
under different demographic
histories.

Coalescent theory states that all
genes in a population share
a common ancestor. How long ago
that common ancestor existed is
the time to coalescence, or the time
to the most recent common
ancestor. When a single population
diverges into two, initially many
genes lineages will have common
ancestors that existed prior to
divergence of the populations; that
is, the time to coalescence of any
particular gene lineage will be
greater than the time to divergence.
These are termed ‘deep
coalescence’ events. As the time
since divergence increases, the
expected number of deep
coalescence events declines, until
all of the gene copies in each
population share a common
ancestor that existed more recently
than the divergence between the
two populations (Figure 1).

Using data simulations, Carstens
et al. [8] compared the number of
deep coalescence events seen in
their data with the number that
would be expected if populations
diverged either at the onset of the
last ice age (w100,000 years ago),
or since the ice age ended
(w17,000 years ago). These data
simulations showed that, if the
grasshopper populations had
diverged after the last ice age,
there should have been many more
deep coalescence events than
were actually observed in DNA

sequence data from the
grasshoppers.

Although phylogeography has
fallen out of fashion in recent years,
the emerging climate crisis has
made understanding past climate
changes more important than ever.
By integrating palaeoclimatology
with coalescent theory, Carstens
et al. [8] have set a new benchmark
for historical biogeography that
foreshadows an exciting future for
the field. This new synthesis will
unite investigators from population
genetics, ecology, and climatology
into a new science of biogeography
that will continue to flourish
through the next century.
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Polarized Cell Growth: Double Grip
by CDK1

Precise coupling of cell growth and cell-cycle progression is crucial for
achieving cell homeostasis. A recent study sheds light on two distinct
roles of cyclin-dependent kinase 1 (CDK1) in promoting polarized cell
growth in budding yeast.
Giulia Rancati and Rong Li

Cell-size homeostasis is an
important requirement for cell
proliferation. Many efforts have
been devoted to tackling this
classic problem, but it remains
unclear how cell growth is
coordinated with cell division [1].
In the current view, cell growth and
cell-cycle control are considered
separate processes that are linked
through dependency mechanisms.
Most published studies have
focused primarily on two
questions: how a cell-size
threshold is set; and how this
threshold impinges upon the
cell-cycle regulatory system
governed by cyclin–CDK
complexes. The budding yeast
Saccharomyces cerevisiae has
been a useful model for studying
the coupling between growth and
cell-cycle progression. Existing
evidence suggests that yeast cells
assess their growth status by
measuring the rate of translation as
a function of cell volume [1]. A
threshold translation rate allows
accumulation of G1 cyclin, which
leads to activation of CDK1 and
entry into S phase through complex
mechanisms. In addition, inhibition
of CDK1 activity before S-phase
entry permits cell growth, albeit in
an isotropic fashion [2,3].
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Therefore, CDK1 was not
previously implicated in the
regulation of cell growth and the
coordination between cell growth
and cell-cycle control appeared to
be a one-way street.

An aspect of S. cerevisiae cell
growth/division that has not been
considered extensively in the study
of cell-size control is the fact that
nearly half of the cell growth
required for the generation of two
daughter cells occurs after G1.
Yeast cells divide through bud
formation and cell growth is
therefore polarized along
a vectorial axis toward the bud to
allow delivery of various
constituents to the newly forming
cell surface [4–6]. The cell has
limited time to complete this
growth, as a near doubling of cell
volume and surface area must
occur within a short window of
w30 min during S–G2 phases. It
has been shown that CDK1
orchestrates the switch between
isotropic growth and polarized
growth. In particular, when CDK1 is
bound to G1 cyclins, it triggers the
transition from isotropic growth in
G1 to polarized growth in S–G2;
however, when bound to mitotic
cyclins, CDK1 activity switches
the cell back to isotropic growth
during M phase [7] (Figure 1). It is
thought that most targets of
CDK1 during these transitions are
components of the core signaling
machinery, centered on the
Rho-type Cdc42 GTPase, which
controls the establishment of cell
polarity.

