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We characterize graphs for which there is a labeling of the edges by pairwise different integer
labels such that the sum of the labels of the edges incident with a vertex is independent of the
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particiiar vertex. We gCncraiizc o mixed grapas, ana to mucliugs with values in an lmcgrdl
domain.

1. Inteandnactiom
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We consider finite, undirected, connected graphs, allowing loops and multiple
edges. Let G be such a graph and E its edge set. If AeZ, we call s:E—Z a
labeling for A if for every vertex x:

Z i(x, e)s(e)=A,

ecE

where i(x, e) =0 if e is not incident with x, =2 if e is a loop at x, and =1 if e is an

€a ge not a loop, incident with x. S(G 5 ) is the Z-module of ail such laDellngS, for
any A, and Z(G) is the Z-module of !“hphnm for 0, A lahphqa s S(G) is called

Kaile RISs e (8 %73 333 QU ina

pseudo-magic if the ‘labels’ s(e) are pairwise different, magic if moreover they

are all non-negative. We shall first mention some resuits that are necessary for

understandmg the remainder of this paper. Further details may be found in the
a 2 ~a ~L

references. We shall then prove what is in effect a special case of the main
theorem; the generalization and its analogous proof are saved for the final
sections.

If a submodule of Z? has the property that for every i and i 1<i<j<q, it
contains an element (xl,..

P ____* _ N%MY_ __ __ . _ —al PR | et ot . o abl . Lo ncesnlaaman
pdll'Wl.\C aierent f it is in none of t ypicrplauca
X; = Xx;, it is not in their union. The proof is easy, and the princ |p|e h s been used

. Th is e
before ([S, Theorem 5], [2, Theorem 3.1]). It follows that a graph G is not
pseudo-magic iff it has a pair e, f of edges w1th s(e) = s(f) for every s e S(G).
These pairs we shall characterize. Note that a graph is magic iff if is pseudo-magic

PR TR T S R, _ i o I cctal, AN N nn A LA BN ) Fne avraesr adan
and there is for €very € g € an § € O({r) Witll ${€) -~ VU and ${j )= v [GI TVCTy LCUge
f (cf. [5, Theorem 6]; the use of R instead of Z is not essential, see [2, Section 2]
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or [4, Section 1]). The latter condition is satisfied for instance if every edge is on a
Hamiltonian cycle or an other spanning regular subgraph.

A connected bipartite graph with point-set P, UP,, P, and P, stable, will be
denoted by P,P, (we admit P, =@, or P, =, i.e. the trivial one-point graph is
bipartite). It is called balanced if |P,|=|P,|, unbalanced if |P,|#|P,|. For a
connected graph G that is non-bipartite or bipartite and balanced we have
S(G) # Z(G), i.e. there is a labeling for some A#0 ({1, Theorem 2.11], [3,
Theorem 1']). ‘

Let f be an edge of the connected graph G. We refer to f as an edge of

type s, if G is non-bipartite, but G —{f} is bipartite (so connected) and
balanced,

type s, if G consists of a non-bipartite graph and a balanced bipartite
graph, connected by the bridge f,

type s. if G consists of two balanced bipartite graphs connected by the
bridge f,

type sy if (G is an unbalanced bipartite graph and f a bridge.

It has been proved that s(f) =0 for all s € S(G) iff s is of one of these four types
[4. Theorem 1].

2. Pictograms

A few examples may suffice to explain the symbolism we found useful in
formulating the theorem below. A connected bipartite graph DD, will be
symbolized by

D,

—— ar —

D>

(which does not imply |D,|>|D»,|). If we want to express that it is balanced we use

A connected non-bipartite graph is symbolized by [>

Further
D,
5 ~X l>

means that e is a bridge from D, D, to a connccted non-bipartite graph, e having
an endpoint in D,. At last

D, e
—_—

D,
means a connected bipartite graph D,D, into which an extra edge is inserted
with its endpoint(s) in D, (e may be a loop). When in doubt the reader may
derive the precise meaning of a symbol from the proof of the theorem.
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3. The Theorem

Theorem. Let G be a connected, undirected, finite graph and let e and f be edges of

G. Then s(e) = s(f) for all s € S(G) iff e and j take one of the followmg posmons m
G (possably after mterchangmg their names)

(a) ,{ 7\ —
with G unbalanced.

by T/ 2f< or —_— T T
both with G unbalanced.

