
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Journal of Algebra 299 (2006) 8–20

www.elsevier.com/locate/jalgebra

Grothendieck rings of o-minimal expansions
of ordered abelian groups

M. Kageyama ∗, M. Fujita

Department of Mathematics, Graduate School of Science, Kyoto University, Sakyou, Kyoto 606-8502, Japan

Received 5 April 2004

Available online 4 April 2006

Communicated by Michel Broué

Abstract

We will calculate completely the Grothendieck rings, in the sense of first order logic, of o-minimal
expansions of ordered abelian groups by introducing the notion of the bounded Euler characteristic.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Grothendieck rings; O-minimal structures; Bounded Euler characteristic

1. Introduction

The notion of the Grothendieck ring for a first-order structure was introduced by [1,2], inde-
pendently. In [1], J. Krajíček and T. Scanlon clarified the relation between the triviality of this
ring and the non-existence of non-trivial weak Euler characteristic maps. More precisely, they
used weak Euler characteristics and Grothendieck rings to handle the following situations. For
instance, for a finite model and when any one-to-one function is onto (PHP, pigeonhole princi-
ple), however, for an infinite model, this does not holds in general. In [2], J. Denef and F. Loeser
showed that for T the theory of algebraically closed field containing a fixed field k, it coincides
with the notion of the Grothendieck ring of algebraic varieties over k. They treated with the
motivic integration which was introduced by M. Kontsevich.

For an arbitrary L-structure M, K0(M) and K0(M,L) denote the Grothendieck ring of the
L-structure M.
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In [3–5], the Grothendieck rings of fields are calculated explicitly as follows:

(1) K0(R,Lor) = Z, where R is a real closed field and Lor is the language (<,+,−, ·,0,1).
(2) K0(Qp,Lring) = 0, where p is a prime number, Qp is the p-adic number field and Lring is

the language (+,−, ·,0,1).
(3) K0(Fp((t)),Lring) = 0, where p is a prime number and Fp((t)) is the quotient field of the

formal power series in the indeterminate t over the finite field Fp .
(4) K0(F,Lring) = 0, where F denotes Laurent series fields L((t1)), L((t1))((t2)), L((t1))((t2))((t3))

and L is a finite extension of Qp or Fq . Here p is a prime number and q is a power of p.

In [1,2], it is shown that the Grothendieck ring K0(C,Lring) is extremely big and complicated:

(5) There exists a ring embedding Z[Xj | j ∈ c] ↪→ K0(C,Lring), where c is the cardinality of
continuum and Xj (j ∈ c) are indeterminates.

Although the Grothendieck rings of some structures have been calculated as above, many
other Grothendieck rings are not known yet and the Grothendieck rings of o-minimal expansions
of ordered abelian groups are known only a little. See [3] for the precise definition of an o-
minimal structure.

In the present paper, we will calculate the Grothendieck rings of o-minimal expansions of
ordered abelian groups completely, namely, we have the following theorem:

Theorem 1. Let G = (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group.
Then K0(G) is isomorphic to either Z or the quotient ring Z[T ]/(T 2 +T ) as a ring, where Z[T ]
is a polynomial ring in an indeterminate T over Z and (T 2 + T ) is the ideal of Z[T ] generated
by T 2 + T .

2. Grothendieck rings

Let M be an L-structure. The notation Defn(M) denotes the family of all definable subsets
of Mn. We set Def(M) := ⋃∞

n=0 Defn(M). Two definable sets A,B ∈ Def(M) are definably
isomorphic, denoted by A ∼= B , if there is a definable bijection A → B .

Definition 2 (Grothendieck ring). The Grothendieck group of an L-structure M is the abelian
group K0(M) generated by symbols [X], where X ∈ Def(M) with the relations [X] = [Y ]
if X and Y are definably isomorphic, and [U ∪ V ] = [U ] + [V ] where U,V ∈ Defn(M) and
U ∩ V = ∅. The ring structure is defined by [X][Y ] = [X × Y ] where X × Y is the Cartesian
product of definable sets. The ring K0(M) with this multiplication is called Grothendieck ring
of the L-structure M.

Remark 3. By construction, the map [ ] : Def(M) → K0(M) satisfies the following universal
mapping property.

Consider the map χ : Def(M) → Z with

(1) χ(U ∪ V ) = χ(U) + χ(V ) for U,V ∈ Defn(M) with U ∩ V = ∅,
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(2) χ(X × Y) = χ(X) · χ(Y ) for X,Y ∈ Def(M),
(3) χ(Z) = χ(Z′) if Z,Z′ ∈ Def(M), Z ∼= Z′.