Recent work from McCusker
et al. [8] now reveals previously
unrecognized roles for CDK1 in
promoting different aspects of
polarized cell growth. To dissect
the role of CDK1 in polarized cell
growth, this group took advantage
of an analogue-sensitive allele of
CDK1 (cdk1-as) that was
previously shown to be rapidly
inactivated upon addition of an
adenine analogue, 1NM-PP1, and
found, surprisingly, that an acute
inhibition of CDK1 caused an
immediate arrest of bud
enlargement. This result implied
that CDK1 activity is continuously
required for bud growth after the
onset of S phase. A critical process
in bud growth is the polarized
delivery of Golgi-derived secretory
Cln1,2,3/CDK1

Clb5,6/CDK1
Clb1-4/CDK1

Growth direction

Site of growth

Actin patches

Actin cables
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Figure 1. Coordination be-
tween cell-cycle progres-
sion, actin organization
and cell-surface growth.

During budding yeast mi-
totic cell divisions, the
CDK1–cyclin complexes
couple cell-cycle progres-
sion with growth and actin
cytoskeleton rearrange-
ments. Cell-cycle progres-
sion is represented in the
core of the diagram. Polar-
ized and isotropic growth
is represented as direction
and site of growth. Actin
cytoskeleton rearrange-
ments are described
through the reorganization
of its major components:
actin patches and cables.
vesicles along actin cables via
a myosin V motor protein [9].
Secretory vesicles fuse at the bud
tip to insert the material for building
the new cell surface, composed of
plasma membrane and cell wall.
CDK1 inactivation promptly
delocalized all the components of
this machinery from the bud tip,
including the exocyst complex
required for vesicle fusion, the
myosin V motor protein, and even
components of the endocytic
complexes required for recycling.
It is unlikely, however, that the
observed growth arrest was
a consequence of depolarization of
growth, since neither the mother
cell nor the bud increased in size
upon CDK1 inhibition, whereas
blocking actomyosin-based
transport primarily affects growth
polarity, as opposed to growth per
se [10,11]. Thus, the growth
inhibition was likely to be due to
a direct inhibition of some steps
along the secretory pathway.

What might be the advantage of
CDK1 assuming growth control of
the bud after G1? One possibility is
that phosphorylation by CDK1
maintains the efficiency of the
exocytic machinery to ensure the
growth required for achieving a bud
size that is large enough to
accommodate the incoming
nucleus and all the organelles
required for survival after
cytokinesis. In other words, like the
chromosomal events in the cell
cycle, the generation of the new
cell compartment (bud) is driven by
the CDK1 cell-cycle engine.
Remarkably, there is even
a checkpoint that delays mitotic
entry by the activation of the CDK1
inhibitor, Swe1, in response to
defects in polarized growth [12].
Still, it remains unclear why growth
is permitted in G1 without CDK1
activity. It is tempting to speculate
that a growth inhibitor is allowed
to accumulate after the G1/S
transition, possibly due to
inactivation of APC-dependent
proteolysis. CDK1 activity would
therefore be required to counteract
this growth inhibitor during S phase
(Figure 2).

The second part of the study by
McCusker et al. [8] investigates
how CDK1 activity triggers the
establishment of cell polarity,
which occurs at the G1–S transition
and is governed by Cdc42.
Polarized assembly of the actin
cytoskeleton and localization of the
vesicle fusion machinery to the site
of bud emergence are regulated
by Cdc42 and several other Rho
GTPases [4,5,13]. Activation of
Cdc42 requires the guanine
nucleotide exchange factor (GEF)
Cdc24. In G1 cells, Cdc24 is
sequestered in the nucleus in an
inactive form, and G1 cyclin–CDK1
complexes trigger Cdc24
activation and relocation from the
nucleus to the site of budding.
There are few insights, however,
into how CDK1 activates Cdc24 at
the molecular level. To elucidate
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Figure 2. A schematic
model for coupling growth
and cell cycle in the control
of cell size in budding
yeast.