D, E, Fy

(c) z< or - < = e =
with |Dy|+|Fy| =|D,|+|F,.

( _) Dl E, Fl

a .Dz - 2 '\ F,

with |E\|—|E;| = 2(D,| - |D,|) = 2(|F,| - |F)).

D -
(e) ~—
D, E;
with |Dy|—~|D,| = 3(|E,| - |E,)).
A D, = E,
) —==— or
7 D, E,

with |D|+|E\| = |D,|+|E,|.

E,
— >
E;

with |E,|—~|E,|=2(|D,|-|D,)).

< 2 \D =
% > or e~
f D, ¢ 4 E;

with |D\|+|E,| = |D,|+|E,|, or

— ~>
Dr==r{> o =7

Proof. The sufficiency can easily be proved for (groups of) separate cases, as
follows. One takes a labeling s for A and evaluates the sum of the labels of the
edges of a bipartite subgraph in two ways. E.g. in case (e):

A Dy =A |Dy|-2s(e)—=s(f) and A |E\|=A|E|—s(f),
from which:

s()=A(E|—|E,) and s(e) =3A(Dy| = Dol +|E,| - |E,]),

(h)

or
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or in cases (c) and (h): e and f arrive at different parts of a balanced subgraph
P,P,, so A |P;|—s(e) = A |P5|—s(f), yielding s(e)=s(). In cases (a) and (b) one
also has to use that G has no labelings for a A # 0 (take the sum of all labels to
show this). It may seem strange that in cases (c) ard (d) the given condition is not
(fully) needed, but then if the remaining part doesn’t hold we are in another case
((b), (a) respectively). The cases as given do not overlap (although of course
various cases may occur in one graph). The left graphs in Fig. 1 illustrate the
second case of (h) and the first of (f), respectively.

To prove the necessity we put e =(x, y) and f=(:, w). (None of the possible
equalities between x, y, z and w are excluded, nor is the existence of other edges
between x and y or z and w).

{A) Suppose in G —{e, f} there is a walk W of odd length from an endpoint of
e, x say, to an endpoint of f, z say (the repeated use of edges or points by W is
not excluded). Let n:y,...,m, be the edge-sequence of W. Construct G’ by
omitting ¢ from G and inserting a new edge e’ between y and w (see Fig. 1 for
two cxamples). For se€ S(G) with s(e)=u we construct s'e S(G') as follows:
sie=u,s'(f)=s(f)—u,s'(g)=s(g) if g#e,f and g not on W, and if g is on W,
then

s'(g) = s(g)+ ula(g)—B(g)

where a(g) is the number of odd i with m; = g, B(g) the number of even i with
m; = g. Thus along W we alternatingly raise and diminish the labels by u. Now
s> s’ defines an isomorphism S(G)— S(G'). Therefore if s(e)=s(f) for all
seS(G). s'(fY=0for all s'e S(G", i.e. fis of type s,, ..., 54 in G’ (note that G' is
connected).

Now from this knowledge about f, we try to reconstruct G from G’. Note that
¢’ has an endpoint in common with f and that x has (0 be found at the end of an
odd walk starting from the other endpoint of f (if f i« not a loop) and not using f
or ¢'.

(@) f of type s,. G’ looks like

__g”_

e’
.

v

x has to be located in the lower part. Depending on whether e’ is a bridge or not
in 77’ - {f} we find the second or first case of ().

z
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Fig. 1.
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(b) f of type s,. If €' is in the bipartite component of G —{f}, we find the second
or first case of (h), depending on whether e’ is a bridge in that component or is
not. If e’ is in the non-bipartite component of G —{f} and is not a bridge in that
component we find the first case of (h) or the fifth, depending on whether the
component stays non-bipartite or becomes bipartite if e’ is deleted. If ¢’ is a
bridge in that component we find the third or fourth case of (h).