Then, there exists an unique ring homomorphism ψ :K0(M) → Z such that ψ ◦ [ ] = χ .

Remark 4. The onto-pigeonhole principle ontoPHP is the statement that there is no set A, a ∈ A,
and injective map f from A onto A\{a}. By the construction of the Grothendieck ring of a
structure M, K0(M) is non-trivial if and only if M |= ontoPHP. See [1] for the details.

3. Grothendieck rings of o-minimal expansions of ordered abelian groups

We begin with the introduction of notations of an o-minimal structure (G,<, . . .).
For a definable set X ⊆ Gm, we put

C(X) := {
f :X → G | f is definable and continuous

}
,

C∞(X) := C(X) ∪ {−∞,+∞},

where we regard −∞ and +∞ as constant functions on X. For f ∈ C(X), the graph of f is
denoted by Γ (f ) ⊆ X ×G. For f,g ∈ C∞(X), we write f < g if f (x) < g(x) for all x ∈ X, and
in this case we put

(f, g)X := {
(x, r) ∈ X × G | f (x) < r < g(x)

}
.

We next show that the Grothendieck rings of o-minimal expansions of ordered abelian groups
are of the simple form:

Lemma 5. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group. Then,

K0(G) = Z
[[C] | C ⊆ G is a cell

]
.

Proof. Let M ⊆ Gn be a definable set. By the cell decomposition theorem,

M = C1 ∪ · · · ∪ Cl,

where C1, . . . ,Cl are cells. Hence

[M] = [C1] + · · · + [Cl].

Therefore, it suffices to show that for every cell C ⊆ Gn, [C] ∈ Z[[C] | C ⊆ G is a cell]. We will
prove this by induction on n. For simplicity we denote Zcell := Z[[C] | C ⊆ G is a cell].

The claim obviously holds true in the case where n = 1. Assume that the claim is true for
n = k, and we show that it holds for n = k + 1. Let C ⊆ Gk+1 be a cell.

If

C = {
(x, t) ∈ A × G | t = f (x)

}
,
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where A ∈ Gk is the image π(C) of C under the projection π :Gk+1 → Gk on the first k-coor-
dinates and for some function f ∈ C(A). Hence there exist a definable bijection C ∼= A. Because
A is a cell, by the inductive assumption, [C] = [A] ∈ Zcell.

If

C = {
(x, t) ∈ A × G | α(x) < t < β(x)

}
,

where A ∈ Gk is the image π(C) of C under the projection π :Gk+1 → Gk on the first k-coor-
dinates and for some functions α,β ∈ C∞(A).

Case 1. α = −∞, β = +∞.

Then C = A × (−∞,+∞). Hence [C] = [A] · [(−∞,+∞)] ∈ Zcell.

Case 2. α ∈ C(A), β = +∞.

Then we have a definable bijection,

A × (0,+∞) −→ C,

(x, t) 
−→ (
x,α(x) + t

)
.

Hence, [C] = [A] · [(0,+∞)] ∈ Zcell.

Case 3. α = −∞, β ∈ C(A).

Then we have a definable bijection,

A × (0,+∞) −→ C,

(x, t) 
−→ (
x,β(x) − t

)
.

Hence, [C] = [A] · [(0,+∞)] ∈ Zcell.

Case 4. α, β ∈ C(A).

Then,

C ∪ Γ (α) ∪ D = {
(x, t) ∈ A × G | t < β(x)

}
,

where D = {(x, t) ∈ A × G | t < α(x)}. Hence, by considering Case 3

[C] + [
Γ (α)

] + [D] ∈ Zcell.

Because [Γ (α)], [D] ∈ Zcell, thus [C] ∈ Zcell. �
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Corollary 6. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group. We
set X := [(0,+∞)]. Then the equation X2 + X = 0 holds true, and

K0(G) = {m + nX | m,n ∈ Z}.

Proof. First, we prove the following claim.

Claim 7.

(i) For the interval (a, b) where a, b ∈ G, [(a, b)] = −1,
(ii) [(−∞,+∞)] = 2X + 1,

(iii) X2 = −X.