In G1, active growth ma-
chinery and isotropic
growth allow the mother
cell to reach a certain size
threshold which triggers
START events. CDK1 acti-
vation by G1 cyclins leads
to the establishment of cell
polarity and promotes rapid
growth. Hereafter, growth
becomes dependent on
CDK1, possibly due to
accumulation of a growth
inhibitor (X) after START.
Active CDK1–S cyclin com-
plexes sustain polarized
growth through S and G2,
enabling the bud to reach
an appropriate size for cell
division.
this point, McCusker et al. [8]
sought for possible CDK1 targets
among the Cdc24-interacting
proteins. Purification of Cdc24 in
cells undergoing bud growth led
the authors to identify Bem1, Rga1
and Boi1/2 as Cdc24-interacting
partners, though it was unclear
whether these proteins exist in
a single complex. Rga1 is one of
the Cdc42 GTPase-activating
proteins (GAPs) [14], whereas
Bem1 and Boi1/Boi2 are multi-
domain adaptor-like proteins
[13,15]. Bem1 was previously
shown to form a complex with
Cdc42–GTP and Cdc24. This
complex is thought to constitute
a positive feedback loop for the
establishment of Cdc42
polarization [16,17].

Cdc24 and its interacting
partners show cell-cycle-
dependent phosphorylation, the
onset of which roughly correlated
with the peak of the protein level of
the G1 cyclin Cln2. CDK1
inactivation using the cdk1-as
allele resulted in delocalization of
these proteins and Cdc42 from the
incipient bud tip at apparently
different rates, suggesting that
CDK1 is continuously required for
the maintenance of the polarized
state. The authors further
characterized the function of Boi1
phosphorylation by CDK1. Mass
spectrometry led to the
identification of 29 phosphorylation
sites in Boi1, 12 of which matched
the minimum consensus site for
CDK1. Mutagenesis of these
consensus sites caused
temperature-sensitive growth. The
terminal phenotype at the
restrictive temperature was
characterized by the presence of
large unbudded cells and small
budded cells with large mothers.
The function of CDK1-mediated
Boi1 phosphorylation is therefore
more consistent with a role in the
establishment and maintenance of
cell polarity, as opposed to a role in
the growth control operated by
CDK1. Much remains to be
elucidated at a mechanistic level
on how CDK1-induced
phosphorylation of Cdc24 and its
interacting partners affect the
biochemical activities of these
proteins.

The observation that CDK1
activity is continuously required for
the polarized state has an
interesting implication on the
design principle of cell-polarity
control in yeast. The burst of G1
cyclin–CDK activity is thought to
trigger the establishment of cell
polarity at the G1–S transition.
Whereas G1 cyclin–CDK activity is
short-lived, the polarized state
must be sustained through the
whole period of bud growth. In
engineering terms, this may be
explained by system hysteresis,
where the switch that controls cell
polarization is intrinsically bistable
and the polarized state is able to
sustain even after the inductive
signal diminishes [18].
Alternatively, the G1 cyclins may
simply pass the torch on to other
CDK1 activators to maintain the
polarized state. The findings of
McCusker et al. [8] suggest that G1
cyclin–CDK activity is unlikely to be
sufficient for sustaining polarized
growth and these authors propose
that the S-phase cyclins, Clb5/6,
may be the subsequent torch
bearer. The lack of temporal
bistability in the polarity regulatory
network may allow growth polarity
to be tightly coordinated with
cell-cycle progression, enabling
precise bud-size control and
reorganization of the growth
machinery to the bud neck later in
the cell cycle.

In summary, existing data now
indicate that cell-size homeostasis
during vegetative growth in yeast
is achieved at two levels: a G1
restriction point that ensures the
appropriate size of the mother cell;
and a ‘double-grip control’ by
CDK1 during polarized growth to
achieve sufficient bud size in
a short period. This double-grip
control refers to the dual function of
CDK1 in controlling first the
establishment and maintenance of
cell polarity and then in sustaining
the activity of the growth
machinery, possibly by modulating
the activity of the secretory
components. A question of interest
is whether the mechanism
underlying the control of polarized
growth by CDK1 is relevant to other
eukaryotes. Since budding yeast
cell division is intrinsically
asymmetric and shares some of the
common principles governing
asymmetric cell divisions in
multicellular organisms, it would
not be surprising to find conserved
features in the molecular pathways
that connect CDKs to cell polarity
and polarized membrane
trafficking. Next summer will be the
25th anniversary of the discovery of
cyclins [19], and it seems clear that
we are still scratching the surface
of cyclin–CDK’s functionality.

