph is magic iff if is pseudo-magic and there is for every edge e an $s \in S(G)$ with $s(e)>0$ and $s(f) \geqslant 0$ for every edge f (cf. [5, Theorem 6]; the use of \mathbb{R} instead of \mathbb{Z} is not essential, see [2, Section 2] 0012-365X/83/0000-0000/\$03.00 © 1983 North-Hoiland
or [4, Section 1]). The latter condition is satisfied for instance if every edge is on a Hamiltonian cycle or an other spanning regular subgraph.

A connected bipartite graph with point-set $P_{1} \cup P_{2}, P_{1}$ and P_{2} stable, will be denoted by $P_{1} P_{2}$ (we admit $P_{1}=\emptyset$, or $P_{2}=\emptyset$, i.e. the trivial one-point graph is bipartite). It is called balanced if $\left|P_{1}\right|=\left|P_{2}\right|$, unbalanced if $\left|P_{1}\right| \neq\left|P_{2}\right|$. For a connected graph G that is non-bipartite or bipartite and balanced we have $S(G) \neq Z(G)$, i.e. there is a labeling for some $\lambda \neq 0$ ([1, Theorem 2.11], [3, Theorem $\left.1^{\prime}\right]$).

Let f be an edge of the connected graph G. We refer to f as an edge of type s_{a} if G is non-bipartite, but $G-\{f\}$ is bipartite (so connected) and balanced,
type s_{b} if G consists of a non-bipartite graph and a balanced bipartite graph, connected by the bridge f,
type s_{c} if G consists of two balanced bipartite graphs connected by the bridge f,
type s_{d} if G is an unbalanced bipartite graph and f a bridge.
It has been proved that $s(f)=0$ for all $s \in S(G)$ iff s is of one of these four types [4. Theorem 1].

2. Pictograms

A few examples may suffice to explain the symbolism we found useful in formulating the theorem below. A connected bipartite graph $D_{1} D_{2}$ will be symbolized by

(which does not imply $\left|D_{1}\right|>\left|D_{2}\right|$). If we want to express that it is balanced we use

A connected non-bipartite graph is symbolized by

Further

means that e is a bridge from $D_{1} D_{2}$ to a connected non-bipartite graph, e having an endpoint in D_{1}. At last

means a connected bipartite graph $D_{1} D_{2}$ into which an extra edge is inserted with its endpoint(s) in D_{1} (e may be a loop). When in doubt the reader may derive the precise meaning of a symbol from the proof of the theorem.

3. The Theorem

Theorem. Let G be a connected, undirected, finite graph and let e and f be edges of G. Then $s(e)=s(f)$ for all $s \in S(G)$ iff e and f take one of the following positions in G (possibly after interchanging their names):
(a) $\square \ggg$
with G unbalanced.

both with G unbalanced.

with $\left|D_{1}\right|+\left|F_{1}\right|=\left|D_{2}\right|+\left|F_{2}\right|$.
(a) $\frac{D_{1}}{D_{2}}-\frac{E_{1}}{E_{2}}>\frac{F_{1}}{F_{2}}$
with $\left|E_{1}\right|-\left|E_{2}\right|=2\left(\left|D_{2}\right|-\left|D_{1}\right|\right)=2\left(\left|F_{2}\right|-\left|F_{1}\right|\right)$.
(e) $\frac{\stackrel{e}{-} D_{1}}{D_{2}} / \frac{E_{1}}{E_{2}}$
with $\left|D_{1}\right|-\left|D_{2}\right|=3\left(\left|E_{2}\right|-\left|E_{1}\right|\right)$.
(f)

or

with $\left|D_{1}\right|+\left|E_{1}\right|=\left|D_{2}\right|+\left|E_{2}\right|$.
(g) $\frac{D_{1}}{D_{2}}<\frac{E_{1}}{E_{2}} \xlongequal{f}>$
with $\left|E_{1}\right|-\left|E_{2}\right|=2\left(\left|D_{2}\right|-\left|D_{1}\right|\right)$.
(h) $=\frac{e}{f}>$ or $\frac{D_{1}}{D_{2}} \gg \frac{E_{1}}{-\frac{E_{2}}{-}}$
with $\left|D_{1}\right|+\left|E_{1}\right|=\left|D_{2}\right|+\left|E_{2}\right|$, or

or

Proof. The sufficiency can easily be proved for (groups of) separate cases, as follows. One takes a labeling s for λ and evaluates the sum of the labels of the edges of a bipartite subgraph in two ways. E.g. in case (e):

$$
\lambda\left|D_{2}\right|=\lambda\left|D_{1}\right|-2 s(e)-s(f) \quad \text { and } \quad \lambda\left|E_{1}\right|=\lambda\left|E_{2}\right|-s(f)
$$