Proof. (i) Because (a, b) ∼= (0, b − a), we may assume a = 0 and show that [(0, b)] = −1.
(0, b) ∼= (0, b/2) ∼= (b/2, b) and [(0, b)] = [(0, b/2)] + 1 + [(b/2, b)]. Hence, [(0, b)] = −1.

(ii) (−∞,0) ∼= (0,+∞) and [(−∞,+∞)] = [(−∞,0)] + 1 + [(0,+∞)] thus [(−∞,

+∞)] = 2X + 1.
(iii) Let I be the interval (0,+∞) and f : I → I (x 
→ x) be a function. Then, I × I =

(0, f )I ∪ Γ (f ) ∪ (f,+∞)I . We can construct the following definable bijections,

(0, f )I −→ (f,+∞)I

(x, y) 
−→ (y, x)
and

I × I −→ (f,+∞)I

(x, y) 
−→ (x, x + y).

Because Γ (f ) ∼= I ,

[I × I ] = [
(0, f )I

] + [
Γ (f )

] + [
(f,+∞)I

]
= [I × I ] + [I ] + [I × I ].

We get [I × I ] + [I ] = 0. Thus X2 + X = 0. �
By Lemma 5, for each element F ∈ K0(G) there exist cells C1, . . . ,Cn in G such that

F =
∑

j1,...,jn

aj1,...,jn[C1]j1 · · · [Cn]jn ,

where aj1,...,jn ∈ Z. Each cell Ci (i = 1, . . . , n) is a point or an interval and (0,+∞) ∼=
(a,+∞) ∼= (−∞, b) ∼= (−∞,0) where a, b ∈ G. Using the above claim, we obtain F = m+nX

for some m,n ∈ Z. �
Next we will define a class of definable sets for every o-minimal expansion of an ordered

abelian group and show its useful properties to calculate the Grothendieck rings of o-minimal
expansions of ordered abelian groups.

Definition 8. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group. We
call that a definable set M ⊆ Gn is bounded if M ⊆ [b, b′]n for some b, b′ ∈ G, where [b, b′] :=
{t ∈ G | b � t � b′}.
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Lemma 9. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group and
M ⊆ Gn be a bounded definable set with dimM = 1. Then, there exists a definable bijection
M → D for some bounded definable set D ⊆ G.

Proof. Since dimM = 1, by the cell decomposition theorem we get the following decomposi-
tion:

M = C1 ∪ · · · ∪ Cl ∪ Cl+1 ∪ · · · ∪ Cm,

where C1, . . . ,Cm are cells, dimC1 = 1, . . . ,dimCl = 1 and dimCl+1 = 0, . . . ,dimCm = 0.

Claim 10. For all i = 1, . . . , l, there exists a projection pni
:Gn → G((x1, . . . , xn) 
→ xni

) for
some 1 � ni � n such that pni

| Ci :Ci → pni
(Ci) is definably bijective.

Proof. We prove this claim by the induction on n. When n = 1, because each Ci is an interval or
a point, the claim holds true. Under the assumption that the claim holds true for n = k, we show
that the claim holds for n = k + 1. Let p1 :Gk+1 → G be the projection on the first coordinate.

Case 1. dimp1(Ci) = 1.

For the projections πq :Gk+1 → Gq (q = 1, . . . , k + 1) on the first q-coordinates,
dimπq(Ci) = 1, because dimCi � dimπq(Ci) � dimp1(Ci) = 1. Hence, each cell πq(Ci)

(q = 2, . . . , k + 1) is the graph of a definable function fq ∈ C(πq−1(Ci)). By using f2, . . . , fk ,
we inductively define functions g2, . . . , gk+1 :p1(Ci) → G as follows: g2(x) := f2(x) and we
define gj+1 by gj+1(x) := fj+1(x, g2(x), . . . , gj (x)) where 2 � j � k + 1 and x ∈ p1(Ci).
Then, for a definable function g :p1(Ci) → Gk (x 
→ (g2(x), . . . , gk+1(x))), Ci = Γ (g). Thus
we obtain a definable bijection p1 | Ci :Ci → p1(Ci).

Case 2. dimp1(Ci) = 0.