References
1. Jorgensen, P., and Tyers, M. (2004). How

cells coordinate growth and division.
Curr. Biol. 14, R1014–R1027.

2. Culotti, J., and Hartwell, L.H. (1971).
Genetic control of the cell division cycle in
yeast. 3. Seven genes controlling nuclear
division. Exp. Cell. Res. 67, 389–401.

3. Cross, F.R. (1990). Cell cycle arrest
caused by CLN gene deficiency in
Saccharomyces cerevisiae resembles



Dispatch
R603
START-I arrest and is independent of the
mating-pheromone signalling pathway.
Mol. Cell. Biol. 10, 6482–6490.

4. Pruyne, D., and Bretscher, A. (2000).
Polarization of cell growth in yeast. I.
Establishment and maintenance of
polarity states. J. Cell Sci. 113, 365–375.

5. Pruyne, D., and Bretscher, A. (2000).
Polarization of cell growth in yeast. J. Cell
Sci. 113, 571–585.

6. Slaughter, B., and Li, R. (2006). Toward
a molecular interpretation of the surface
stress theory for yeast morphogenesis.
Curr. Opin. Cell Biol. 18, 47–53.

7. Lew, D.J., and Reed, S.I. (1993).
Morphogenesis in the yeast cell cycle:
regulation by Cdc28 and cyclins. J. Cell
Biol. 120, 1305–1320.

8. McCusker, D., Denison, C., Anderson, S.,
Egelhofer, T.A., Yates, J.R., 3rd,
Gygi, S.P., and Kellogg, D.R. (2007). Cdk1
coordinates cell-surface growth with the
cell cycle. Nat. Cell Biol. 9, 506–515.

9. Pruyne, D., Legesse-Miller, A., Gao, L.,
Dong, Y., and Bretscher, A. (2004).
Mechanisms of polarized growth and
organelle segregation in yeast. Annu. Rev.
Cell Dev. Biol. 20, 559–591.

10. Ayscough, K.R., Stryker, J., Pokala, N.,
Sanders, M., Crews, P., and Drubin, D.G.
Cell Signalling: Th
BAK1

Plant receptor-like kinases characte
been shown to play dual roles in see
processes, inviting comparison with

Gwyneth C. Ingram

The plant protein kinase BRI1-
ASSOCIATED RECEPTOR
KINASE1 (BAK1) plays a key role in
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extensive functional redundancy.
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molecular level (reviewed in [6]).
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demonstrated both genetic and
physical interactions of BKK1 with
BRI1, suggesting true functional
redundancy of BKK1 with BAK1.
Null alleles of BKK1 show no visible
phenotype [3].

If BAK1 and BKK1 act
redundantly in brassinolide
perception, bak1; bkk1 double
mutants might be expected to
show an enhanced
brassinosteroid-insensitive
phenotype compared to bak1
mutants. Instead, He et al. [3]
observed post-embryonic seedling
lethality of the double mutant due
to spontaneous cell death.
Transcriptome analyses of the
double mutant showed increased
expression of defence and
senescence related genes which,
in bri1 mutants, show either no
change from wild type, or
decreased expression.

A role for BAK1 in suppressing
cell death is supported by the work
of Kemmerling et al. [4]. Their
independent study identified BAK1
as one of 32 LRR receptor-like
kinase encoding genes whose
expression is up-regulated by
infection with avirulent
Pseudomonas syringae strains,
and suppressed by infection with
a virulent strain. When challenged
with the virulent strain, instead of
the restricted infection-site lesions
observed in wild-type plants, bak1
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