- {c) f of type s.. We find the cases (c).

(d) f of type sq. We find the cases (b).

(B) Suppose there is no walk W as above.

(a) Let G"=G —{e, f} be connected. Then it is bipartite, since the existence of
an odd cycle would permit the construction of an odd walk between any two
points. Also the points x,y, z and w must all belong to the same ‘part’ of the
bipartition of G”. But then we could construct an (even) path from x to z
(possibly of length 0) and one from w to y, and connect these paths by e and f to
a closed walk. Assign alternatingly +1 and —1 to its edges (adding if an edge
occurs twice) and 0 to all other edges, thus constructing a labeling s for 0 with
s(e)=+1, s(f) =—1. This exciudes this possibility.

(b) Let G" =G —{e, f} be disconnected and have two components G, and G,.

(b,) Let e nor f be a bridge. Then we may suppose that x and z are points in
G,, y and w points in G,. Again G, has to be bipartite with x and z in one part,
and the same goes for G,, y and w. Now there is an even closed path containing e
and f, which enables us to find a labeling for 0 with label +1 for e and label —1 for
f. So we have:

(b,) Precisely one of e and f is a bridge. We may suppose that e is the bridge
and that x, z, and w are points of G,, y of G,. Then G, —{f} is connected, and (as
above) bipartite with x, z and w in one ‘part’. Thus in G, we have an odd walk
from x to x using f once. If there is also an odd walk from y to y in G, we can
ccnstruct a labeling s for 0 with s(e) =2 and s(f) = —1. Thus G, is also bipartite.
vow take a labeling s for A#0 (G is non-bipartite) and put G,—{f}=D,D,,
G,=E,E, with x,y, ze D;, ye E;. Then

A Dy =2s(f)—s(e)=A|D,| and A|E,|=A |E,| —s(e).

From s(e) = s(f) it follows that |D,|—|D5| = 3(|E,| — |E,|). We have found case (e).

(c) Let e and f both be bridges. let G,, G,, G be the components of G —{e, f},
with x a point of G,, y and z points of G,, and w a point of G;. G, is bipartite,
E,E, say, with y and z in E,. Existence of odd cycles in G, and G, would make
possible a labeling s for 0 with s(e)=2, s(f)=-2. So we assume that G, is
bipartite, D, D, say, with x in D,. If G (so G3) is non-bipartite or if G is bipartite
and balanced, then there is a labeling s for some A#0. We then find A |D,| =
A Do —s(e), A|E)|—s(e)—s(f)=A|E,|, and from s(e)=s(f) it follows that
\E,|—|E;| = 2(|D,| —|D,)). This gives cases (g) and (d). We have left: G unbalanced
bipartite, which is case (a). [
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Corollary 1. A connected graph is pseudo-magic iff it is not of one of the types
pictured in the theorem.

[ .
———

Corollary 2. A triply line-connected graph is pseudo-magic or of type

Corollary 3. If a conrected graph is not pseudo-magic it has two edges whose
simultaneous deletion yields a graph with at least one balanced bipartite component
or at least two bipartite components.

4. Labelings over an integral domain

In the definitions of labeling and pseudo-magic we replace Z by an integral
domain F, the modules of labelings being now called S(G, F) and Z(G, F). A
bipartite graph P,P, is now called balanced if |P,|=|P,] (modchar F). If
char F#2, then still S(G, F)# Z(G, F) iff G is bipartite and balanced or non-
bipartite and also s(f) =0 for all seS(G, F) iff f is of one of the four types
S4» Sh» Sc. 84 defined in Section 1 (‘balanced’ now read in the above sense; refer-
ences as in Section 1). The proof of the theorem goes through without changes,
except when char F =3, which gives a small difficulty in part (B)(b,). It turns out
that for char F =3 we should replace case (e) in the theorem by:

(4 e
—_—N N
,\{> or S~

If char f=2 there are more changes (references as before). First of aill the
bipartite graphs play no special role, for S(G, F)# Z(G, F) if and only if the
number of points of G is even. Secondly the four types s,, . .., sq reduce to two: f
a bridge between two graphs with even point-sets and f a bridge in a graph with
a7 odd point-set. The necessity part of the proof is much easier: in A an odd as
well as an even walk does the trick, so B is superfluous. We find the following

cases (@ and @ depicting connected graphs with an even and an odd number of
points respectively):

€ ® ®&—O—®
®—E—0O E&—O—®
©O0—0—0©

The sufficiency is again easy: twice the sum of the labels of the edges in a ‘balloon’
plus the labels of the edges attached to it equals A times the number of points in it
{everything in F).