Since dimp1(Ci) = 0, there are a point ai ∈ G and a cell Di ⊆ Gk such that Ci = {ai} × Di .
By inductive assumption, there is a projection pni

:Gk → G such that pni
| Di is injective. Let

τ be a projection such that τ :Gk+1 → Gk((x1, . . . , xk+1) 
→ (x2, . . . , xk+1)). Then, pni+1 =
pni

◦ τ and pni+1 | Ci :Ci → pni
(Ci) is a definable bijection. �

By claim, each Ci (i = 1, . . . , l) is definably bijective to an interval of G and each Ci (i =
l + 1, . . . ,m) is a point set. Thus, we can define a definable bijection M → D for some bounded
definable set D ⊆ G. �
Proposition 11. Let G = (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian
group, M ⊆ Gm be a non-bounded definable set and N ⊆ Gn be a bounded definable set. If M

and N are definably isomorphic, then there exists a definable bijection (0,+∞) → D for some
bounded definable set D ⊆ G.

Proof. Let πq :Gn → Gq be the projection on the first q-coordinates. By the cell decomposition
theorem,

M = C1 ∪ · · · ∪ Cm,
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where C1, . . . ,Cm are cells. Since M is a non-bounded definable set, we can choose a non-
bounded cell Ci for some 1 � i � m. Because Ci is non-bounded we may assume that π1(Ci) is
a non-bounded interval I .

If π2(Ci) = Γ (f ) for some f ∈ C(π1(Ci)), then we can define a definable injection i2 : I →
π2(Ci) by i2(x) := (x, f (x)).

If π2(Ci) = {(x, y) ∈ I × G | α(x) < y < β(x)} for some α,β ∈ C∞(π1(Ci)), note that G

is a vector space over Q [3, Chapter 1, Proposition 4.2], we can define a definable injection
i2 : I → π2(Ci) by

i2(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x, x) if α = −∞, β = +∞,

(x,β(x) − a) if α = −∞, β ∈ C(π1(Ci)),

(x,α(x) + a) if α ∈ C(π1(Ci)), β = +∞,

(x, (α(x) + β(x))/2) if α ∈ C(π1(Ci)), β ∈ C(π1(Ci)),

where a is a positive element of G.
By continuing in the similarly way, we get a sequence of definable injections

I
i2−→ π2(Ci)

i3−→ · · · in−1−−−→ πn−1(Ci)
in−→ Ci.

Let ι : I → Ci be the composition of these definable injections. Because dimf (ι(I )) = 1 by
Lemma 9, there is a bounded definable set D ⊆ G such that f (ι(I )) ∼= D. Thus we get a definable
bijection between I and D. �

It is easier to calculate the Grothendieck ring of the structure G in the case where a non-
bounded definable set and a bounded definable set are definably isomorphic than in the other
case. To treat the latter case, we rewrite the condition as follows:

Bounded Condition. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian
group, M ⊆ Gm be a bounded definable set and N ⊆ Gn be a definable set. If M and N are
definably isomorphic, then N is bounded.

Example 12. Let G = (G,+,−,<,0) be the ordered divisible abelian group. Then G satisfies
Bounded Condition.

Proof. Suppose not. Then there are definable sets X ⊆ Gm, Y ⊆ Gn such that X is non-bounded,
Y is bounded and X ∼= Y . By Proposition 11, there is a definable bijection f : (0,+∞) → D

for some bounded definable set D ⊆ G. Because G is o-minimal, we may assume that D

is an interval (a, b) for some a, b ∈ G. By the monotonicity theorem [3, Chapter 3, Theo-
rem 1.2], there are points a1 < · · · < ak in (0,+∞) such that on each subinterval (aj , aj+1)

with a0 = 0, ak+1 = +∞, the function f |(aj , aj+1) is strictly monotone and continuous.
Since (g :=) f | (ak,+∞) : (ak,+∞) → (a, b) is definable and the ordered divisible abelian
group admits quantifier elimination [3, Chapter 1, Corollary 7.8], the definable function g is
a polygonal line. By dividing suitably (ak,+∞) again, we obtain points a′

k+1 < · · · < a′
n in

(ak,+∞) with a′
k = ak , a′

n+1 = +∞, and linear functions gk,k+1 : (a′
k, a

′
k+1) → (a, b), . . . ,

gn,n+1 : (a′
n, a

′
n+1) → (a, b) with gk,k+1, . . . , gn,n+1 are strictly monotone.

There exist m,m′ ∈ Z such that gn,n+1(x) = mx + m′, m �= 0 where x ∈ (a′
n, a

′
n+1). When

m > 0 for x0 ∈ G with (−m′ + b)/m � x0, gn,n+1(x0) > b. This contradicts to the fact that



M. Kageyama, M. Fujita / Journal of Algebra 299 (2006) 8–20 15
the target space of gn,n+1 is (a, b). We can also lead a contradiction when m < 0 in the same
way. �
Example 13. Let R = (R,+,−, ·,<,0,1) be a real closed field. Then R does not satisfy
Bounded Condition.