from which:

$$
s(f)=\lambda\left(\left|E_{2}\right|-\left|E_{1}\right|\right) \quad \text { and } \quad s(e)=\frac{1}{2} \lambda\left(\left|D_{1}\right|-\left|D_{2}\right|+\left|E_{1}\right|--\left|E_{2}\right|\right)
$$

or in cases (c) and (h): e and f arrive at different pairts of a balanced subgraph $P_{1} P_{2}$, so $\lambda\left|P_{1}\right|-s(e)=\lambda\left|P_{2}\right|-s(f)$, yielding $s(e)=s\left(f^{+}\right)$. In cases (a) and (b) one also has to use that G has no labelings for a $\lambda \neq 0$ (take the sum of all labels to show this). It may seem strange that in cases (c) and ($1 \mathbf{d}$) the given condition is not (fully) needed, but then if the remaining part doesn't hold we are in another case ((b), (a) respectively). The cases as given do not overlap (although of course various cases may occur in one graph). The left graphs in Fig. 1 illustrate the second case of (h) and the first of (f), respectively.

To prove the necessity we put $e=(x, y)$ and $f=(z, w)$. (None of the possible equalities between x, y, z and w are excluded, nor is the existence of other edges between x and y or z and w).
(A) Suppose in $G-\{e, f\}$ there is a walk W of odd length from an endpoint of e, x say, to an endpoint of f, z say (the repeated use of edges or points by W is not excluded). Let m_{1}, \ldots, m_{k} be the edge-sequerce of W. Construct G^{\prime} by omitting e from G and inserting a new edge e^{\prime} between y and w (see Fig. 1 for two examples). For $s \in S(G)$ with $s(e)=u$ we construct $s^{\prime} \in S\left(G^{\prime}\right)$ as follows: $s^{\prime}\left(e^{\prime}\right)=u, s^{\prime}(f)=s(f)-u, s^{\prime}(g)=s(g)$ if $g \neq e, f$ and g not on W, and if g is on W, then

$$
s^{\prime}(g)=s(g)+u(\alpha(g)-\beta(g))
$$

where $\alpha(g)$ is the number of odd i with $m_{i}=g, \beta(g)$ the number of even i with $m_{i}=g$. Thus along W we alternatingly raise and diminish the labels by u. Now $s \mapsto s^{\prime}$ defines an isomorphism $S(G) \rightarrow S\left(G^{\prime}\right)$. Therefore if $s(e)=s(f)$ for all $s \in S(G), s^{\prime}(f)=0$ for all $s^{\prime} \in S\left(G^{\prime}\right)$, i.e. f is of type s_{a}, \ldots, s_{d} in G^{\prime} (note that G^{\prime} is connected).

Now from this knowledge about f, we try to reconstruct G from G^{\prime}. Note that e^{\prime} has an endpoint in common with f and that x has to be found at the end of an odd walk starting from the other endpoint of f (if f is not a loop) and not using f or e^{\prime}.
(a) f of type s_{a}. G' looks like

x has to be located in the lower part. Depending on whether e^{\prime} is a bridge or not in. $r^{\prime}-\{f\}$ we find the second or first case of $\{a$.

Fig. 1.
(b) f of type s_{b}. If e^{\prime} is in the bipartite component of $G-\{f\}$, we find the second or first case of (h), depending on whether e^{\prime} is a bridge in that component or is not. If e^{\prime} is in the non-bipartite component of $G-\{f\}$ and is not a bridge in that component we find the first case of (h) or the fifth, depending on whether the component stays non-bipartite or becomes bipartite if e^{\prime} is deleted. If e^{\prime} is a bridge in that component we find the third or fourth case of (h).
(c) f of type s_{c}. We find the cases (c).
(d) f of type s_{d}. We find the cases (b).
(B) Suppose there is no walk W as above.
(a) Let $G^{\prime \prime}=G-\{e, f\}$ be connected. Then it is bipartite, since the existence of an odd cycle would permit the construction of an odd walk between any two points. Also the points x, y, z and w must all belong to the same 'part' of the bipartition of $G^{\prime \prime}$. But then we could construct an (even) path from x to z (possibly of length 0) and one from w to y, and connect these paths by e and f to a closed walk. Assign alternatingly +1 and -1 to its edges (adding if an edge occurs twice) and 0 to all other edges, thus constructing a labeling s for 0 with $s(e)=+1, s(f)=-1$. This exciudes this possibility.
(b) Let $G^{\prime \prime}=G-\{e, f\}$ be disconnected and have two components G_{1} and G_{2}.
$\left(b_{1}\right)$ Let e nor f be a bridge. Then we may suppose that x and z are points in G_{1}, y and w points in G_{2}. Again G_{1} has to be bipartite with x and z in one part, and the same goes for G_{2}, y and w. Now there is an even closed path containing e and f, which enables us to find a labeling for 0 with label +1 for e and label -1 for f. So we have:
$\left(b_{2}\right)$ Precisely one of e and f is a bridge. We may suppose that e is the bridge and that x, z, and w are points of G_{1}, y of G_{2}. Then $G_{1}-\{f\}$ is connected, and (as above) bipartite with x, z and w in one 'part'. Thus in G_{1} we have an odd walk from x to x using f once. If there is also an odd walk from y to y in G_{2} we can cc nstruct a labeling s for 0 with $s(e)=2$ and $s(f)=-1$. Thus G_{2} is also bipartite. ionw take a labeling s for $\lambda \neq 0$ (G is non-bipartite) and put $G_{1}-\{f\}=D_{1} D_{2}$, $G_{2}=E_{1} E_{2}$ with $x, y, z \in D_{1}, y \in E_{2}$. Then