The validity of the corollaries depends on that of the separation-principle of
Section L. It is an easy exercise to show that it holds provided F is infinite, or
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finite with |F|>(§), q the number of edges of G. Let us assume that this condition
is satisfied. Then Corcilary 1 stays true if ‘types’ is adapted for char F=2, 3.
Corollary 2 also stays true (one may omit the part ‘or..." if char F=:2), and
Corollary 3 holds for all characteristics # 2.

5. Labelings of mixed graphs

We now allow (some of) the edges to be directed. In the definition of ‘labeling’
i(x, e) is defined as before for e undirected. If e is directed we put i(x, e) =0 if e is
not incident with x or is a loop at x, =+1 if e is not a loop and x its endpoint,
=-11if e is not a loop and x its initial point. We suppose char F# 2 (if char F =2,
direction of edges is irrelevant).

Fig. 2.

As is shown by Fig. 2 one can associate with a mixed graph G an undirected
graph G’ such that there is an isomorphism between $(G, F) and S(G', F), in
which labelings of G for A correspond to such of G' for A. Note that G’ is
bipartite iff the point-set of G can be partitioned as P, U P, in such a way that
undirected edges have an endpoint in P, and one in P,, whereas directed edges
have their initial point and their endpoint both in P, or both in P,. Let us call G
‘bipartite’ if G' is bipartite. It is not difficult now to translate our theorem for the
case of mixed graphs. Starting with the necessity-part: if e and f are edges of G
with s(e)=s(f) for all se S(G, F), then in G’ they yield edges e’ and f' with
s(e') =s(f) for all s € S(G', F), so for G' with ¢’, f' we have one of the eight cases
of the theorem. For each case we reconstruct G from G’, taking into account the
possibilities: e (un)directed, f (un)directed. Note that the orientation of (x, y)=e
(see Fig. 2) is determined in the reconstruction as being towards x, and that x is
one of the endpoints of e’ =(x, z). See also below, under case (a). The pictograms
stay useful if we keep in mind to replace ‘bipartite’ for bipartite. Note that the
notion of ‘balanced’ for G’ can easily be carried over to G: it still means |P;|=|P,|
(mod char F) for the partition P,UP, of G as above. If the reconstruction of G
from G’ is done carefully, i.e. yields precisely those G whose G’ is of one of the
types of the theorem and no more, then a sufficiency proof is superfluous. It
would be, however, again easy and is done in the same way as before, adding the
labels of the undirected edges in ‘bipartite’ subgraphs. Moreover it is useful as a
check, see below.

Let us illustrate the result for a few cases of the theorem.
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Case (a). We find six possibilities:

— T \ — —
/ N -

_— _\w/ - —
P .

W _‘\+/-—

each with G ‘bipartite’ and unbalanced. In checking this the reader may have
found five other cases. with certain changes in the directions of e and f, if he has
erronously taken e’ or f' in G’ to be (z, y) instead of (z, x) (see Fig. 2). But the
proof that in our six cases indeed s(e)=s(f) for all s € S(G, F) doesn’t use the
orientation, so the five cases should turn up. In fact they are found from the
second type of case (b). That the error was harmless here is due to the fact that in
casc (a) the edges e and f get fabel 0 for all labelings so in Fig. 2 the label a is
abways 0 and (z, y) can indeed be taken as e’. Things are different however in:
Case (c), first type. We find:

> r
N ____O___
A
and neither
- nor 7

In fact the latter turn up nowhere. Their corresponding G’ looks like

=
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