Proof. We can define a definable bijection φ : (0,1) → (1,+∞) by φ(x) := x/(1 − x). �
4. Bounded Euler characteristic

We first recall the definition of the geometric Euler characteristic [3, Chapter 4].

Definition 14. Let (G,<, . . .) be an o-minimal structure and S be a definable subset of Gm. There
exists a finite partition P of S into cells P = {C1, . . . ,Cl} by the cell decomposition theorem.
Then we define the geometric Euler characteristic of the definable set S:

χg(S) :=
∑
C∈P

(−1)dimC.

This definition is seem to depend on the partition P of S. However, the definition does not
depend on the choice of finite partitions. Moreover, it is known that χg is invariant under defin-
able bijections and satisfies the properties (1), (2) and (3) in Remark 3. See [3, Chapter 4] for the
details.

Lemma 15. Let G = (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group.
Consider the ring homomorphism i : Z → K0(G) given by i(1) = [one point]. Then i is injective.

Proof. Consider the geometric Euler characteristic χg : Def(G) → Z. By Remark 3 there exists
a ring homomorphism ψg :K0(G) → Z such that ψg ◦ [ ] = χg . Fix n ∈ ker(i). We may assume
that n � 0. By the definition of χg ,

n = χg(n points) = ψg ◦ i(n) = 0.

We have shown that i is injective. �
By Lemma 15, we may consider naturally that Z is a subring of K0(G) for each o-minimal

expansion of an ordered abelian group G.

Definition 16. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group,
C ⊆ Gn be a cell and pk :Gn → Gk be the projection on the first k-coordinates. A cell C is called
exceptional if there exist k ∈ N and a cell A ⊆ Gk−1 with pk(C) = A × G. A non-exceptional
cell C is called bad if there exist k ∈ N and a cell A ⊆ Gk−1 with

pk(C) = {
(x, t) ∈ A × G | t < f (x)

}
or

{
(x, t) ∈ A × G | f (x) < t

}
,

where f :A → G is a definable function. A good cell C is a cell which is not neither exceptional
nor bad.
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Lemma 17. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group,
X ⊆ Gn be a definable set, F be a finite partition of X into cells any one of whose cell is
not exceptional. We put

χb(X) :=
{∑

C∈F , C:good(−1)dimC, if F includes a good cell,

0, otherwise.

Then χb(X) does not depend on the choice of the finite partition F .

Proof. We can take such a finite partition F = {C} of X by applying the cell decomposition
theorem to definable sets X, {(x1, . . . , xn) ∈ Gn | xi > 0}, {(x1, . . . , xn) ∈ Gn | xi = 0}, and
{(x1, . . . , xn) ∈ Gn | xi < 0} (i = 1, . . . , n). We set

χF
b (X) :=

∑
C∈F , C:good

(−1)dim(C).

Let G = {D} be another partition. Our purpose of this proof is to show χG
b (X) = χF

b (X). Let

H be a finer partition than F and G. If χF
b (X) = χH

b (X) and χG
b (X) = χH

b (X), then χG
b (X) =

χF
b (X). Hence we may assume that G is a finer partition than F . We prove χG

b (X) = χF
b (X) by

the induction on n. Remark that

χF
b (X) = χg

( ⋃
C∈F , C:good

C

)
=

∑
C∈F , C:good

(−1)dim(C).

We have only to show that, for any bad cell C of F ,

∑
D∈G, D⊆C, D:good

(−1)dim(D) = 0.

We fix C ∈F and set

E :=
⋃

D∈G, D⊆C, D:good

D.

Remark that
∑

D∈G, D⊆C, D:good

(−1)dim(D) = χg(E).

When n = 1, E = (a, b], E = [a, b) or E = ∅ for some a, b ∈ G. Hence χg(E) = 0.
We consider the case where n > 1. Let p be the projection on the first (n − 1)-coordinates.

Then p(C) is a non-exceptional cell. Let G′ = {D′} be the family of all good cells of the form:
D′ = p(D) for some D ∈ G. Set F := ⋃

D′∈G′ D′. Consider two cases.

