Synthesis of spin-labeled 2-azido-ATP: evidence for distinct nucleotide-binding sites in calcium pump protein from sarcoplasmic reticulum

Pia Jakobs, Hubertus E. Sauer, J. Oliver McIntyre*, Sidney Fleischer* and Wolfgang E. Trommer

Fachbereich Chemie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-6750 Kaiserslautern, FRG and *Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235, USA

Received 16 June 1989

A spin-labeled and photoreactive derivative of ATP was synthesized with the spin label attached to the 2'- or 3'-position of the ribose moiety and an azido group to C2 of the adenine ring (SL-2N3,-ATP). Irradiation of this compound at 350 nm generates a nitrene, which then reacts with nucleophiles in its vicinity. SL-2N3,-ATP, in the presence of Ca2+, was hydrolyzed by the calcium pump protein (Ca2+-ATPase) of fast twitch skeletal muscle sarcoplasmic reticulum. The SL-2N3,-ATP-enzyme complex in the absence of Ca2+ exhibited strongly immobilized ESR spectra. ESR spectra obtained after covalent incorporation of SL-2N3,-ATP into Ca2+-ATPase and removal of freely tumbling SL-2N3,-ATP exhibited motionally constrained species indicative of distinct and possibly adjacent ATP-binding sites. By contrast, with SL-ATP devoid of the azido group or with the corresponding 'non-cleavable' β,γ-methylene triphosphate analogue (SL-AMP-PCP), two distinct sites were not as well resolved in the ESR spectra due to spectral overlap with the signal from the freely tumbling fraction even with the enhanced spectral resolution provided by perdeuteration of the spin label. Thus, SL-2N3,-ATP may have general application for ESR studies of ATP-dependent proteins under conditions in which non-covalent interactions are too weak for motionally restricted species to be resolved.

Protein, Ca2+ pump; ATPase, Ca2+; Photoaffinity labeling; Spin label; Perdeuteration; Azido-ATP, 2-

1. INTRODUCTION

8-Azido-ATP has found wide application as a photoaffinity reagent for various cation pumps (cation-motive ATPases). Due to the substituent at C8, the analog is preferentially in the syn conformation of the adenine ring with respect to the ribose moiety [1,2]. More recently, 2-azido-ATP has become the preferred reagent, since ATP was found to combine with several proteins in the anti conformation [3-5].

Recently, we introduced photoaffinity spin-labeled derivatives of NAD+ [6] and ATP [7]. Such analogs are useful probes for ESR investigations under conditions in which non-covalent binding is too weak for the bound nucleotide to be detected by ESR spectroscopy, i.e. the ESR spectra are dominated by the high-amplitude signal of the free component. In addition to SL-8N3,-ATP [7], we have now synthesized the corresponding SL-2N3,-ATP (fig.1). With these photoaffinity reagents, the ESR spectral characteristics of bound ligand can be determined after covalent incorporation followed by separation from the free ligand.

The calcium pump protein (Ca2+-ATPase) of the sarcoplasmic reticulum membrane consists of a single type polypeptide chain of Mr 110331 (1001 amino acids) [8]. The enzyme catalyzes the active
transport of Ca\(^{2+}\) coupled to the hydrolysis of ATP with a Ca\(^{2+}\)/ATP stoichiometry of two [9-11]. There are two ATP-binding sites. The high-affinity site (\(K_m\) in the micromolar range) is associated with catalysis. The low-affinity site (\(K_m\) in the submillimolar [12] or millimolar range [13]) appears to have a modulatory role [14-16]. ESR binding studies with SL-ATP exhibited only a single type of immobilized component [13]. The interpretation of these spectra, however, was complicated by a large ESR spectral component arising from the unbound and freely tumbling SL-ATP and SL-ADP (formed by enzymic hydrolysis) present in the samples. Here, we have covalently bound SL-2N\(_3\)-ATP to the calcium pump protein of the SR and are now able to resolve two spectral components for the bound ligand.

2. MATERIALS AND METHODS

2-Azido-ATP was synthesized from 2-chloroadenosine essentially according to Czarnecki [17]. Esterification of 32 mg (40 \(\mu\)mol) 2-azido-ATP (triethylammonium salt) with 14 mg (76 \(\mu\)mol) 2,2,5,5-tetramethyl-3-pyrroline-1-oxyl-3-carboxylic acid was carried out as previously described for SL-8N\(_3\)-ATP [7] to give SL-2N\(_3\)-ATP in 18% yield. However, purification was significantly simplified by anion-exchange chromatography (fig.2) on DEAE-Sephadex A25 using triethylammonium bicarbonate buffer (pH 7.3) as eluent. Removal of excess salts was significantly simplified by anion-exchange chromatography and freely tumbling SL-ATP and SL-ADP (formed by enzymic hydrolysis) present in the samples. Here, we have covalently bound SL-2N\(_3\)-ATP to the calcium pump protein of the SR and are now able to resolve two spectral components for the bound ligand.