$$
\lambda\left|D_{1}\right|-2 s(f)-s(e)=\lambda\left|D_{2}\right| \quad \text { and } \quad \lambda\left|E_{1}\right|=\lambda\left|E_{2}\right|-s(e) .
$$

From $s(e)=s(f)$ it follows that $\left|D_{1}\right|-\left|D_{2}\right|=3\left(\left|E_{2}\right|-\left|E_{1}\right|\right)$. We have found case (e).
(c) Let e and f both be bridges. let G_{1}, G_{2}, G_{3} be the components of $G-\{e, f\}$, with x a point of G_{1}, y and z points of G_{2}, and w a point of $G_{3} . G_{2}$ is bipartite, $E_{1} E_{2}$ say, with y and z in E_{1}. Existence of odd cycles in G_{1} and G_{3} would make possible a labeling s for 0 with $s(e)=2, s(f)=-2$. So we assume that G_{1} is bipartite, $D_{1} D_{2}$ say, with x in D_{2}. If G (so G_{3}) is non-bipartite or if G is bipartite and balanced, then there is a labeling s for some $\lambda \neq 0$. We then find $\lambda\left|D_{1}\right|=$ $\lambda\left|D_{2}\right|-s(e), \quad \lambda\left|E_{1}\right|-s(e)-s(f)=\lambda\left|E_{2}\right|$, and from $s(e)=s(f)$ it follows that $\left|E_{1}\right|-\left|E_{2}\right|=2\left(\left|D_{2}\right|-\left|D_{1}\right|\right)$. This gives cases (g) and (d). We have left: G unbalanced bipartite, which is case (a).

Corollary 1. A connected graph is pseudo-magic iff it is not of one of the types pictured in the theorem.

Corollary 2. A triply line-connected graph is pseudo-magic or of type .
Corollary 3. If a connected graph is not pseudo-magic it has two edges whose simultaneous deletion yields a graph with at least one balanced bipartite component or at least two bipartite components.

4. Labelings over an integral domain

In the definitions of labeling and pseudo-magic we replace \mathbb{Z} by an integral domain F, the modules of labelings being now called $S(G, F)$ and $Z(G, F)$. A bipartite graph $P_{1} P_{2}$ is now called balanced if $\left|P_{1}\right| \equiv\left|P_{2}\right|(\bmod c h a r F)$. If char $F \neq 2$, then still $S(G, F) \neq Z(G, F)$ iff G is bipartite and balanced or nonbipartite and also $s(f)=0$ for all $s \in S(G, F)$ iff f is of one of the four types $s_{\mathrm{a}}, s_{\mathrm{b}}, s_{\mathrm{c}}, s_{\mathrm{d}}$ defined in Section 1 ('balanced' now read in the above sense; references as in Section 1). The proof of the theorem goes through without changes, except when char $F=3$, which gives a small difficulty in part $(B)\left(b_{2}\right)$. It turns out that for char $F=3$ we should replace case (e) in the theorem by:

or

If char $f=2$ there are more changes (references as before). First of all the bipartite graphs play no special role, for $S(G, F) \neq Z(G, F)$ if and only if the number of points of G is even. Secondly the four types s_{a}, \ldots, s_{d} reduce to two: f a bridge between two graphs with even point-sets and f a bridge in a graph with dic odd point-set. The necessity part of the proof is much easier: in A an odd as well as an even walk does the trick, so B is superfluous. We find the following cases ((E) and (O) depicting connected graphs with an even and an odd number of points respectively):

The sufficiency is again easy: twice the sum of the labels of the edges in a 'balloon' plus the labels of the edges attached to it equals λ times the number of points in it (everything in F).