• First consider the case where C is of the form:

{
(x, t) ∈ p(C) × G | t = f (x)

}
or

{
(x, t) ∈ p(C) × G | f (x) < t < g(x)

}
,
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where f,g :p(C) → G are definable functions. Remark that χg(F ) = 0 by the inductive hy-
pothesis. Since E = {(x, t) ∈ F × G | t = f (x)} or E = {(x, t) ∈ F × G | f (x) < t < g(x)},
χg(E) = 0.

• Consider the other case, then there exist definable functions f < g on D′ ∈ G′ such that

E ∩ p−1(D′) = {
(x, t) ∈ D′ × G | f (x) < t � g(x)

}
,

E ∩ p−1(D′) = {
(x, t) ∈ D′ × G | f (x) � t < g(x)

}
or

E ∩ p−1(D′) = ∅.

In each case, χg(E ∩ p−1(D′)) = 0. Since E = ⋃
D′∈F ′(E ∩ p−1(D′)), χg(E) = 0. �

Lemma 18. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group. Let X

and Y be definable sets. Then χb(X ∪ Y) + χb(X ∩ Y) = χb(X) + χb(Y ).

Proof. This lemma follows from the definition of χb obviously. �
Proposition 19. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group,
X ⊆ Gm+n be a definable subset, D be a decomposition of Gm+n partitioning X and
π :Gm+n → Gm be the projection on the first m-coordinates. Assume that all cells are not
exceptional. Given a cell A ∈ π(D) there is a constant eA with χb(X ∩ p−1(a)) = eA and
χb(X ∩ p−1(A)) = χb(A)eA.

Proof. Fix A ∈ π(D). For each cell C of D, C ∩ π−1(a) = ∅ if π(C) �= A and a ∈ A. If
π(C) = A, C ∩ π−1(a) is a cell and its dimension does not depend on the choice of a ∈ A.
Moreover, if C ∩p−1(a) is good for some a ∈ A, the same statement holds true for all a ∈ A. Set
eA = χb(X ∩ π−1(a)) for some a ∈ A. Then eA satisfies the requirement of the first statement of
this lemma. It is also obvious that χb(X ∩ p−1(A)) = χb(A)eA by the definition of χb . �
Corollary 20. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group and
X ⊆ Gm and Y ⊆ Gn be definable sets. Then χb(X × Y) = χb(X) · χb(Y ).

Proof. This corollary follows from Proposition 19. �
Lemma 21. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group. More-
over, assume that G satisfies Bounded Condition. Then a cell C is good if and only if C is
bounded.

Proof. It is obvious that a cell which is not good is not bounded. Hence we have only to show
that a good cell C ⊆ Gn is bounded. We prove it by the induction on n. When n = 1, it is
obvious. Consider the case when n > 1. Let p :Gn → Gn−1 be the projection on the first (n−1)-
coordinates. The cell p(C) is bounded by the inductive hypothesis. Let d ∈ G such that p(C) ⊆
[−d, d]n−1. Remark that C is of the form:

{
(x, t) ∈ p(C) × G | t = f (x)

}
or

{
(x, t) ∈ p(C) × G | f (x) < t < g(x)

}
,
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where f and g are definable functions on p(C). There exists positive d ′ ∈ G such that −d ′ <

f (x) < d ′ and −d ′ < g(x) < d ′ for all x ∈ p(C). Set d ′′ := max{d, d ′}. Then C ⊆ [−d ′′, d ′′]n,
namely, C is bounded. �
Lemma 22. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group satis-
fying Bounded Condition. Let X ⊆ Gm be a definable set and σ be a permutation of {1, . . . ,m}.
We define a definable function Ψσ :Gm → Gm by Ψσ (x1, . . . , xm) = (xσ(1), . . . , xσ(m)). Then
χb(X) = χb(Ψσ (X)).

Proof. Since the symmetric group on {1, . . . ,m} is generated by the transpositions (i, i + 1), we
may assume that σ = (i, i + 1). By [3, Chapter 4, Proposition 2.13], there exists a cell decompo-
sition D such that any cell is not exceptional and Ψσ (C) are also cells for all cells C ∈ D. Since
a cell is good if and only if it is bounded by Lemma 21, Ψσ (C) is good if and only if so is C.
Hence, χb(X) = χb(Ψσ (X)) by the definition of χb . �

We are now ready to state the invariance of χb under bijections definable in an o-minimal
expansion of an ordered abelian group which satisfies Bounded Condition.