![Structural formula of SL-2N\(_3\)-ATP. The bracket indicates an equilibrium mixture of 2'- and 3'-esters.](image)

![Typical elution profile for the purification of SL-2N\(_3\)-ATP. A linear gradient of 0-1.3 M triethylammonium bicarbonate (600 ml) was used. Peaks were assigned by TLC and ESR analysis; see text.](image)

Ultrapac column Lichrosorb RP 18.5 \(\mu\)m (4 \(\times\) 250 mm) (LKB, Bromma), eluent 10% isopropanol. 90% 0.1 M LiCl (pH 7.0). SL-2N\(_3\)-ATP was stable for at least 3 months upon storage at \(-70^\circ\)C in aqueous solution as monitored by HPLC.

ESR spectra were recorded on a Bruker ESP 300 spectrometer (X-band) with a modulation frequency of 100 kHz, a modulation amplitude of 1.0 G, a microwave power of 6.3 or 12.6 mW and a sweep width of 100 or 120 G. The measurements were performed at 25°C in a total volume of approx. 60 \(\mu\)l of 80 mM Hepes (pH 7.4), 80 mM KCl, 5 mM MgCl\(_2\), 1 mM CaCl\(_2\) and 80 \(\mu\)M EGTA (buffer I); 100 mM Mes (pH 7.2), 5 mM MgCl\(_2\), 10 \(\mu\)M CaCl\(_2\), 20 \(\mu\)M EGTA and 150 mM sucrose (buffer II) or 80 mM Hepes (pH 6.8), 80 mM KCl, 100 \(\mu\)M EGTA, 100 \(\mu\)M MgCl\(_2\) (buffer III). Further details are given in table 1.

Longitudinal tubules of SR (fraction Is2 from the 32.5-34.5% sucrose layer) were prepared from rabbit fast twitch skeletal muscle by zonal centrifugation on a sucrose density gradient [20]. It is composed of one membrane type, the calcium pump membrane. About 90% of the protein of this highly specialized membrane is the calcium pump [20]. The calcium pump protein concentration was calculated using a value of 8.1 nmol per mg protein. Protein concentration was measured according to Lowry et al. [21], using bovine serum albumin as standard. ATPase activity was assayed spectrophotometrically at 340 nm following the oxidation of NADH in a coupled system with pyruvate kinase and lactate dehydrogenase [22] or by monitoring the change in pH value upon ATP hydrolysis [23].

Photolabeling procedure: A suspension of 8.2 mg/ml of longitudinal tubules of SR and 1.68 mM SL-2N\(_3\)-ATP in a total volume of 70 \(\mu\)l of 0.3 M sucrose, 10 mM MgCl\(_2\), 1 mM EGTA, 80 mM KCl, pH 7.0, was irradiated 3 times for 5 min each in a Pyronet photoreactor (Middletown, CT) equipped with 16 con-
Table 1

<table>
<thead>
<tr>
<th>Fig.</th>
<th>[Enzyme] (µM)</th>
<th>[Ca(^{2+})] (mM)</th>
<th>[Spin-labeled nucleotide] (µM)</th>
<th>[Enzyme-nucleotide complex] (µM)</th>
<th>(K_d) (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A</td>
<td>370</td>
<td>1</td>
<td>3200</td>
<td>240</td>
<td>1.60</td>
</tr>
<tr>
<td>3B</td>
<td>770</td>
<td></td>
<td>630(^d)</td>
<td>155</td>
<td>1.88</td>
</tr>
<tr>
<td>3C</td>
<td>760</td>
<td>10</td>
<td>620(^d)</td>
<td>220</td>
<td>0.98</td>
</tr>
<tr>
<td>4A</td>
<td>250</td>
<td>0.01</td>
<td>88(^e)</td>
<td>30</td>
<td>0.43</td>
</tr>
<tr>
<td>4B</td>
<td>180</td>
<td>0.01</td>
<td>990(^e)</td>
<td>140</td>
<td>0.32</td>
</tr>
<tr>
<td>4C</td>
<td>75</td>
<td>0.01</td>
<td>1680(^e)</td>
<td>37(^f)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Experiments were not designed to quantitate \(K_d\). Values are approximate only
\(^b\) ESR spectrum not shown
\(^c\) SL-ATP
\(^d\) SL-AMP-PCP
\(^e\) SL-2N\(_3\)-ATP
\(^f\) After irradiation and gel centrifugation