The validity of the corollaries depends on that of the separation-principle of Section 1. It is an easy exercise to show that it holds provided F is infinite, or
finite with $|F|>\left({ }^{9}\right), q$ the number of edges of G. Let us assume that this condition is satisfied. Then Corcilary 1 stays true if 'types' is adapted for char $\Gamma=2,3$. Corollary 2 also stays true (one may omit the part 'or ...' if char $F=2$), and Corollary 3 holds for all characteristics $\neq 2$.

5. Labelings of mixed graphs

We now allow (some of) the edges to be directed. In the definition of 'labeling' $i(x, e)$ is defined as before for e undirected. If e is directed we put $i(x, e)=0$ if e is not incident with x or is a loop at $x=+1$ if e is not a loop and x its endpoint, $=-1$ if e is not a loop and x its initial point. We suppose char $F \neq 2$ (if char $F=2$, direction of edges is irrelevant).

Fig. 2.
As is shown by Fig. 2 one can associate with a mixed graph G an undirected graph G^{\prime} such that there is an isomorphism between $S(G, F)$ and $S\left(G^{\prime}, F\right)$, in which labelings of G for λ correspond to such of G^{\prime} for λ. Note that G^{\prime} is bipartite iff the point-set of G can be partitioned as $P_{1} \cup P_{2}$ in such a way that undirected edges have an endpoint in P_{1} and one in P_{2}, whereas directed edges have their initial point and their endpoint both in P_{1} or both in P_{2}. Let us call G 'bipartite' if G^{\prime} is bipartite. It is not difficult now to translate our theorem for the case of mixed graphs. Starting with the necessity-part: if e and f are edges of G with $s(e)=s(f)$ for all $s \in S(G, F)$, then in G^{\prime} they yield edges e^{\prime} and f^{\prime} with $s\left(e^{\prime}\right)=s\left(f^{\prime}\right)$ for all $s \in S\left(G^{\prime}, F\right)$, so for G^{\prime} with e^{\prime}, f^{\prime} we have one of the eight cases of the theorem. For each case we reconstruct G from G^{\prime}, taking into account the possibilities: e (un)directed, f (un)directed. Note that the orientation of $(x, y)=e$ (see Fig. 2) is determined in the reconstruction as being towards x, and that x is one of the endpoints of $e^{\prime}=(x, z)$. See also below, under case (a). The pictograms stay useful if we keep in mind to replace 'bipartite' for bipartite. Note that the notion of 'balanced' for G^{\prime} can easily be carried over to G : it still means $\left|P_{1}\right| \equiv\left|P_{2}\right|$ ($\bmod \operatorname{char} F$) for the partition $P_{1} \cup P_{2}$ of G as above. If the reconstruction of G from G^{\prime} is done carefully, i.e. yields precisely those G whose G^{\prime} is of one of the types of the theorem and no more, then a sufficiency proof is superfluous. It would be, however, again easy and is done in the same way as before, adding the labels of the undirected edges in 'bipartite' subgraphs. Moreover it is useful as a check, see below.

Let us illustrate the result for a few cases of the theorem.

Case (a). We find six possibilities:

each with G 'bipartite' and unbalanced. In checking this the reader may have found five other cases. with certain changes in the directions of e and f, if he has erronously taken e^{\prime} or f^{\prime} in G^{\prime} to be (z, y) instead of (z, x) (see Fig. 2). But the proof that in our six cases indeed $s(e)=s(f)$ for all $s \in S(G, F)$ doesn't use the orientation, so the five cases should turn up. In fact they are found from the second type of case (b). That the error was harmless here is due to the fact that in case (a) the edges e and f get label 0 for all labelings so in Fig. 2 the label a is always 0 and (z, y) can indeed be taken as e^{\prime}. Things are different however in:

Case (c), first type. We find:

and neither
nor

In fact the latter turn up nowhere. Their corresponding G^{\prime} looks like

References

[1] M. Doob, Generalizations of magic graphs, J. Combin. Theory (B) 17 (1974) 205-217.
i:. M. Ioob, Characterizations of regular magic graphs, J. Combin. Theory 25 (1978) 94-104.
[3] k.: J Jeurissen, Inc. matrix and labeling of a graph, J. Combin. iheory (B) 30 (1981) 290-301.
[4] R.H. Jcurissen, Disconnected graphs with magic labelings, Discrete Math. 43 (1983) 47-53.
[5] B.M. Stewart. Mapic graphs, Canad. J. Math. 18 (1966) 1031-1059.