Proposition 23. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group
satisfying Bounded Condition. Let X ⊆ Gm be a definable set and f :X → Gn be an injective
definable map. Then χb(X) = χb(f (X)).

Proof. Consider the graph Γ (f ) ⊆ Gm+n and the definable set Γ ′(f ) = {(f (x), x) ∈ Gn × X}.
By Proposition 19, χb(X) = χb(Γ (f )) and χb(f (X)) = χb(Γ

′(f )). Because χb(Γ (f )) =
χb(Γ

′(f )) by Lemma 22. We obtain the conclusion. �
Definition 24. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group sat-
isfying Bounded Condition. For all definable sets X ⊆ Gn, we call χb(X) the bounded Euler
characteristic of X.

Remark 25. The following theorem ensures that our definition of χb coincides with the notion
of the bounded Euler characteristic in [6].

Theorem 26. Let (G,<,+,0, . . .) be an o-minimal expansion of an ordered abelian group
and X ∈ Gn be a definable set. Let d :X → [0,∞) be a definable function such that d−1(t)

is bounded for any t � 0. Set Xd(t) := {x ∈ X | d(x) � t} for any t ∈ G. Then there exists μ ∈ G

with χg(Xd(t)) = χb(X) for t � μ.

Proof. Consider the definable set Γ ′(d) := {(t, x) ∈ G × X | d(x) = t}. Let p be the projec-
tion of Γ ′(d) to the first factor. Apply the cell decomposition theorem to Γ ′(d). Let Γ ′(d) =
C1 ∪ · · · ∪ Ck be the cell decomposition. We may assume that C1, . . . ,Cj are bounded and
Cj+1, . . . ,Ck are not bounded.

Since the fibres of d are bounded, the cell Ci is bounded if and only if p(Ci) is bounded.
Hence there exists μ ∈ G such that Ci ∩ p−1({t ∈ G | t > μ}) = ∅ for all i = 1, . . . , j and
Ci ∩ p−1({t ∈ G | t > μ}) �= ∅ for all i = j + 1, . . . , k. It is easy to see that the definable sets
Ci ∩ p−1({s ∈ G | s > t}) are cells of dimension dimCi for all i = j + 1, . . . , k. Hence we omit
the proof of this fact.
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Fix t � μ. Then

χg

(
Xd(t)

) = χg(X) − χg

({
x ∈ X | d(x) > t

})

= χg(X) −
k∑

i=j+1

(−1)dim(Ci∩p−1({s∈G|s>t}))

= χg(X) −
k∑

i=j+1

(−1)dim(Ci) (by the above fact)

=
j∑

i=1

(−1)dim(Ci)

= χb

(
Γ ′(d)

)
(by the definition)

= χb(X) (by Proposition 23). �
5. Proof of Theorem 1

We are now ready to prove Theorem 1.

Proof.

Case 1. There exists a definable bijection between a non-bounded definable set and a bounded
definable set.

Then by Proposition 11, we can take a definable bijection (0,+∞) ∼= D for some bounded de-
finable set D ⊆ G. Because [(0,+∞)] = [D] ∈ Z, the ring homomorphism i : Z → K0(G) given
by i(1) = [one point] is surjective. By Lemma 15, i is injective. Therefore K0(G) is isomorphic
to Z as a ring.

Case 2. There exist no definable bijections of non-bounded definable sets into bounded definable
sets.

Then, because G satisfies Bounded Condition, we can define the bounded Euler characteris-
tic χb . By Corollary 6, the following ring homomorphism is surjective:

φ : Z[T ]/(T 2 + T
) −→ K0(G),

1 
−→ [one point],
T 
−→ X,

where X = [(0,+∞)].
We show that this ring homomorphism is injective. Fix m + nX ∈ ker(φ) where m,n ∈ Z.

Considering the universal mapping property of (K0(G), [ ]) for the geometric Euler characteris-
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tic χg , there exists an unique ring homomorphism ψg :K0(G) → Z such that ψg ◦ [ ] = χg . By
the definition of ψg ,

ψg(m + nX) = m + nψg(X) = m + nχg((0,+∞)) = m − n.

Thus we get m = n. Similarly for the bounded Euler characteristic χb there exists an unique ring
homomorphism ψb :K0(G) → Z such that ψb ◦ [ ] = χb . By the definition of ψb ,

ψb(m + nX) = m + nψb(X) = m + nχb((0,+∞)) = m.

Thus we get m = n = 0. We have shown φ is injective. �
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