In order to provide improved ESR spectral resolution so as to look for potentially distinct ATP-binding sites, SL-ATP was synthesized with a perdeuterated spin label. The advantage of the enhanced spectral resolution provided by such analogs is well established [27,28]. At the high excess of analogs required for combining with the low-affinity regulatory site, the amplitude of the free signal was still too large for detailed analysis of the motionally restricted species in the spectra (fig.3A). We obtained some improvement in resolution by utilizing the non-hydrolyzable SL-AMP-PCP (fig.3B vs A). In this way, formation of SL-ADP, which binds only weakly, is precluded (see also [13]). Spectra recorded in either the presence or absence of Ca\(^{2+}\) at various transporter/nucleotide ratios were similar in line shape but binding was slightly tighter in the presence of up to 10 mM Ca\(^{2+}\) (for details see table 1). It should be noted that the low field signal region of the ESR spectral component referable to bound SL-AMP-PCP is asymmetric (arrow 2, fig.3C), suggesting the presence of more than one bound component. This asymmetry appears to be more pronounced in the presence of Ca\(^{2+}\) even at a 10-fold excess of the calcium pump protein (fig.3C). Moreover, this spectrum also shows a corresponding peak in the high-field region separated by 76 G (arrows 2' and 2).

SL-2N\(_3\)-ATP is hydrolyzed by the Ca\(^{2+}\)-ATPase at 13% of the rate of ATP. Fig.4A shows an ESR spectrum of a complex of this ligand with the enzyme in which 32% of the SL-2N\(_3\)-ATP contributes to the motionally restricted enzyme-bound species (2\(\Delta\alpha_z = 66.5\) G, distance between arrows 1 and 1'). Addition of a 10-fold excess of ATP resulted in loss of the bound signal and a corresponding increase in the free component, i.e. SL-2N\(_3\)-ATP is bound to the ATP site(s) exhibiting an apparent \(K_d\) of about 0.6 mM.

At a 5-fold molar excess of SL-2N\(_3\)-ATP to enzyme, the additional component in the low-field region, as detected with SL-AMP-PCP (fig.3B,C) is resolved (fig.4B). This spectral component was also detected in the absence of Ca\(^{2+}\) (not shown) and, as with SL AMP PCP, is therefore independent of the presence of Ca\(^{2+}\). The tight binding of ATP to the calcium pump protein does not require Ca\(^{2+}\), which is essential for the hydrolysis of ATP [29].
Fig. 3. ESR spectra of SL-ATP (A; buffer I) and SL-AMP-PCP (B, C; buffer III; C, addition of Ca$^{2+}$) in complexes with calcium pump protein from SR. Concentrations given in table 1. Spectra were recorded with the following maximal relative gain settings: A/B/C = 2:1:5.

The ESR spectrum after covalent incorporation of SL-2N$_3$-ATP into the calcium pump protein is shown in fig. 4C. Labeling was carried out using a 20-fold molar excess of the nucleotide and the non-covalently bonded SL-2N$_3$-ATP was removed by gel centrifugation [25]. Irradiation of the transporter alone under identical conditions did not lead to a significant loss in activity (< 4%). About 0.5 + 0.1 equiv. were bound per mol calcium pump protein as judged by ESR spectroscopy. In the absence of the intense and overlapping spectral component referable to free ligand, the spectrum reveals additional bands in the low- and high-field regions separated by 60–61 G (fig. 4C, arrows 3 and 3'). Some residual free signal present in the sample may be due to covalent binding at non-specific sites at the surface of the enzyme. The complex line shape could arise from distinct and structurally different binding sites on the calcium pump which comprises 90% of the total protein present. The spectral components are too large to arise from binding to a minor contaminant in the residual protein. The observed splitting of 60–61 G, however, is rather small for a separate bound component but could arise from spin-spin interaction between SL-2N$_3$-ATP molecules bound to adjacent sites on the enzyme. A separation of nitroxide spins of 12–15 Å would yield this type of spectrum, in which both the original low- and high-field signals are split into nearby bands, separated by about 8.5 G (between arrows 2 and 3, fig. 4C). Corresponding splittings of the central line are still obscured by the free component. Such dipolar interactions have been observed previously for SL-NAD bound to adjacent subunits in glycer-
aldehyde-3-phosphate dehydrogenase and were analyzed in terms of a structural model [27,30]. Corresponding studies are now being carried out with SL-2N3-ATP covalently bound to the calcium pump protein in order to determine the origin of the complex ESR spectral line shape. SL-2N3-ATP, the synthesis of which is described here, may have general application in ESR studies of ATP-dependent proteins under conditions in which non-covalent interactions are too weak for motionally restricted species to be readily characterized. With F1-ATPase from thermophilic bacteria, covalent labeling of four out of six nucleotide-binding sites has been achieved (Trommer et al., in preparation).

Acknowledgments: This work was supported by grants from Deutsche Forschungsgemeinschaft (Tr 90/8-3) and Fonds der Chemischen Industrie to W.E.T. and the National Institutes of Health (DK 14632).

REFERENCES